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Transition seeds exhibit a good tradeoff between sensitivity and specificity for homology
search in both coding and non-coding regions. But, identifying good transition seeds is
extremely hard. We study the hit probability of high-order seed patterns. Based on our
theoretical results, we propose an efficient method for ranking transition seeds for seed
design.
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1. Introduction

Biomolecular sequence comparison is one of the most important tasks in bioinfor-
matics in the study of molecular evolution, genomics and molecular medicine. As
a result, many sequence comparison programs have been developed to meet the
challenge of the rapid increase in size of sequence databases.

The seed alignment is the dominant technique for homology search and genomic
sequence alignment. Such a technique was first implemented in BLASTN program.'
In BLASTN, a local alignment is found by first identifying exact matches of eleven
contiguous residues between the two input sequences, called seed hits, and then ex-
tending them on either side for approximate matches by dynamic programming. The
resulting alignments are scored for acceptance. In recent years, more general pat-
terns of conservation have been proposed as seeds for sequence alignment.?8:14,20,24
Different seeds are also used as anchor point in whole-genome and multiple sequence
alignments.?%1

Good spaced seeds improve tremendously the sensitivity of seed alignment
while keeping speed unchanged.?® Hence, seed design is an important aspect of
seeded alignment. Identifying good seeds relies on efficient computation of seed

10 methods were proposed for

sensitivity. Dynamic programming'® and recurrence
computing the sensitivity of the spaced seeds on a simple i.i.d. ungapped align-
ment model. It has been shown that computing the sensitivity of a spaced seed
is NP-hard.'® Hence, efficient heuristic methods were also developed for identify-

ing good spaced seeds.”?10:15:23:27.29 Algorithms for multi-seed design were also



October 2, 2007 10:32 WSPC - Proceedings Trim Size: 9.75in x 6.5in  apbc056a

developed.16:19:21,26,28

Transition and transversion were first incorporated into seed design in
BLASTZ.2* This leads to the study of the transition seeds that contain fixed match
and transition positions. Transition seeds exhibit a good tradeoff between sensitiv-
ity and specificity for homology search in both coding and non-coding regions.2”-3!
However, identifying good transition seeds is a difficult task. Here we study the
run probabilities of high-order seed-like patterns, which include spaced seeds and
transition seeds as special cases. We generalize the theoretic study of spaced seeds®°
to high-order seed-like patterns. Using these results, we propose an efficient method
for ranking transition seeds for the purpose of seed design.

Due to the space limit, we omit the proofs of the theorems stated in this extended
abstract. The reader is referred to the full version of this paper for all proofs.

2. Seeds, Sensitivity and Specificity
2.1. Spaced seeds

A (basic) spaced seed is defined as a list of indices {i1, ia, ..., %, } with i; = 0. It
can also be specified by a string 1 %271 1% 72711 1x*w—fw-1-11 oyer alphabet
{1, *}. Two sequences S; and Sy exhibit a seed match at positions z and y if, for
1<k <w,Si[z+i;] = So[y + ix]. The number of match positions w is defined to
be the weight of the seed; the span of the checked positions, i,, + 1, is called the
length of the seed.

A transition spaced seed is defined as a pair of disjoint lists of indices:

M = {i1,io,. .. yim }, Z=4J1,02,---, 70}

with 1 = 0 or j; = 0. Two sequences S7 and Ss exhibit a match of the transition
seed at positions x and y if, for 1 < k < m/, Si[z + ix] = S2ly + 4] and, for
1<k <t Silz+ jk] = S2[y + ji], or two residues Si[x + ji] and Sa[y + ji] are
both pyrimidines or purines. The positions in M are called match positions; m’ is
defined to be the match weight of the seed. The positions in Z are called transition
positions; ¢’ is defined to be the transition weight of the seed. The length of the seed
is defined to be max{i,,, j } +1. Equivalently, we specify a transition seed of length
Lg by a string of length Ly over alphabet {1,#,*} in which 1s represent match
positions, #s transition positions, and *s other so-called ‘don’t care’ positions.

