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Summary

The behavior of biological cells is governed by a multitude of pathways which coordinate

processes including metabolism, gene regulation and signaling. The list of elements and

connections between them are often identified, but less is known about the temporal

dynamics of pathways. Many of the important functions including the cell cycle, cell

proliferation and programmed cell death can only be understood through dynamics. Due

to the size and complexity of the networks and their non-linear dynamics, quantitative

models are essential in representing pathways and making predictions. When modeling

pathway dynamics, one has to capture and make predictions with respect to several

sources of uncertainty including molecular noise, cell-to-cell variability, and the fact

that typically only noisy and partial measurements are available.

The first part of this thesis focuses on parameter uncertainty in ordinary differen-

tial equation models. Due to the sparsity of measurement data, model parameters are

commonly under-constrained, and choosing a single best estimate is often inadequate

for further analysis. We pose the parameter estimation problem as that of Bayesian

inference, where the uncertainty of the parameter values is characterized by a poste-

rior probability distribution. This allows us to consider a variety of possible behaviors

consistent with data when making predictions. Particle filters can sequentially approxi-

mate posterior probability distributions, however, they suffer from practical issues such

as sample impoverishment. We provide an enhanced particle filter that improves sample

diversity while preserving the parameter posterior. Our case studies show that using a

given number of samples, the proposed method is better than previously used particle

filters in making accurate predictions under model uncertainty.

It is important to know that the qualitative and quantitative properties of pathway

models hold under model uncertainty. Using statistical model checking (SMC) it is

possible to verify whether a system meets a behavior specified in temporal logic with

at least a given probability. Standard SMC approaches rely on simulating independent

realizations of the dynamics, but this is not possible when dealing with a Bayesian

posterior distribution. We propose a method for performing model checking in this

setting based on a sequence of dependent samples obtained from a Markov chain. Case

studies on the JAK-STAT pathway, and a large model of extrinsic apoptosis demonstrate

the practical usefulness of the approach.

If elements of interest don’t directly interact with each other in a pathway, building

mechanistic ODE models is not a realistic option. Probabilistic graphical models can

represent influences among elements of interest and capture the uncertainty arising
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from unmodeled components. We propose a method for learning the parameters of a

dynamic Bayesian network (DBN) model. Linear programming is used to fit variables to

experimental data while satisfying monotonicity constraints corresponding to activation

and repression. The method scales well for large pathways due to the local nature of

parametrization. Having learned a DBN model, we use probabilistic inference to make

predictions about dynamics. We are able to monitor if a specified behavior is met using

model checking, and this allows us to identify combinations of perturbations that result

in desired behavior. Our method is then used to model novel experimental data for the

phosphorylation of 12 key proteins involved in liver cancer progression on 4 relevant cell

lines. We are able to predict the response of diseased cells to perturbation combinations

and identify ones that modify the dynamics of certain proteins to mimic their dynamics

in healthy cells.
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Chapter 1

Introduction

Biology studies life from the level of molecules up to whole organisms and beyond. More

than a century of research on the cell, the basic unit of life, has shed light on many of

the fundamental processes governing living organisms.

Much of the recent progress has been driven by novel experimental technologies.

Methods such as the polymerase chain reaction, microarray technology, flow cytometry

and fluorescence microscopy have all contributed significantly to our understanding of

cellular components. These technologies have enabled the collection of vast amounts of

data and induced a change towards a systems approach in biology.

Classical approaches in biology have focused on the precise characterization of indi-

vidual components. One problem with this approach is that the same molecular entity

may be simultaneously involved in several higher level functional roles through interac-

tions with other elements. Therefore it is unlikely that higher level cellular processes

can be understood only through studying elements in isolation. This, coupled with the

availability of experimental technologies to measure several components simultaneously,

has lead to the emergence of the systems approach in biological research.

Systems biology concentrates on the network level understanding of cellular compo-

nents including genes, RNA molecules and proteins [1]. Networks of interacting compo-

nents which are responsible for some cellular function are often called pathways. While

the connectivity structure of several canonical and disease specific pathways has been

studied, less is understood about the temporal dynamics of the associated processes.

There are many examples, where a list of components or even the structure of interac-

tions between them is not enough to explain important cellular processes. For instance,

1



upon DNA damage, the decision between cell survival and cell death depends on the

pulsating or prolonged activation of the protein p53 [2].

