
October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

1

Symbolic Approaches for Finding
Control Strategies in Boolean Networks

Christopher James Langmead∗ and Sumit Kumar Jha

Carnegie Mellon University
5000 Forbes Ave.,

Pittsburgh, PA 15213, USA

E-mail: {cjl,sumit.jha}@cs.cmu.edu

We present algorithms for finding control strategies in Boolean Networks (BN). Our

approach uses symbolic techniques from the field of model checking. We show that despite

recent hardness-results for finding control policies, a model checking-based approach is
often capable of scaling to extremely large and complex models. We demonstrate the

effectiveness of our approach by applying it to a BN model of embryogenesis in D.

melanogaster with 15,360 Boolean variables.

Keywords: Systems Biology, Model Checking, Control, Boolean Networks

1. Introduction

Computational cellular and systems modeling is playing an increasingly important role

in biology, bioengineering, and medicine. The promise of computer modeling is that
it becomes a conduit through which reductionist data can be translated into scientific

discoveries, clinical practice, and the design of new technologies. The reality of modeling

is that there are still a number of unmet technical challenges which hinder progress. In
this paper, we focus on the specific problem of automatically devising control policies

for Boolean Networks (BN). That is, given a BN model with external controls, we seek

a sequence of control signals that will drive the network to a pre-specified state at (or
by) a pre-specified time.

Recently, it has been shown that finding control strategies for arbitrary BNs is NP-
hard,1 but that polynomial-time algorithms exist for deterministic BNs if the network

topology forms a tree. In this paper, we consider a more general family of BNs with

arbitrary network topologies. Our algorithm uses techniques from the field of model
checking.14 Model checking refers to a family of algorithms and data structures for

verifying systems of concurrent reactive processes. Historically, model checking has been
used to verify the correctness and safety of circuit designs, communications protocols,
device drivers, and C or Java code. Abstractions of these systems can be encoded as

finite-state models that are equivalent to Boolean networks. We show that existing model

checking algorithms can be used to find control strategies for BNs.
Two important features of model checking algorithms are that they are exact and

scale to real-world problem instances. For example, model checking algorithms for finite-

state systems have been able to reason about systems having more than 1020 states
since 1990,8 and have been applied to systems with as many as 10120 states.7 More

recently, model checking techniques have been created for stochastic systems.5 These
algorithms can be either exact or approximate, and have also been shown to scale to

systems with as many as 1030 states.16 In this paper, we will show that model checking

can be used to devise control strategies for very large Boolean networks (up to 15,360
nodes) within seconds or minutes. These techniques are useful in their own right, but
will also lay the groundwork for future techniques for finding control strategies in models

with asynchronous and stochastic dynamics.

∗Corresponding author

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

2

V1

V2 V3

ψ1 ≡ V1(t+1) = V1(t) Æ V2(t)
ψ2 ≡ V2(t+1) = ¬V3(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t)

time t time t + 1
V1 V2 V3 V1 V2 V3

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 0 0
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 1

Fig. 1. (Left) A Boolean Network (BN). A BN consists of a graph and a set of Boolean
functions. The vertices of the graph correspond to Boolean variables and the edges describe
functional dependencies. The Boolean functions describe the evolution of the model from
time t to t+1. The functions can contain any combination of Boolean connectives. (Right)
A transition relation encoding the same dynamics as the BN. Notice that the BN is a
compact encoding of the transition relation.

2. Boolean Networks

A BN is a pair, B = (G,Ψ), where G = {V,E} is a directed graph, and Ψ =

{ψ1, ψ2, ..., ψ|V |} is a set of Boolean functions. Each vertex, vi ∈ V , represents a Boolean
random variable. The state of variable vi at discrete time t is denoted by vi(t). The state

of all vertices at time t is denoted by v(t). The directed edges in the graph specify causal

relationships between variables. Let Pa(vi) ⊂ V be the parents of vi in the directed
graph and let ki = |Par(vi) ∪ {vi}|. A node can be its own parent if we add a self-edge.

Each Boolean function ψi : {0, 1}ki 7→ {0, 1} defines the dynamics of vi from time t to

t + 1 based on the state of its parents at time t. Thus, the set Ψ defines the dynamics
of the entire BN. An example BN is shown in Figure 1-A. Notice that a BN is simply a

compact encoding of a transition relation over V (Fig 1-B).