2.2. Seed sensitivity and specificity

The sensitivity of a seed is the probability that a biologically meaningful alignment
contains a match to the seed. The biological meaningful alignments are usually
given through a probabilistic model on nucleotides. Here, we restrict ourselves to
the Bernoulli or zero-th order Markov ungapped alignment model. We assume the
pair of residues in each position is independently and identically generated from
{A,G,C,T}x{A,G,C,T}. By using 1s and Os to represent matches and mismatches
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in the ungapped alignment between two sequences X and Y, a seed match can be
viewed as an occurrence of the spaced seed in a binary sequence. Therefore, in the
Bernoulli sequence model, the sensitivity of a spaced seed is defined to be the hit
probability of a spaced seed pattern in a binary random sequence of a fixed length
L (which is 64 by default).

Similar to basic spaced seeds, each match to a transition seed in an ungapped
alignment can be viewed as an occurrence of the seed in the corresponding se-
quence over {1,2, 3}, where we use 1s, 2s, 3s to represent matches, mismatches and
transversions respectively.

A seed’s specificity is defined to be one minus the probability that the seed
match occurs in an alignment between two unrelated random sequence by chance.
Therefore, the specificity is also a kind of hit probability in a probabilistic alignment
model.

3. High-order Seed Patterns and Their Run Probabilities

Motivated by analyzing seed sensitivity and specificity, we study the run probabil-
ities of sequence patterns of a special type in this section.

Let ¥ = {b1,bo,...,by}. An order-t pattern P consists of a sequence @ of
length Ly on an alphabet ¥ = {aq,a2,...,a;} and an ordered list of subsets
{X1,%s,..., %} such that Q[1] # a;, Q[Lg] # a, and 1 C o C ... C &y = .
We say the pattern @ to hit a sequence S on X at position k if, for 1 <i < Lg, the
following condition is satisfied: if Q[i] = a; for some j, then, S[i + k — Lg| € X;.

Example 3.1. (1)A basic spaced seed 7 is an order-2 pattern with a sequence over
{1, %} and the subset list: {1}, {0,1}. (2) A transition seed 7 is an order-3 pattern
with a sequence over {1, #,*} and ordered subset list: {1}, {1, 2}, {1,2,3}.

We study the hit probability of an order-t pattern in the Bernoulli random
sequence on alphabet ¥ = {by,ba,--- ,b,,}, in which a letter b; is generated with
probability p; at each position and ), _,, pi = 1. We use M(X,p1,p2,...,Pm) to
denote this Bernoulli sequence model.

For an order-t pattern () and a Bernoulli random sequence S, we use ¢, to
denote the hit probability that the pattern @ hits S before or at position n; we also
use f, to denote the probability that @ first hits S at position n. Let the length of
the pattern ) be Lg. Obviously,

fi=0,1<i<Lg—1,

m—1
Jro =07 (p1 +p2)*?--- (Z pi)mt,
i=1

where w; is the number of occurrences of the letter a; in the pattern, and

qn = Z fi~ (1)

1<i<n
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Let X = {by,ba,- - , by }. Given an order-t pattern P with sequence @ and or-
dered list of subsets of X : {X1,%5,...,%;} and a sequence S on 2. By encoding the
letters in ¥; — 3;_1 by a new letter b}, we transform the sequence S into a sequence
S’ on X = {b},b5,...,b,}. Let P’ be the order-t pattern with sequence Q' and
ordered list of subsets {{b]},{b],b5},...,{b],b5,...,b;}}. Tt is easy to see that the
hit probability of P on sequence S in Bernoulli model M(X, p1,pa,...,pm) is equal
to the hit probability of P’ on sequence S’ in Bernoulli model M'(X", p}, ph, ..., p}),
where p; = Zj:bjezﬁzi,l pj. Therefore, for simplicity, we will focus on order-t pat-
terns with a sequence and an order list of ¢ subsets of an alphabet with size t in the
rest of paper.