Due to the size and complexity of the pathways and the non-linearity of the dynam-

ics, computational models are essential for the understanding of biology at the systems

level. Models have predictive power and offer a coherent basis for depositing and shar-

ing biological knowledge. They can also be used to generate hypotheses and design

useful experiments, thereby reducing the need for costly and time consuming wet-lab

experiments.

The ability to predict behavior under targeted perturbations using computational

models could have an enormous impact. The cost of developing new drugs is grow-

ing dramatically and many proposed compounds fail at later stages of approval, often

because they do not work as expected. Modeling could be the missing link from tra-

ditional drug design to a pathway-level, systemic understanding of drug effects. This

could make developing new drugs cheaper and more reliable, and would help to identify

which treatment is most likely to result in a good outcome for patients with a specific

instance of a disease.

To achieve these goals, new computational methods are needed to efficiently con-

struct and use quantitative pathway models. The research described in this thesis is

meant to contribute to this goal.

1.1 Context and motivation

One of the key challenges faced by modeling efforts is to capture uncertainty in biological

systems. It is increasingly accepted that noise and variability is an inherent and fun-

damental aspect of biological systems rather than an additive nuisance [3]. In addition

to this, we are often limited to partial, inaccurate and often indirect observation about

biological systems. These effects result in uncertainty in model based predictions.

Quantitative computational models of pathway dynamics play an increasingly im-

portant role in modern biology. Biological pathways are often modeled using ordinary

differential equations (ODEs) [4]. The initial conditions and kinetic rate constants (to-

gether called model parameters) are commonly unknown and therefore the model is

subject to considerable uncertainty. A standard approach involves using an optimiza-

2



tion procedure to find a single nominal set of parameter values. Models along with

the nominal parameter set are often published and deposited in repositories such as the

BioModels database [5]. However, this approach has important limitations because there

are often several points or regions of parameter space which explain the experimental

data equally well. These parameter values could otherwise correspond to very different

model behaviors.

One explanation for the under-constrained nature of ODE model parameters is that

parameters are often functionally related and there is a large amount of parametric

redundancy due to the evolved nature of the underlying networks. Further, the system

can only be observed partially and at a low time resolution. Observations are invariably

subject to noise due to cellular variability and the measurement process itself. These all

contribute to pathway model parameters being unidentifiable [6]. There is also evidence

that even large amounts of ideal time-series data can leave parameters poorly constrained

[7, 8]. These factors lead to model uncertainty (Figure 1.1), and one primary motivation

of our work is to develop methods to deal with this.

By adopting a probabilistic framework and posing the ODE parameter estimation

problem as one of Bayesian inference, we can embrace model uncertainty by (i) explicitly

modeling it and (ii) making predictions with respect to it. Prior knowledge can also be

exploited in a straightforward manner [9]. However, designing efficient inference methods

is a major challenge in the context of pathway models with high-dimensional parameter

spaces motivating novel computational methods.

When the modeling goal is to capture overall characteristics in signaling for a certain

cell type or in a given disease condition, it is useful to only measure and model a limited

but representative subset of elements. The existence of missing components results

in a special instance of model uncertainty, and detailed kinetic models (such as ones

based on ODEs) are of limited usefulness in this context. Graphical models can capture

indirect effects between elements, and account for missing components and other sources

of uncertainty through assuming probabilistic relationships between them. The use of

graphical models in systems biology (including Bayesian networks and dynamic Bayesian

networks) has mostly been limited to structure learning, both in the context of gene

regulatory networks [10] and signaling pathways [11, 12]. There is great potential in

using dynamic Bayesian networks as predictive dynamical models.

3



Figure 1.1: Sources of uncertainty in biological pathway models.

1.2 Research contributions

1.2.1 Efficient Bayesian inference of pathway parameters

Dynamical pathway models contain a number of parameters including kinetic rate con-

stants and initial conditions. Since these parameters generally cannot be measured

directly, their values have to be inferred from noisy measurement data. Optimization

based parameter estimation approaches cannot account for overall parameter uncer-

tainty. Conversely, in a Bayesian probabilistic framework the quantification of the pa-

rameter uncertainty becomes possible. However, the reconstruction of the Bayesian

posterior distribution is a highly challenging task.

