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Rapidly increasing numbers of organisms have been completeuenced and most of their genes
identified; homologies among these genes are also gettiaglisbed. It thus has become possible to
represent whole genomes as ordered lists of gene identfiero study the evolution of these entities
through computational means, in systematics as well asmpacative genomics. While dealing with
rearrangements is nontrivial, the biggest stumbling bleckains gene duplication and losses, leading
to considerable difficulties in determining orthologs am@ene families—all the more since orthol-
ogy determination has a direct impact on the selection ofasgements. None of the existing phyloge-
netic reconstruction methods that use gene orders is ablgtoit the information present in complete
gene families—most assume singleton families and equa gentent, limiting the evolutionary op-
erations to rearrangements, while others make it so by reditinig nonshared genes and selecting one
exemplar from each gene family. In this work, we leverage gast work on genomic distances, on
tight bounding of parsimony scores through linear programygmand on divide-and-conquer methods
for large-scale reconstruction to build the first compotzei approach to phylogenetic reconstruction
from complete gene order data, taking into account not agdyrangements, but also duplication and
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loss of genes. Our approach can handle multichromosonebdatgene families of arbitrary sizes and
scale up to hundreds of genomes through the use of diskingverethods. We present experimental
results on simulated unichromosomal genomes in a rangees sonsistent with prokaryotes. Our
results confirm that equalizing gene content, as done itiegiphylogenetic tools, discards important
phylogenetic information; in particular, our approachilgasutperforms the most commonly refer-
enced tool, MGR, often returning trees with less than onetquaf the errors found in the MGR trees.

Keywords phylogenetic reconstruction; whole-genome data; geodfisitance; gene inversion; gene
duplication; gene loss

1. Introduction

Phylogenetic reconstruction has for many years been basaligmments of the sequences
of one or more orthologous genes and proteins. The accunuttfull genome sequences
enables one to use much richer data: one can use hundredwesftgebuild a more detailed
picture of organismal evolutidr® or one can be even more ambitious and use every gene
present in the genomes. In the latter category are simplegthased approaches, where
the presence or absence of genes from the global inventertharinformational charac-
ters®5 as these approaches represent the data in the form of bigsttihere each position
is a character, they can make use of existing software paskiag analysis. Obviously,
however, a complete genome sequence contains much infomissides the individual
sequences of constituent genes or the presence or absahes@fjenes: the genome se-
quence identifies an ordering of these genes along the clsames, as well as a direction
of transcription. Moreover, disruption of this orderingaselatively rare occurrence—a
“rare genomic event®. Thus changes in the ordering are valuable study tools inqgjeyl
netics as well as comparative genomics.

Phylogenetic methods based on gene orders are still initifaincy—see the survey
of Moret and Warnow:the problems faced are mathematically and computationaligh
more challenging than in sequence-based reconstructibtharmodels not as well under-
stood. These methods have been applied to simple data, swechanellar genomes across
sets of taxa where the gene content is highly conserved (&edewof course, the number
of genes is quite small, on the order of 40 genes for animalahdndria and 120 genes for
plant chloroplast§1? As one attempts to scale such analyses to cellular orgajsevesal
problems arise. One is simply a problem with the data: aniooisof complete cellular
genomes are still in various stages of completion, so thattifying homologous gene
families with high accuracy is a challenge. Another is thghhi variable gene content (just
in bacteria, obligate endosymbionts may have under 1,008gjevhile free-living bacteria
may have over 5,000). A third is the widespread occurrengené duplications and losses:
gene families, while mostly containing a single gene, mayt&@io up to 100 homologs in
bacteria and over 1,000 homologs in eukaryotes. Finalgydifference in scale is a huge
challenge given that most algorithms proposed for the tabibé exponential growth in
running time as a function of the size of the problem.

Only a few attempts to use gene orders for reconstructingliyéogeny of a group
of cellular organisms have been made to date. The first fewceztithe gene-order data
(which forms a single phylogenetic character with an imneemsmber of possible states)
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to a collection of much simpler characters, such as the poeser absence of adjacent
gene pairs? an approach later broadened into formal encodings of geterused in
parsimony analyses (see the survey of Wang &t)abther approaches used phylogeneti-
cally informative clusters of genés:*”More recently Belda et &f used a variant of these
approaches on a set of 3@proteobacteria: they chose 247 specific orthologs présent
all 30 bacteria, thereby both reducing the size of the prabland sidestepping the issue
of gene families. Many papers have appeared on phylogemetnstruction from gene-
order data when each gene order is a (signed) permutatioredéience set—for a recent
survey, see Moret and Warndw-, the two most notable ones being our own GRAFPA
and the multichromosomal tool MGR.Finally, Blin et al?* went one step further on a
subset of 13 of the aforementiongeproteobacteria, by using a local, pairwise restriction
on gene content rather than a global one. None of these d@t¢ogate has explicitly taken
duplications and losses into account nor attempted to nmbdet as evolutionary events.
Bayesian MCMC methods, such as BADGERsuffer from similar issues.