3.1. A recurrence formula for hit probability

Let @ be an order-t pattern and S be a random sequence in Bernoulli model
M(2,p1,p2,...,pt). We use E,, be the event that @ hits sequence S at position
n and E, its complement event. We use Mg = {Q1,Q2,...,Qn} to denote all
h = HZ 51" distinct sequences obtained from () by replacing each occurrence of
a; with a letter in ¥ = {by, b, ..., b:}. Taking a transition seed @ = 1 * #1 as an
example, we have Mg = {1111,1211,1311, 1121, 1221, 1321}.
For 1 < i < h, we define E,(f) to be the event that ); hits S at po-
sition m. Obviously, ET(Li) and E,(Lj ) are disjoint for 1 < i # j < h. Define
,(Li) = P[E\Ey--- En,lE,(f)], the probability that @ first hits S at position n and
S[n—Lg+1,n] = Q;. Clearly, @ hits S at position n if and only if some Q; hits S
at position n and so B, = J;<;<;, ES). This implies that

h
fo = 1. (2)
=1

Let  be a sequence with length |z|. For an integer & < |z|, we use (k] and
x[k) to denote the length-k suffix and prefix of = respectively. For any ¢, j and k,
1<4,j<h,1<k< Ly, we define

(Plaste—H] k< Lo—1and Qi = QK
) = k=1Loandi=j
0 otherwise

we have

h

Lo-1
(1—qn)p Z Z n+k (Zj fn+LQ (3)

for 1 < j < h, where p; is the probability that @); occurs at the position Lg.
Using (1) - (3), one can compute the hit probability of a pattern recursively. It
was first proved for the basic spaced seeds.!?
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3.2. An Inequality on Hit Probability

In this section, we present an inequality that relating the first hit probability to hit
probability at different positions.

Theorem 3.1. Let Q be an order-t pattern of length Lg. Then, for any 2Lg —1 <
E<n, (0 = gn-rsig-1) < fn < fu(l = gn_k) in a Bernoulli sequence model.

3.3. Asymptotic Analysis of Hit Probability

Buhler et al.” proved that for any basic spaced seed Q, there exist two constants
aq and A such that 1 — g, ~ agAg . Similar results are established by Solov’ev.2?
Such an approximation also exists for our high-order pattern.

Theorem 3.2. For an order-t pattern Q, there exist constants ag and Ag do not
depend on n, such that g, = 1 — agAB(1+o(R")) with 0 < R <1 in a Bernoulli
model M(Evplap27 e apt)-

The single term 1 — agAgp gives a very close approximation to g, even for
relative big n. Consider a specific transition seed 1 % 1 containing no #s. In the
Bernoulli sequence model M({1,2,3},p = 0.6,¢ = 0.3, = 0.1), we obtain that
Ag = 0.7291502607 and g = 1.058452825 using Maple.

In general, it is not easy to compute ag and Ag for an order-t pattern when ¢
and Lg are large. However, we will establish good bounds for Ag using the average
distance between successive non-overlapping hits.

4. The Average Distance Between Successive
Non-overlapping Hits

Renewal theory studied recurrent events connected with repeated trials. A recurrent
event qualifies for the theory if the number of trials between successive occurrences
of the event are jointly independent random variables with identical distribution.
An non-overlapping hit of a pattern @ is a recurrent event under the following
assumption: If a hit at position ¢ is selected as a non-overlapping hit, then the next
non-overlapping hit is the first hit at or after position i 4+ L.

The average distance between successive non-overlapping hits pg is a very im-
portant parameter in the renewal theory. For the purpose of studying the hit prob-
abilities of a pattern, it is formally rewritten as

po =Y ifi
=0
Since 3777, fj=land 1—¢q; =372, f; foralli > Lq, g may also be defined

as

po=Lo+ Y (1—aq)

i=Lg
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4.1. Bounding uq

Let @ be an order-t pattern on alphabet ¥’ = {aj,a9,...,a;}. For 1 < k < ¢,
we define RP(k) to be the ordered list of indices 7 such that Q[i] = ax. For any
0 <j < Lg—1, we define