We propose an enhanced particle filtering method to address some of the practical

issues encountered in this process (Chapter 3). Particle filters propagate parameter

samples forward in time and assimilate experimental data sequentially as weights on the

particles. In order to concentrate samples in high-probability areas, resampling is done,

but this often leads to sample impoverishment [13]. The solution proposed here involves

designing particle transitions on the parameter space using Markov kernels. Applying

the Markov transition kernel on a (possibly collapsed) set of samples introduces diversity

and results in a more faithful posterior representation. The quality of the posterior is

assessed through the accuracy of predictions made using it, and is compared against
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other, previously proposed particle filters. The methods are evaluated on a model of

the JAK-STAT signaling pathway, and show that kernel-enhanced filters can reach high

accuracy with significantly reduced sample size.

1.2.2 Verification of pathway dynamics under Bayesian uncertainty

Model checking is a widely used technique for automatically verifying properties of

biological pathways. ODE models with a component of uncertainty are difficult to verify

using model checking due to the continuity of the state space and the fact that their

solutions are not available in closed form. This has motivated the use of statistical model

checking techniques, which rely on sampling independent realizations of the dynamics.

The assumption that samples need to be independent has thus far prevented the use of

statistical model checking schemes on Bayesian parameter posteriors, since in this case,

independent sampling is not possible.

We propose a novel methodology and the theoretical foundations for performing

statistical model checking on ODE models characterized by a Bayesian parameter pos-

terior (Chapter 4). The key idea is to construct a Markov chain on the parameter

space of the model, which produces a sequence of dependent parameter samples from

the posterior. Each sample corresponds to a realization of the system, which is then

verified using a model checker. Due to the dependency of samples, it is challenging

to decide how many samples are needed to complete the model checking task with a

given precision. In our previous work [14], we proposed practically applicable sample

size bounds for Markov chain Monte Carlo estimates. Here we derive a form of these

bounds applicable to statistical model checking. This allows us to design a fix sample

size and an adaptive sample size (sequential) algorithm for performing statistical model

checking. We first verify properties on a model of the JAK-STAT signaling pathway.

We then consider the EARM model of apoptosis with 71 unknown parameters and very

limited experimental data, and show that some important qualitative properties of the

model are preserved, while others cannot be verified to hold with high probability due

to substantial parameter uncertainty.
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1.2.3 Learning dynamic Bayesian network models of pathway dynam-

ics

Probabilistic graphical models provide a succinct representation of stochastic pathway

dynamics. They are especially well suited in case an exact physical interaction between

elements does not exist or is unknown. Dynamic Bayesian networks (DBNs) have the

capability of dealing with temporal data and (in contrast with static Bayesian networks)

can model feedback loops. Previous research in using dynamic Bayesian networks in

biology has concentrated on inferring the structure of pathways. Less attention has

been given to learning and predicting dynamics. Learning pathway dynamics using

discrete DBN models has been proposed before but it requires an existing ODE model

to fill conditional probability parameters [15]. Here we propose a method to learn the

DBN parameters directly from experimental data. We incorporate prior knowledge

about the nature of interactions (activation or inhibition) in the form of constraints.

We then solve a series of linear programming problems, one for each time point, to learn

the conditional probability parameters from data. The method is scalable in the sense

that the size of the optimization problem is locally exponential but scales linearly with

the total number of nodes. The learned DBN model can be used to make predictions

under previously unseen conditions. We learn DBN models based on experimental data

collected for 4 cell lines covering stages from healthy to late stage liver cancer. Using

approximate inference on the learned DBN models, we can predict time course behavior

under various treatments including signaling ligands and small molecule drugs. We are

able to find promising combinations of kinase inhibitors that transform some dynamical

properties of diseased cells to mimic those of healthy cells.

1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2 we provide an overview

of relevant concepts and methods used in modeling biological pathways. This includes

modeling formalisms, parameter estimation techniques and model checking methods.

Chapter 3 discusses the kernel-enhanced particle filtering method. We show that the

method outperforms previously proposed particle filters for the Bayesian inference of

pathway parameters. In Chapter 4 we present our method to perform statistical model
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checking on biological pathways whose parameters are characterized by a Bayesian pos-

terior distribution. We present both fix sample size and adaptive sample size algorithms

and provide sample size bounds for both. Chapter 5 presents a method to learn dynamic

Bayesian network models of pathway dynamics. Using inference on the learned model

we are able to predict behavior under various stimuli and perturbations. We learn cell

type specific models for four cell lines from different stages of liver cancer and obtain

insights about their behavior under previously unseen perturbations using the proposed

method. Chapter 6 summarizes the contributions of the thesis and discusses promising

directions for future research.
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Chapter 2

Preliminaries and Background

The immense complexity present in biochemical networks, along with the rapid de-

velopment of experimental techniques has sparked interest in quantitative modeling

approaches in biology. In this chapter we briefly review the biological foundations of

pathways and the relevant concepts behind modeling them.