This basic model can be extended to define a BN with external controls by aug-
menting our graph with special control nodes, G = {V,C,E}. Each control node, ci, is

connected to one or more nodes in V by a directed edge going from ci to vj (Fig. 2).
The control nodes themselves are externally manipulated. That is, there is no ψi that

defines the dynamics of ci.

Consider a set of initial states, I, for the nodes in V specified in terms of a Boolean
expression. For example, the expression I = (v1 ∧ ¬v2 ∧ v3) defines the set {(1, 0, 1)},
and I = (v1 ∧ v3) defines the set {(1, 0, 1), (1, 1, 1)}. We define a set of goal states, F , in

a similar fashion. A control policy, Γ = 〈c(0), c(1), ..., c(t)〉, is a set of Boolean vectors
that defines a sequence of signals to be applied to the control nodes. The BN control

problem is to find a control policy that drives the BN such that v(0) = I and v(t) = F .

Our goal in this paper is to algorithmically generate Γ for a given, B, I, F , and t, or to
indicate that no such policy exists.

3. Model Checking

The term model checking14 refers to a family of techniques from the formal methods

community for verifying systems of concurrent reactive processes. The field of model
checking was born from a need to formally verify the correctness of hardware designs.

Since its inception in 1981, it has expanded to encompass a wide range of techniques for

formally verifying finite-state transition systems, including those with non-deterministic
(i.e., asynchronous) or stochastic dynamics. Model checking algorithms are simultane-

ously theoretically very interesting and very useful in practice. Significantly, they have

become the preferred method for formal verification in industrial settings over traditional
verification methods like theorem proving, which often need guidance from an expert hu-

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

3

V1

V2 V3

ψ1 ≡V1(t+1) = V1(t) Æ V2(t) Ç ¬C2(t)
ψ2 ≡V2(t+1) = ¬V3(t) Æ C1(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t) Æ C2(t)

C1

C2

V1 V2 V3

Start (t=0) 0 0 0
Goal(t=3) 1 0 0

t V1 V2 V3 C1 C2

0 0 0 0 1 0

1 1 1 0 0 1

2 1 0 1 0 0

3 1 0 0

Fig. 2. (Left) A BN with two control nodes (C1 and C2). (Right top) An initial state and
time-sensitive goal. (Right bottom) A control policy (last two columns) that achieves
the goal at the specified time.

man user. A complete discussion of model checking theory and practice is beyond the
scope of this paper. The interested reader is directed to [14] for a detailed treatment of

the subject.

3.1. Modeling Concurrent Systems as Kripke Structures

An atomic proposition, a, is a Boolean predicate referring to some property of a given

system. Let AP be a set of atomic propositions. A Kripke structure, M , over AP is a

tuple, M = (S,R,L). Here, S is a finite set of states, R ⊆ S × S is a total transition
relation between states, and L : S 7→ 2AP is a labeling function that labels each state with

the set of atomic propositions that are true in that state. Variations on the basic Kripke
structure exist. For example, if the system is stochastic, then we replace the transition

relation, R, with a stochastic transition matrix, T where element T (i, j) contains either

a transition rates (for continuous-time Markov models) or a transition probability (for
discrete-time Markov models).

It is easy to see that, in principle, BNs can be encoded as Kripke structures. The state

space, S, corresponds to the 2|V ∪C| possible states of the BN . We will use the atomic
propositions to reveal the state of each variable in the model. That is, |AP | = |V ∪ C|
and the propositions will be of the form: “is the state of vi 1?” The labeling function,

L, can thus be used to define the set of initial states, I, and goal states, F (see Sec.
2). The transition relation, R, corresponds to the table in Figure 1-B. Alternatively, a
stochastic transition matrix, T , can be used to encode the stochastic dynamics of the

PBN. Naturally, it is generally not possible to explicitly instantiate the Kripke structure
for an arbitrary BN because the state space is exponential in the number of nodes. In the

next section, we discuss how Kripke structures can be efficiently encoded symbolically.