We earlier developed a measure of genomic distance tha&t giypair of genomes, re-
turns an estimate of the total number of evolutionary eventter the iDLR (insertions, du-
plications, losses, and rearrangements) separating tivesgenomes324 (An alternative
based on the closely related notion of common intervalswicappeared®) Simulations
results show very high accuracy up to a high threshold ofratitun (where the estimated
distance starts lagging behind the true number of everafwRe distances alone can be
used as a basis for distance-based reconstruction, as wadatdl 3y-proteobacteria (the
same that would later be used by Bk al?Y) in the MS thesis of Earnest-DeYouR),
who found that the reconstructed phylogeny differed from tbference one of Leratt
al.2 by a single SPR event—that is, a single subtree was misplaseslould also later be
the case in the reconstruction of Bl al?! This work served as a proof of concept, but
used a number cdd hocmeasures to keep the computational work down, such asidenti
fying groups of genes that always formed a contiguous growgitaking advantage of the
reference phylogeny to establish an asymmetric cost foe gains and losses.

In this paper, we combine our genomic distaffogith our tight bounding based on
linear programming (LP to produce the first phylogenetic reconstruction methotiata
tempts to return a most parsimonious tree in terms of a padétevolutionary events that
include insertion, duplication, and loss of genes (or geggrents) as well as inversions,
using the complete gene orders with full gene families angniar known orthologies (as
the orthologies will obviously depend on the returned tr&é) provide experimental re-
sults comparing our new approach to reconstruction baséldeogenomic distances alone
(using neighbor-joining), to reconstruction by our san,tbut from genomes reduced to
equal gene contents, and to reconstruction, again on the dfasqualized gene contents,
by the MGR servef and by neighbor-joining (NJ).

Our results indicate that computing under the iDLR model (using the full genomic
gene ordering) regularly improves results over using egedlgene contents, often sig-
nificantly so—errors are commonly reduced by a factor of 4 orenThey also indicate
that the parsimonious trees returned by our LP-based puoeede as good as or better
than those returned by neighbor-joining. Under parametttings with relatively modest
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numbers of events, the two exhibit similar accuracy, intitigathat the iDLR distance es-
timates are both close to additivity and quite distinct freath other. These findings echo
practice with sequence data, and, as with sequence dataaviihdit increased deviations
from ultrametricity (in the form of widely different totalnaount of evolution on different
paths from the root to the leaves) create situations whergds increasingly worse than
our LP-based procedure—until the pairwise distances gaogelenough to prevent accu-
rate reconstruction by any means. We kept the number of taxd13 or fewer) in order

to run large series of experiments with the LP-based methddvth MGR, but we know
from our past work® that the LP-based method can be scaled up to much larger msmbe
of genomes with very little loss of accuracy by using a diskering method.

2. Methods and Models

Our phylogenetic reconstruction algorithm is based on GR&F"2° which we developed
for analyzing chloroplast gene orders. GRAPPA examinesyduee topology, computes a
bound for each, and, for each tree that passes the boundsstby computing ancestral
gene orders that minimize the total length of the tree, assared in terms of inversions.
The original GRAPPA is limited to singleton gene familieslagual gene content, just like
the various inference programs developed since, such as, B&BGER, etc. Its exhaus-
tive examination of all trees also limits the maximum numbkgenomes it can handle,
to about 15 taxa for single runs, 12-14 taxa when running teracks, while its method
for scoring a tree requires the repeated computation ofiension median at each internal
node, an NP-hard problem that limits the lengths of tree edgman handle. To extend it to
larger numbers of taxa, Tang and Moret used a disk-covergthaod (in effect, a special-
ized divide-and-conquer approach) and showed that thétiresDCM-GRAPPA scaled
gracefully to at least 1,000 genont&do date, the best way to extend the approach to larger
genomes has been to avoid scoring trees. The original begredimputes a shortest cycle
on the leaves of the tree and was found to eliminate well 0®% 6f the candidate®. Tang
and Moret” later proposed a linear programming (LP) formulation whenéables are the
lengths of the tree edges and the constraints are simplécnmetgualities; this approach
eliminated well over 99.99% of the candidates in their ekpents. Their LP formulation
was later improved into a pure covering EPwhich offers efficient solutions (running in
O(n?3) time, wheren is the number of genes) and even more efficient approximstion