2.1 Biological pathways

2.1.1 Genes to proteins and cellular function

The genetic code is stored in the DNA which is built up of a sequence of nucleotide

bases. Through the process of transcription, portions of the DNA sequence called genes

are read and copied to a messenger RNA (mRNA) molecule. Transcription starts at a

special segment of the DNA called a promoter and ends when a terminator sequence

is met. Each mRNA molecule contains one or more protein coding regions which is

translated to a sequence of complementary tRNA (transfer RNA) molecules. Finally,

the amino acids carried by tRNA are linked to form a protein. The primary structure

of proteins is defined by the sequence in which the amino acid molecules are linked.

However, it is only after folding into a dedicated three dimensional structure that the

protein can properly fulfill its function inside the cell.

Proteins play a principal role in executing the cellular behavior specified by the ge-

netic code. Structural proteins form the cytoskeleton, which maintains the shape and

size of the cell. Proteins contain special binding sites which allow them to form com-

plexes with other proteins or bind small molecules. Enzymes catalyze specific chemical
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reactions by binding substrate molecules and transforming them into products. With-

out enzymes, most chemical reactions would occur at a very slow rate, making the cell

dysfunctional. Protein molecules are also involved in relaying external or internal sig-

nals, essential in reacting to environmental cues. DNA binding proteins, referred to as

transcription factors can bind to the promoter region of a gene to influence the speed

at which the gene is transcribed.

As we see from these examples, an understanding of how proteins work and interact

is of crucial importance towards discovering how cells function.

2.1.2 Pathway types

Cellular behavior is attained through a complex system of chemical reactions. Molecules

constantly collide, bind and are transformed into other molecules. We will call molecules

of the same type as a molecular species. Due to their structure and physical proper-

ties, certain species are likely to interact only with a limited set of other species. The

interactions between species can be thought of as links in a large network. Current

biological knowledge is far from completely mapping out interactions in this network.

It is more reasonable to concentrate investigations on sub-networks of restricted scope

which can be linked to a specific function. These sub-networks are commonly referred

to as pathways.

Biological pathways are generally classified in three distinct groups. In reality, these

pathways coexist and interact, however, for purposes of biological understanding, it

is useful to discuss them separately. While the main focus of this thesis is signaling

pathways, the methods and results will be applicable in a straightforward manner to

metabolic and gene regulatory networks as well.

Signal transduction pathways

Signal transduction enables cells to sense environmental cues and respond to them.

Signal transduction pathways are activated in response to internal or external stimuli.

External signals can reach the cell in the form of molecules but can also be caused

by other environmental factors. Signaling molecules, also called ligands can bind to

receptors extending from the cell membrane. The receptor changes its spatial structure,

thereby setting off a cascade of signal transduction inside the cell. Signaling cascades
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typically involve a series of protein modifications such as phosphorylation, dimerization,

complex formation and cleavage. Since proteins can act as transcription factors and bind

to promoters, if the signal reaches the nucleus, the cell can change its gene expression

profile in reaction to the received signal.

Signaling ligands include growth factors such as EGF, TGF, and VEGF, which

promote cell cycle progression, cell growth and cell differentiation. Members of the

interleukin-1 family regulate inflammatory responses and are important in the immune

response of cells. Other important signaling molecules include TNFα, TRAIL and Fas,

which induce caspase activation and apoptosis.

The most important process by which signals are propagated in signaling pathways

is through phosphorylation. Phosphorylation is a post-translational modification, which

happens when a phosphate group is attached to a specific amino acid site (usually serine,

tyrosine or threonine) of a protein. Phosphorylation often results in the activation of a

protein through a change in its spatial conformation. For instance the tumor suppressor

p53 is in an inactive form but is phosphorylated by ATM in response to DNA damage.

It is only in its active, phosphorylated state that p53 can fulfill its role as a transcription

factor. A typical signal transduction pathway representing externally triggered apoptosis

is shown in Figure 2.1.

Figure 2.1: Signal transduction pathway governing externally triggered apoptosis, in-
cluding reaction schemes. Figure is from [16] under the CC BY-NC-SA license.