3.2. Symbolic Encodings of Kripke Structures

The basis for symbolic encodings of Kripke structures, which ultimately facilitated in-

dustrial applications of model checking, is the reduced ordered Binary Decision Diagrams
(BDDs) introduced by Bryant6 (Fig. 3). BDDs are directed acyclic graphs that symbol-

ically and compactly represent binary functions, f : {0, 1}n 7→ {0, 1}. While the idea

of using decision trees to represent boolean formulae arose directly from Shannon’s ex-
pansion for Boolean functions, two key extensions made by Bryant were i) the use of a

fixed variable ordering, and ii) the sharing of sub-graphs. The first extension made the

data structure canonical, while the second one allowed for compression in its storage. A
third extension, also introduced in [6], is the development of an algorithm for applying

Boolean operators to pairs of BDDs, as well as an algorithm for composing the BDD

representations of pairs of functions. Briefly, if f and g are Boolean functions, the al-
gorithms implementing operators apply(f ,g,op) and compose(f ,g) compute directly on

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

4

x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

X1

X2 X2

X3 X3 X3 X3

1 0 0 1 0 0 1 1

X1

X2 X2

X3 X3

0 1

(A) (B) (C)
Fig. 3. (A) A truth table for the Boolean function f(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨
(x1 ∧ x2)∨ (x2 ∧ x3) (B) A Binary Decision Tree of the truth table in (A). A dashed edge
emanating from variable/node xi indicates that xi is false. A solid edge indicates that xi

is true. (C) A Binary Decision Diagram of the truth table in (A). Notice that it is a more
compact representation that the Binary Decision Tree.

the BDD representations of the functions in time proportional to O(|f ||g|), where |f | is
the size of the BDD encoding f . In this paper, BNs and the desired behaviors are encoded

symbolically using BDDs. Model checking algorithms, which call apply and compose as

subroutines, are then used to find a valid control strategy, or prove that none exists.
In practice, the construction of the BDDs is done automatically from a high-level

language describing the finite-state system and its behavior. In this paper, we use the

specification language used in the symbolic model checking tool NuSMV.12

We note that BDDs can be generalized to Multi-terminal BDDs13 (MTBDD), which

encode discrete, real-valued functions of the form f : {0, 1}n 7→ R. Significantly, MTB-

DDs can be used to encode real-valued vectors and matrices, and algorithms exist for
performing matrix addition and multiplication over MTBDDs.13 These algorithms play

an important role in several model checking algorithms for stochastic systems5 which, in

turn, we have used to develop algorithms for finding control strategies in BNs with sto-
chastic behaviors. Due to space limitations, we will focus on algorithms for deterministic

BNs in this paper and report the algorithms for stochastic BNs elsewhere.

3.3. Temporal Logics

Temporal logic is a formalism for describing behaviors in finite-state systems. It has
been used since 1977 to reason about the properties of concurrent programs.23 There

are a number of different temporal logics from which to chose, and different logics have

different expressive powers. In this paper, we use a small subset of the Computation
Tree Logic (CTL). CTL formulae can express properties of computation trees. The root

of a computation tree corresponds to the set of initial states (i.e., I) and the rest of

the (infinite) tree corresponds to all possible paths from the root. A complete discussion
of CTL and temporal logics is beyond the scope of this paper. The interested reader is
directed to [14] for more information.

The syntax of CTL is given by the following minimal grammar:

φ ::= a | true | (¬φ) | (φ1 ∧ φ2) | EXφ | E[φ1Uφ2]

Here, a ∈ AP , is an atomic proposition; “true” is a Boolean constant; ¬ and ∨ are the

normal logical operators; E is the existential path quantifier (i.e., “there exists some
path from the root in the computation tree”); and X and U are temporal operators

corresponding to the notions of “in the next state”, and “until”, respectively. Given
these, additional operators can be derived. For example, “false” can be derived from
“¬true” and the universal quantifier, AXφ, can be defined as ¬EX¬φ.

Given some path through the computation tree, π = 〈π[0], π[1], . . . 〉, the semantics

of a CTL formula are defined recursively:

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

5

π |= a iff a ∈ L(π[0])

π |= true, ∀π
π |= ¬φ iff π 6|= φ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= EXφ iff π[1] |= φ

π |= E[φ1Uφ2] iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

Here, the notation“π |= α” means that π satisfies α.