The LP score was close enough to the actual score that Targemed proposed using
the LP score in lieu of scoring the tree, avoiding any med@amputation. The resulting
reconstruction lacks ancestral orderings, but gives adgypan estimated score, and esti-
mated edge lengths (the values of the LP variables), muclresenum-likelihood recon-
struction does for sequence data. We still lack a good aphrwethe inference of ancestral
gene orders under the iDLR model, both from the point of vidwamputational effort
(medians again) and from that of accuracy. Indeed, Eaibe¥bunget al.3! in a study of
the 13~-proteobacteria, found that internal gene orders wer@ssglyi underconstrained
and so could not be reliably inferred—we need a more detaitelisensitive model of the
evolutionary operations on a gene ordering.
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The triangle inequalities that form the LP rely on a direanpaitation of the distances
between selected pairs of leaves. Thus we can generaliazePttiermulation directly to
the iDLR model by using an estimate of the distance betweeratbitrary genomes with
varied gene families. We had proposed and tested just sueasure>2*which estimates
the total number of insertions (including duplicationg)sdes, and inversions needed to
transform one unichromosomal genome into another. The uneds readily extended to
multichromosomal genomes by replacing inversions withafiexcut-and-join operation®,
since the latter cover fusion, fission, and translocatiomragnchromosomes, yet can be
handled just like inversions.

Our final algorithm thus combines DCMs for scaling to largenters of genomes,
a specific LP formulation to estimate branch lengths and sufare of the trees, and the
intergenomic distance of Swensenal?* to provide input values to the LP. More specifi-
cally, we first compute the pairwise intergenomic distanpegesthen enumerate all possible
trees, following the strategy of GRAPPA, attempting to @liate as many trees as possible.
The bounding is done first using the circular lower bound adeed in Moretet al ;33
if the tree passes that test, we then proceed to set up a pnegram for it. In the linear
program, the variables are the edge lengths; the constraiatderived using the triangle
inequality—basically, a leaf-to-leaf path in the tree,responding to a particular sum of
variables, should have length no less than the pairwiseg@t®mic distance between the
two leaves. It should be noted that, whereas the constrairitee original use of the LP
approach’ were mathematically correct because all measures usecediédistances, the
constraints used here have no such guarantee, since wevaresimg estimates of the true
evolutionary distance. On the basis of the results of Sweesal.,’* we expect most of
them to be correct, with a few possibly off by small deviatiohhen again, we also expect
the LP score to be even closer to optimal than in its origisel as the distances used in the
constraints are much closer to the true evolutionary digtathan was the case in the study
of Tang and Moret. Finally, the score returned by the LP, daahup to the nearest integer,
is assigned as the score of that tree and the algorithm settoerirees with the lowest score.

3. Experimental Design

Our objective is to verify that computing under the full iDURode, i.e., handling both
rearrangements and changes in gene content, allows fer betbnstruction than handling
only rearrangements on genomes reduced to signed peram#aielative accuracy is thus
our main evaluation criterion. However, absolute accutiaayeeded in order to put the
comparison in perspective. Since, in phylogenetic recaoson, error rates larger than
10% are considered unacceptable, there is obviouslyulisiiein improving the error rate by
a factor of two if the result is just bringing it from 60% dowm30%. We also need to test a
wide range of parameters in the iDLR model, as well as to bessénsitivity of the methods
to the rate of evolution. These considerations argue ftinggen simulated data, where we
can conduct both absolute and relative evaluations of acgubefore we move to applying
the tools to biological data, where only relative assesssehscores can be made. The
range of dataset sizes need not be large, however, as we kabapplying DCM methods
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scales up results from datasets of fewer than 15 taxa toetatafover one thousand taxa
with little loss in accuracy and very little distortion ovétre range of parameters. As we
can run many more tests on small datasets and as our printargshis the effect of model
parameters on accuracy, we generated datasets in the fah@éodl 3 taxa.

Simulated trees are often generated under the Yule-Hamliogdel—they are birth-
death trees. Many researchers observed that these trdesttarebalanced than most pub-
lished ones. Other simulations have used trees chosenrohjfat random from the set
of all tree topologies, so-called “random” trees; thesecantrast, are more imbalanced
than most published trees. Alddtiproposed thg-split model to generate trees with a tai-
lored level of balance; depending on the choicg athis model can produce random trees
(8 = —1.5), birth-death trees{ = 0), and even perfectly balanced trees. We use all three
types of trees in our experiments; férsplit trees, Aldous recommended usifig= —1 to
match the balance of most published trees; instead, we ¢thegearameter to match the
computational effort on the datasets from which those tvese computed, which led us
to using8 = —0.8. On random ang-split trees, expected edge lengths are set after the
tree generation by sampling from a uniform distribution atues in the sef1,2,...,r},
wherer is a parameter that determines the overall rate of evolutiothe case of birth-
death trees, we used both the same process and the edges leatitally generated by the
birth-death process, deviated from ultrametricity andhtbealed to fit the desired diameter.