RP(k)+j={i+j|ie RPk)}.
For 1 <k, k' <tand1l<j<Lg-—1,set
Oy (k. k') = [RP(k) 0 (RP(K) + j)1,
which is the number of common indices in RP(k) and RP(k’) + j. Note that
Oy (k, k') # O4 (K, k) for different " and k in general. For 1 < k < ¢, define
OL(k) = OL(k, k) + > OL(K k) + Y OL(k,K).
k' <k K<k

Theorem 4.1. With notations above,

Lo—1
n < Y

— t—1 k
=0 T (Zi:l pi

This is a generalization of a result proved for basic spaced seeds in.'® Applying
it to transition seed, we have the following fact.

1

TR (4)
)OQ(k)

Theorem 4.2. For any transition seed @,

Lo-1

1
< E .
HQ = = pPo®

(n+q)%®

(5)

in a Bernoulli sequence model M({1,2,3},p,q,r).

The bound given above is quite tight when the generation probabilities are
large. Consider transition seed Q = 11##1 * #11 in the Bernoulli sequence model
M({1,2,3},p,q,r). Figures 1 shows both the exact pg and its upper bound in
Theorem 4.2. As shown in the figure, ;1o and the bound get closer and closer when
one of the generation probabilities goes to large.

4.1.1. Bounding Aq in terms of jg

In this subsection, we will present lower and upper bounds for the constant Ag
appeared in Theorem 3.2 in terms of pg. A similar result was proved for basic
spaced seeds in.30

Theorem 4.3. For any t-order pattern Q) of length Lq,

1 1
<A <1——. (6)

1- -
po — Lo +1 1Q
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Compare Ho and the upper bound
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Fig. 1. pg and its upper bound when p from 0.7 to 1 and ¢ from 0 to 0.3 for Q = 11##1 * #11.

5. Identifying Good Transition Seeds

Transition seeds exhibit a good tradeoff between sensitivity and specificity for ho-

mology search in both coding and non-coding regions.?”3!

However, identifying
good transition seeds is a hard task. This is because computing sensitivity is much
harder for transition seeds than for basic spaced seeds of the same weight. The
weight of a transition seed is defined as its match weight plus the half of its transi-
tion weight. By definition, an optimal seed is the seed with the highest sensitivity.
In,'” Kucherov, Noe and Roytberg gave an automata-based method for computing
the sensitivity of a basic or transition seed. Such a method takes an exponential
number of bit operations in the worst case. Another method for searching good
spaced seeds is to use the hill-climbing strategy.?” Here, based on our theoretical
study in the previous sections, we propose an alternative method for the purpose.
The efficiency of this method has been demonstrated for basic spaced seed search
in'® and.?"

Recall that the sensitivity of a spaced seed is defined as the hit probability of
the seed in a random sequence of a fixed length L (which is set to 64 traditionally).
By Theorem 3.2, the sensitivity of a transition seed @ is closely related to the
value of Ag. For two transition seeds P and @, if Ap < Ag, the sensitivity of
P is asymptotically larger than (. Moreover, Theorem 6 indicates that Ao can be
approximated by a function of ug. Therefore, we propose to identify good transition
seeds using the tight bound of ;¢ established in Theorem 4.1. More specifically, we
rank the transition seeds @) by the value of Vg = ijo_l p_ofjfe(l) (p+ q)_of;)@). The
smaller the value of Vg is, the higher it is in the ranking list. Given a weight and a
Bernoulli model, we identify the ten top transition seeds of the weight and the use
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the sensitivity in a region of length 64 to select the best one among these ten seeds.

Given a transition seed and a Bernoulli model, the value of Vj can be sim-
ply calculated in a polynomial number of bit operations. Therefore, our heuristic
method is much faster than using the sensitivity on a length-64 region to select
good transition seeds. In most of cases, our selected seeds are optimal as shown in
Table 1 and Table 2.