3.4. Model Checking Algorithms

A model checking algorithm takes a Kripke structure, M = (S,R,L), and a temporal

logic formula, φ, and finds the set of states in S that satisfy φ: {s ∈ S | M, s |= φ}.
The complexity of model checking algorithms varies with the temporal logic and the

operators used. For the types of formulas used in this paper (see Sec. 4), an explicit
state model checking algorithm requires time O(|φ|(|S|+ |R|)), where |φ| is the number

of sub-formulas in φ ([14] p. 38).

Of course, for very large state spaces, even linear time is unacceptable. Symbolic
model checking algorithms operate on BDD encodings of the Kripke structure and CTL

formula. Briefly, the temporal operators of CTL can be characterized in terms of fixpoints.

Let P(S) be the powerset of S. A set S′ ⊆ S is a fixpoint of a function τ : P(S) 7→ P(S)
if τ(S′) = S′. Symbolic model checking algorithms define an appropriate function, based

on the formula, and then iteratively find the fixpoint of the function. This is done using

set operations that operate directly on BDDs. The fixpoint of the function corresponds
exactly to {s ∈ S | M, s |= φ}. The interested reader is encouraged to read [14], ch. 6 for

more details.

The symbolic model checking algorithms used in this paper are exact. We note that
there are also approximation algorithms for model checking (e.g., [27]), which employ

sampling techniques and hypothesis testing. Such algorithms provide guarantees, in terms

of the probability of the property being true, and can scale to much larger state spaces.
These do not use BDDs, but rather operate on the high-level language description of the

finite-state model.

4. A Symbolic Model Checking Approach to Finding Control Policies

The use of model checking algorithms for finding control strategies requires three steps:
First, the BN must be encoded using a high level language for describing finite-state

models. Different model checking software use different modeling languages. In Figure

4, we show pseudo-code for encoding the BN in figure 2. This pseudo-code is based on
the language used in the model-checking tool NuSMV. The code contains a block of

variable definitions. In the example, we declare Boolean variables for v1, v2, v3, c1,and

c2. The set of initial states, I, is encoded using “init” statements. The update rules, Ψ,
are encoded using “next” statements. A single variable counter is declared that marks

the passage of time. A “next” statement for counter updates the counter.

Second, a CTL formula must be written. In this paper, we are concerned with CTL
formulae that ask whether it is possible to end up in the goal state(s), F , at time t. Let

φF be a formula describing the goal state. This formula can describe any subset of the
variables in the BN. For example, φF := v1 ∧ ¬v2 ∧ v3 or φF := v1 ∧ v3 are both valid
formulas. The former chooses to specify the state of each variable, the latter does not. Let

φt :=counter= t be a Boolean formula that evaluates to true if the variable counter is
t. The formula φ := E[¬φF U(φF ∧ φt)] can be used to find a control policy. In English,

this formula says: “There exists a path that enters state F for the first time at time t”.

Alternatively, if we wish to relax the restriction that the BN cannot enter state F before
time t, we would use the formula φ′ := E[trueU(φF ∧ ψt)], which translates as “In the
future, the model will be in F at time t.” Temporal logics are very expressive and can

encode a number of complex behaviors. For example, it is possible to specify particular

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

6

MODULE BN
VAR

V1: boolean; // variable node 1
V2: boolean; // variable node 2
V3: boolean; // variable node 3
C1: boolean; // control node 1
C2: boolean; // control node 2
COUNTER: 0 .. T+1;// counter

ASSIGN
init(V1) := 1;
init(V3) := 1;
next(V1) := (V1 & V2) | !C2 ;
next(V2) := ! V3 & C1 ;
next(V3) := V1 & V2 & C2 ;
next(COUNTER) := COUNTER+1 ;

Fig. 4. Pseudocode based on the language used in the symbolic model checking program
NuSMV. This code implements the BN in Figure 2. The code consists of a module with
variable declaration statements, “init” statements that initialize the variables, and ”next”
statements that implement each φi and increment a counter.

milestones through which the model should pass en route to the final goal. That is, one
can construct formula that say that the BN should enter state X1 before X2, must enter

X2 by time t1, and must reach the goal state at exactly time t2. This expressive power

is one of the key advantages of a model checking based approach to the design of control
policies.

Finally, we apply an appropriate symbolic model checking algorithm to find a control

policy. If a control policy exists (i.e., if φ is true), then we ask the model checking
algorithm for a witness, πw, to the formula. The control policy, Γ, is then simply extracted

from πw by reading off the values of 〈c(0), c(1), ..., c(t)〉a.