We generate the true tree by turning each edge length intoraspmonding number of
iDLR evolutionary events on that edge. The events we considder the iDLR model are
insertions, duplications, losses, and inversions of gemeontiguous segments made of
several genes—in particular, inserting, duplicating, eleting a block ofk consecutive
genes has the same cost regardless of the valbeWwé forced the expected number of in-
serted and duplicated elements to equal the expected nuhdeleted elements, in order
to keep genome sizes within a general range. We varied tleepiage of inversions as a
function of the total number of operations from 20% to 90%e Témaining percentages
were split evenly between insertions/duplications anddeswith the balance of insertions
and duplications tested at one quarter, one half, and thuageys. The expected Gaussian-
distributed length of each operation filled a range of coratiims from 5 to 30 genes.
These are conditions similar to, but broader in scope thaoset used in the experiments
reported in Swensoet al?*

In all our simulations, we used initial (root) genomes of(0@enes. The resulting leaf
genomes are large enough to retain phylogenetic informatttile exhibiting large-scale
changes in structure. These sizes correspond to the siatiarial genomes and allow us
to conclude that our results will extend naturally to alleimiomosomal bacterial genomes.

The collections of gene orders produced by these simuatioathen fed to our various
competing algorithms. These are of two types: (i) algorghmmning on the full gene or-
ders, namely NJ and our new LP-based algorithm; and (ii)réilgus running on equalized
gene contents, which include NJ again (running on the inmeidistance matrix produced
by GRAPPA), GRAPPA, and MGR. Gene contents are equalizeefmpving gene fami-
lies with more than one gene, then keeping only singletorgenmmon to all genomes.
On some of these datasets, the equalized gene content isaquiad-with high rates of
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evolution, the number of genes shared by all 12 taxa is cmeaby in the single digits, ob-
viously leading to serious inaccuracies on the part of retantion algorithms. We collect
the data (including running times, the actual trees, irgteimferred gene orders, inferred
edge lengths, etc.) and compute basic measures, partyctilarRobinson-Fould8 dis-
tance from the true tree—the most common error measure ilogéyetic reconstruction.

4. Resultsand Discussion

We ran collections of 100 datasets of 10 to 13 genomes, edcB@ genes, under various
models of tree generation and various parameters of the ib&el. We used birth-death,
random, ands-split (with 5 = —0.8) models, with evolutionary diameters (the length of
the longest path, as measured in terms of evolutionary tipesain the true tree) of 200,
400, 500, and 800 operations. (We ran tests with diamete&0f but noted that most
resulting instances exhibited strong saturation—thahit, many of the true edge lengths
were significantly larger than the edit distances betweengtmomes at the ends of the
edge; since no reconstruction method can do well in the poesef strong saturation, we
did not pursue diameters larger than 800.) For each tremedtuwe measured its RF error
rate (the percent of edges in error with respect to the tee) tind then averaged the ratios
over the set of test instances for each fixed parameter. Wpuigahthe ratio of the RF rate
for our approach with that for NJ on full genomic distanced aiith those for the three
approaches with equalized gene contents, binning thetseistid one “losing” bin (the
other method did better), one bin of ties, and 5 bins of wiapaccording to the amount of
improvement. Not all 100 instances are included in thesesaes, because some instances
had equalized gene contents of just 2 or 3 genes and couleémantwith GRAPPA.

We present below a few snapshots of our results. Table 1 sth@wvesults of using full
genomic distances fg#-split trees on datasets of diameters 200, 400, and 500y 86%
inversions. In this case, no difference was found betweendhults returned by our LP-
based method and those returned by NJ using full genomardies. The average RF error
rate for MGR was 23% for diameter 200, 32% for diameter 400 42% for diameter 500.
As simple a method as NJ handily beats existing methods tast rely on equalized gene
contents, often by large factors (e.g., factors of 4 or mo26i% of the cases with diameter
200 with respect to MGR). The reduction in error rate was cieffit in many cases to turn
unacceptable results (with error rates well in excess of)1i#6 acceptable ones.