Table 1. Good transition seeds in Bernoulli model M({1,2,3},0.7,0.15,0.15)

w  Optimal seeds with w2=2 Sensitivity Rank | Optimal seeds with w2=4 Sensitivity Rank
9 LLIAX¥I*¥ 114511 0.73745 2 TIT*HHRFTHRHTHFTHL 0.73806 5
10 111H#*FTF#FITF*1*11 0.60424 8 IRBE S Bro B R B 0.60692 5
11 T1TFI*I#F IR I4*111 0.47610 1 IR S R S B B B 0.48016 1
12 T1ITAFTFIR*F1ITR41*111 0.36368 4 IRETET i B B B ET B 0.36692 1
13 T1IATFFIT¥I¥*¥1#1*%111 0.27085 1 TII#F IR TR AR TR IR 4111 0.27420 1
14 11IT*¥IRIFAX¥IIFITF#111 0.19760 6 INRRE S S S S B 0.20077 1
15 TTIT¥AT¥I¥I1I¥F11*14111 0.14251 3 TIIT*AITFATFIAF ¥ 14111 0.14494 10
16 111T¥IFI1A*IFITF*114111 0.10165 2 TITHLIIRAF LT TFALTF 14111 0.10360 1
17 TIT1T*¥A1T¥*1TFTFIT*¥14111 0.07185 3 TITTH#TF#ITFIFIA*F114*1111 0.07333 5

Table 2. Good transition seeds in Bernoulli model M({1,2,3},0.8,0.1,0.1)

w  Optimal seeds with w2=2 Sensitivity Rank | Optimal seeds with w2=4 Sensitivity Rank
9 LLIHFIFIF*14%11 0.97266 2 IR RS s E e T | 0.97026 6
10 T1T¥I*¥*1I*#14*111 0.93711 8 IRE R G E S Er S B 0.93405 3
11 TLDRRIIR*F IR 1F 14411 0.88361 1 | LLIA*IRARIRATR141] 0.88046 1
12 TITHA¥IFIF*¥1TR41%1111 0.81402 4 IR R BT R E T BN 0.81037 1
13 T1TATF*F1T¥IRF141*111 0.73263 5 T1I#FIFFITRAF TR TR AL 0.73019 5
14 111TFDRAFITRF IR IR 4111 0.64523 10 TITTFATFFIHF TR TR LA #1111 0.64336 2
15 T1IITF#TFTFIRITR*14%1111 0.55886 9 TITATFIFIAF IR AT 4111 0.55729 6
16 T11T*1I*#TFFITA*F1*¥1¥1111 0.47593 7 T1TIH#FIHTFTFATTF*F IR 14111 0.47507 7
17 T1T1TFIFIAFIFITRFIT*#1111 0.39955 1 TITTF T TR IAF TR 1415441111 0.39915 1

In these two tables, we list the ranks of the optimal transition seeds of weight nine
to seventeen and transition weight two or four in model M({1,2,3},0.7,0.15,0.15)
and M({1,2,3},0.8,0.1,0.1), respectively. In all the cases considered, the optimal
transition seeds are among the top ten transition seeds selected according to V.

In addition, the best transition seeds reported in Table 1 are identical to those
reported in'? for weight from nine to twelve. Here, we also list good transition seeds
for weight from thirteen to seventeen.

6. Conclusion

We have studied the run probabilities of a high-order pattern in the Bernoulli se-
quence model. Both basic spaced and transition seeds are just order-2 and order-3
patterns respectively. We first establish a recurrence formula for computing the
hit probability of a high-order pattern; then, we analyze asymptotically the hit
probability. We establish a relationship between the hit probability and the average
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distance between two non-overlapping hits. For future work, one interesting problem
is how to generalize the study to higher-order Markov sequence models.

By applying the theoretical results mentioned above, we present an efficient
algorithm for identifying good transition seeds. This algorithm can also be adopted
to identify multiple transition seeds.

Finally, we list good transition seeds for six different Bernoulli models. The in-
sight gained from our theoretical study and the list of good transition seeds form a
useful resource in guiding the selection of seeds in the developing practical applica-
tions.
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