5. Related Work

Boolean Networks have been used extensively to model complex biological systems (e.g.,

[2,3,17,18]). The design of control strategies for Boolean networks and related models

has been considered by a number of different authors (e.g.,[1,11,15,24]). Akutsu and co-
workers1 were the first to show that the design of control policies is NP-hard. They also

provide a polynomial-time algorithm that works on the special case where the topology

of the BN forms a tree. The primary difference between our work and these is that our
method is based on symbolic model checking and we place no restriction on the topology

of the network. We will show in the next section that despite the fact that the problem
is NP-hard, in practice model checking based approaches to control policy design can

scale to very large models. Of course, the hardness result implies that our approach will

not apply to every BN.
Recently, there has been growing interest in the application of formal methods,

including model checking to biology. Most applications of model checking in biology

have been directed to modeling biochemical and regulatory networks, (e.g.,[4,9,10,19,
22]), although not for the design of control policies. In our own work, we have applied
model checking,20 and a related technology based on decision procedures21 to the protein

folding problem.

6. Results

We present results from two kinds of experiment. The first experiment is designed to

highlight the scalability of a model checking based approach to control policy design. The
second experiment applies our approach to an existing BN model of embryo development

in drosophila.

aEquivalently, as we performed in our experiments, we can request a counterexample to ¬φ.

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

7

CHAIN

RANDOM CHAIN

v v v v v v v v v

c cc

v v v v v v v v v

c cc

MODULAR

SMALL DIAMETER

v v v v v v v v v

c cc

v v v v v v v v

v v v v v v v v v

c cc

v v v v v v v v

Fig. 5. Network topologies used in our experiments on scalability. Chain describes a model
where the variables form a circular chain. Random Chain describes a model where the
variables form a circular chain, but a random number of “long-range” edges are added.
Modular describes a model with coupled modules. Each module is outlined. Small Diameter
describes a model where a graph has a small diameter. In each case, the placement of the
control nodes is random.

6.1. Scalability

We have performed a large-scale study on randomly generated BNs in order to char-

acterize the scalability of our approach. In total, we considered 13,400 separate BNs.
We considered several different network topologies, which are shown in Figure 5. These

topologies are meant to reflect different kinds of networks ranging from simple feedback

loops (chains), feedback loops with complex topologies (random chains), loosely cou-
pled modules (modular), to a dense network (small diameter). Within each network

category, we performed separate experiments randomly generating graphs by varying:
a) the number of non-control variables over the interval [10,640]; b) the average number

of parents for each node over the interval [2, 8]; c) the number of control nodes over

the interval [2,64]; d) the number of variables specified in the goal state, F , over the
interval [4,80]; and e) the target time, t, over the interval [1,32]. For each combination of

parameters, we generated 100 BNs randomly, constructed a CTL formula, and identified

a control strategy using NuSMV. Due to space limitations, we will simply report that
each experiment took less than 12 minutes on a single Pentium 3 processor with 2 GB

of memory. The mean and median runtimes were 2 and 0.6 seconds, respectively. The

longest runtime (693 seconds) was on a random chain topology model with 80 nodes, an
average in-degree of 4, 4 control nodes, a target specifying the state of 4 variables, and a

time of 32. These results suggests that a model checking approach to policy design scales

well to randomly generated BNs.

6.2. Application To D. Melanogaster Embryo Development

To test our approach on a BN for a real biological process, we applied it to the task of

finding control policies to an existing model of fruit fly embryo development.3 Briefly,
Albert and Othmer have developed a BN model of the segment polarity gene network in

D. Melanogaster (Fig. 6-left). The model comprises 5 RNAs: (wingless (wg); engrailed
(en); hedgehog (hh); patched (ptc); and cubitus interruptus (ci)), and 10 proteins: (WG;
EN ; HH ; PTC ; CI ; smoothened (SMO); sloppy-paired (SLP); a transcriptional repres-

sor, (CIR), for wg, ptc, and hh; a transcriptional activator, (CIA) for wg and ptc; and
the PTC -HH complex, (PH)). Each molecule is modeled as a Boolean variable and

the update rules are Boolean formulas that take into account both intra-cellular state,

and inter-cellular communication. The Albert and Othmer research did not consider the
question of control policy design.