Table 1. Accuracy results for NJ on full genomic distances and foe¢hevolutionary
diameters compared to three methods on equalized genentsn@olumn triples show
wins, ties, and losses, in percent. Quintiles in the winmiolgmns denote error reductions
by factors larger than 4, 3, 2, 1.5, and 1.

Dataset NJ GRAPPA MGR
200 || 16-4-25-1-0| 50 | 4 14-0-11-4-0| 1 3 26-6-21-4-1| 36 | 6
400 4-0-5-4-01 23| 0 3-0-6-1-0| O 0 5-1-7-6-12| 1| 4
500 5-5-5-8-0| 69 | 8 || 11-2-14-17-15| 18 | 23 || 17-7-14-17-14| 24 | 7
w t | w t | w t |
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Experience with sequence data leads us to expect that an M@dyshould do better
than NJ when the diameter and deviation from ultrametrigét/large. Our LP-based ap-
proach is a hybrid: unlike an MP method, it does not reconstncestral labels, but like
an MP method, it attempts to minimize the total length of tleet thus it should at least
occasionally outperform NJ. We tested this hypothesis onlom trees and birth-death
trees where, in both cases, we generated edge lengths lmyrarsampling from the set
{1,2,...,r}, for values ofr ranging from 20 to 100, still using 80% inversions. Tables 2

and 3 present the results, this time limited to the referén@&&R and to the two methods
using full genomic data. Both tables show gains for the LBeddanethod over simple NJ

Table2. Error rates, in percent, on random trees for the two appraeghsing full genomic
data and for MGR on equalized gene contents.

20 40 60 80 100

LP | 0.9 8.0 7.8 6.0 26.0
NJ| 0.5 8.5 8.7 95 255
MGR | 11.3 31.8 340 350 490

Table 3. Error rates, in percent, on birth-death trees for the two aggrhes using full
genomic data and for MGR on equalized gene contents.

| 20 40 60 80 100

LP | 0.2 85 7.6 57 194
NJ| 14 9.0 8.5 8.0 18.0
MGR | 9.7 317 318 337 514

as evolutionary rates increase, until both methods stdindeat » = 100. Note that the
accuracy gains over MGR are consistently very high.

Keeping the proportions of inversions to 80%, however, iee very realistic, as gene
duplications and losses are presumably more frequent uren#ttan rearrangements, nor
very challenging, as, given a bounded set of possible gemieast) duplications and losses
will saturate sooner than inversions. The experiments afr®anet al?* did not test low
percentages of inversions, so we ran sets of tests with 2@8tsions only, keeping all other
relative percentages of events identical. Table 4 shoveethesults. We were pleased, and
somewhat surprised, to observe actual improvements inuhlityjof trees for rates up to
r = 40; the threshold effect to = 60 corresponds to a type of saturation caused by too
many insertions and deletions. (Approaches with equalisee contents are not reported,
since they failed completely, as expected.)

Table4. Error rates, in percent, on birth-death trees with only 209érsions.

| 20 40 60 80
LP | 38 30 210 378
NJ| 31 49 189 337
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Finally, we reproduced the results of Earnest-DeYdfing the dataset of 13 bacteria,
with genome sizes ranging from 1’000 to over 5’000 genes amgk damilies of up to 70
members, this time without any special preprocessing, aimtjwour LP-based approach
rather than NJ. Once again the resulting phylogeny is one (S&Rree) move away from
that of Lerat et al. The large disparity in gene content betw&pecies in this dataset was
handled automatically, for the first time for this dataset {jodeed, for any other set of
cellular genomes).

5. Conclusion

Our algorithm offers, for the first time, the possibility teeduate the phylogenetic informa-
tion present in the gene families and in the change in geneenbamong genomes while
at the same time taking into account the complete gene ga&ighey can do so on scales
compatible with the smaller cellular genomes, such as battenomes. Most importantly,
our experiments indicate clearly the benefit to be derivedhfconsidering the full gene or-
derings of the genomes rather than some simplified subsetriost all of our test cases,
even the simple NJ procedure outperformed, often by larggims the best reconstruction
algorithms running on data with equalized gene contentehvivork remains to be done, of
course: we need to generalize the distance computation efi§wet al.to multichromo-
somal genomes (not particularly difficult using the DCJ nipblet the introduction of ad-
ditional parameters means further modelling questiongd)}teustart using the algorithm on
biological data, which should enable us to refine the modedl, Avhile being able to esti-
mate the true edge lengths of the tree is a help, we are stjifgefrom being able to recon-
struct ancestral genomes, because we have no viable hlgddtsolve the vexing problem
of the median of three genomes and because the iDLR modeinrsmmaderconstrained.
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