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

8

EN FZFZ

Cell 1 Cell 2

SLP
WGWG

PTCPTC

SMO

CIACIR

CI

en

wg

ptc

smo

ci
hh HHHH

PH PH

Fig. 6. (Left) The drosophila segment polarity BN from Albert and Othmer. The figure
shows one cell in detail (large grey box), and the inter-cellular signals (WG and HH)
between two adjacent cells. See text for more details. (Right) Expression pattern of wg
in wild-type (top) and a “broad-stripe” mutant embryo (bottom).

Albert and Othmer have demonstrated that the Boolean model accurately repro-
duces both wild-type and mutant behaviors. In their experiments, they consider a 1-

dimensional array of cells initialized to the experimentally characterized cellular blasto-

derm phase of Drosophila development, which immediately precedes the activation of the
segment-polarity network. The purpose of the segment-polarity network is to maintain

a pattern of expression throughout the life of the fly that defines the boundaries be-
tween parasegments, small linear groupings of adjacent cells. Two possible parasegment

boundary expression patterns are shown in Figure 6-(right)b. In the Albert and Othmer

work, the parasegments are four cells wide. We note that the steady-state expression
patterns of different sub-populations of cells differ due to inter-cellular communication

— this is precisely the mechanism by which the parasegment boundaries are maintained.

That is, the fate of every cell is not the same, even though each cell is running the same
regulatory network.

In our experiment, we modified the Albert and Othmer BN in two ways. First, we

considered a 32x32, two-dimensional array of cells of dimension, instead of the 1x12
one-dimensional array of cells considered in [3]. We believe that this extension to a

two-dimensional model is the first of its kind; we also believe that the 15,360 Boolean

variables in our model is the largest ever considered for the purpose of control policy
design. Topologically, this network most closely resembles the “modular” network in

Figure 5. Adjacent cells in the network can communicate, which introduces loops in
overall topology of the BN for the 16x16 array of cells. Second, we modified the network

such that the RNAs wg and hh becomes a control node in the network. In principle, one

could control RNAs through RNA-silencing or micro RNAs. We used our methods to
design two control policies for hh. The first is designed to drive the system to either the

wild-type expression pattern (Fig. 6-A (top)) and the other to a “broad-stripe” pattern

(Fig. 6-A (bottom)). Our algorithms successfully found the two control policies in 6.1
and 6.2 minutes, respectively. The computation was dominated by the time to construct

the BDDs. We believe these results strongly suggest that our approach can be used to

find control signals for biologically relevant BNs of substantial size.

bThe images in Fig. 6-A are taken from http://www.fruitfly.org (top) and [26] (bottom)

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

9

7. Conclusions and Future Work

We have introduced an effective means for automatically discovering control sequences

for Boolean networks based on techniques from the field of model checking. Our approach

scales to very large BNs, having as many as 15,360 nodes, and runs in seconds to minutes.
We note that, due to the inherent computational complexity of finding control policies

in BNs,1 we cannot claim that our approach will scale to every BN of large size. Rather,

our results suggest that the modular design of “real” biological networks may reduce
the possibility of encountering worst-case instances. This is an interesting question and

we believe it is related to the phenomenon of canalizing functions and other generic
properties of BNs (e.g., [25]).

BNs have been used widely to model a range of biological phenomena. However,

the fact that BNs made strong assumptions about the binary nature of each variable
(i.e., active or inactive), the synchronous nature of the updates, the assumption that

time unfolds in discrete steps, and the assumption that the dynamic are deterministic.

Ultimately, these assumptions limit the overall applicability of BNs. We note that our
approach to control policy design can be adapted for use to a much broader range of

models including those with continuous-valued variables, asynchronous updates between

variables, continuous time, and stochastic transitions. We are presently pursuing these
goals as part of ongoing research.

Acknowledgments

This research was supported by a U.S. Department of Energy Career Award (DE-FG02-
05ER25696), and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

References

1. T. Akutsu, M. Hayashida, W.K. Ching, and M. Ng. On the complexity of finding
control strategies for boolean networks. Proc. 4th Asian Pacific Bioinf. Conf., pages
99–108, 2006.

2. T. Akutsu, S. Miyano, and S. Kuhara. Inferring qualitative relations in genetic net-
works and metabolic pathways. Bioinformatics, 16(8):727–734, 2000.

3. R. Albert and H. G. Othmer. The topology of the regulatory interactions predics the
expression pattern of the segment polarity genes in drosophila melanogaster. Journal
of Theoretical Biology, 223:1–18, 2003.

4. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking
for biochemical processes. Cell Biochem Biophys., 38(3):271–286, 2003.

5. C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Sym-
bolic model checking for probabilistic processes. Proc. 24th International Colloquium
on Automata, Languages and Programming (ICALP’97), 1256:430–440, 1997.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, 1986.

7. J.R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic
model checking for sequential circuit verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 3(4):401–424, 1993.

8. J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model
Checking: 1020 States and Beyond. Proc. Fifth Ann. IEEE Symposium on Logic in
Computer Science, pages 428–439, 1990.

9. M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways
using the PRISM model checker. Proc. Computational Methods in Systems Biology
(CMSB’05), pages 179–190, 2005.

10. N. Chabrier and F. Fages. Symbolic Model Checking of Biochemical Networks. Proc

October 2, 2007 15:31 WSPC - Proceedings Trim Size: 9.75in x 6.5in apbc051a

10

1st Internl Workshop on Computational Methods in Systems Biology, pages 149–162,
2003.

11. P. C. Chen and J. W. Chen. A markovian approach to the control of genetic regulatory
networks. Biosystems, 90(2):535–45, 2007.

12. A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, P. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking.
CAV ’02: Proceedings of the 14th International Conference on Computer Aided Veri-
fication, pages 359–364, 2002.

13. E.M. Clarke, M. Fujita, P. C. McGeer, J.C.-Y. Yang, and X. Zhao. Multi-terminal
binary decision diagrams: An efficient datastructure for matrix representation. IWLS
’93 International Workshop on Logic Synthesis, 1993.

14. E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

15. A. Datta, A. Choudhary, M. L. Bittner, and E.R. Dougherty. External control in
markovian genetic regulatory networks. Mach. Learn., 52(1-2):169–191, 2003.

16. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model
checking of concurrent probabilistic processes using MTBDDs and the Kronecker rep-
resentation. Proc. 6th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’00), 1785:395–410, 2000.

17. S.E. Harris, B.K. Sawhill, A. Wuensche, and S. Kauffman. A model of transcrip-
tional regulatory networks based on biases in the observed regulation rules. Complex.,
7(4):23–40, 2002.

18. S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, 1993.

19. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, J. Heath, and E. Gaffney.
Simulation and verification for computational modelling of signalling pathways. WSC
’06: Proceedings of the 38th conference on Winter simulation, pages 1666–1674, 2006.

20. C.J. Langmead and S. K. Jha. Predicting protein folding kinetics via model checking.
Lecture Notes in Bioinformatics: The 7th Workshop on Algorithms in Bioinformatics
(WABI), pages 252–264, 2007.

21. C.J. Langmead and S. K. Jha. Using bit vector decision procedures for analysis of
protein folding pathways. Fourth Workshop on Constraints in Formal Verification,
page in press, 2007.

22. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra. Algo-
rithmic Algebraic Model Checking I: Challenges from Systems Biology. 17th Internl
Conf. on Comp. Aided Verification (CAV), pages 5–19, 2005.

23. A. Pnueli. The temporal logic of programs. Proceedings of the 18th IEEE. Foundations
of Computer Science (FOCS), pages 46–57, 1977.

24. P. Ranadip, D. Aniruddha, L. Bittner, and R. Dougherty. Intervention in context-
sensitive probabilistic boolean networks. Bioinformatics, 21(7):1211–1218, 2005.

25. I. Shmulevich, H. Lhdesmki, E. R. Dougherty, J. Astola, and W. Zhang. The role of
certain post classes in boolean network models of genetic networks. Proc Natl Acad
Sci U S A, 100(19):10734–10739, 2003.

26. T. Tabata, S. Eaton, and T. B. Kornberg. The drosophila hedgehog gene is expressed
specifically in posterior compartment cells and is a target of engrailed regulation.
Genes Dev., 6(12B):2635–2645, 1992.

27. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. CAV ’02: Proceedings of the 14th International Conference
on Computer Aided Verification, pages 223–235, 2002.