Gene regulatory pathways

Gene regulatory pathways represent interactions between genes. Genes do not directly

interact with each other, however they can influence each other through transcriptional

regulation. An example of such a process is a gene which expresses a protein that in
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turn binds to another gene’s promoter region and changes the speed of transcription.

Gene regulatory pathways comprise a network of genetic interactions as direct positive

or negative regulation between genes.

The gene regulatory pathway for the circadian oscillator is shown in Figure 2.2. Each

node corresponds to a gene and the positive (+), negative (-) and neutral (0) effects are

shown along edges.

Figure 2.2: Gene regulatory pathway for the circadian oscillator. Figure is from the
Science Database of Cell Signaling [17]

Metabolic pathways

Metabolic pathways are networks of reactions that transform metabolites and various

other molecules. Cells require energy to function and energy in cells is used to build

necessary compounds, maintain structure, and grow. Catabolic processes break down

organic matter and store the released energy in form of adenosine triphosphate (ATP)

molecules. Anabolic processes use these energy carrying molecules to construct further

metabolites or cellular components such as nucleic acids and proteins. Enzymes play a

crucial role in metabolic reactions. Enzymes allow certain reactions to happen at a fast

rate - and thereby link species in the network - but they are not modified or consumed

in the process. Metabolic pathway models therefore often concentrate on links between

enzymes and the genes encoding them.
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2.2 Modeling formalisms

Biological models have traditionally been represented through informal graphical dia-

grams. These diagrams can give a qualitative, structural overview of the system. How-

ever, diagrams do not specify the concentration of species or the dynamics of different

reactions. As the size of a model grows, it is increasingly difficult to understand the

complex network of non-linear effects based on informal diagrams alone.

Building quantitative models of pathways are useful in several ways. First of all,

quantitative models let us untangle the strength of effects in a network of interactions

[18]. They allow a clear and consistent analysis to which extent each component con-

tributes to certain processes. Quantitative models are easily represented and simulated

on a computer. In fact, it is the power to execute pathway models and make predic-

tions that truly revolutionizes the way systems are understood [19]. Models also allow

us to analyze biological pathways through systems theory and elucidate fundamental

properties of biological systems such as modularity or robustness [20, 21].

Several formalisms have been introduced in the pathway modeling context. These

can be classified according to many different characteristics, including whether they are

mechanistic or abstract, deterministic or stochastic, static or dynamic and qualitative

or quantitative. Some of the widely used formalisms are classified in Table 2.1. It is

important to note that various extensions to the basic form of these models have been

proposed in the literature (for instance qualitative differential equations) that make these

distinctions less crisp.

Mech Abs Qual Quant Det Stoch Stat Dyn

ODE x x x x
CTMC/SDE x x x x

Boolean/Logic x x x x
BN x x x x

DBN x x x x

Table 2.1: Classification of widely used pathway modeling formalisms depending on
whether they are mechanistic or abstract, qualitative or quantitative, deterministic or
stochastic and static or dynamic.
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2.2.1 Mechanistic models

Building mechanistic models of biological pathways relies on chemical reaction kinetics.

We first look at the kinetic laws that mechanistic models are built of and then dis-

cuss ordinary differential equation based deterministic models and Markov chain based

stochastic models.

Reactions kinetics

The general form of a chemical reaction is

Nr∑
i=1

aiRi 

Np∑
j=1

bjPj , (2.1)

where Ri are reactants, Pj are products, and ai, bj are the stoichiometric coefficients as-

sociated with them. In general, chemical reactions are reversible, however one direction

may be negligibly slow compared to the other, in which case the reaction is considered

irreversible.

The most basic concept in the quantitative modeling of chemical reactions is the

law of mass action [22]. According to mass action kinetics, the speed of a reaction is

proportional to the concentration of the reactants raised to the power of their stoichio-

metric coefficients. In what follows, we denote concentration with square brackets, for

instance, the concentration of Ri is denoted [Ri]. The forward reaction speed of (2.1) is

then expressed, according to the law of mass action, as

f = kr

Nr∏
i=1

[Ri]
ai − kp

Np∏
j=1

[Pj ]
bj . (2.2)

Here kr and kp are kinetic rate constants.

A specific example, often encountered as a component of pathway models is an

enzyme-substrate reaction. In this process, a substrate (S) is converted into a product

(P) by binding to an enzyme (E) and forming an enzyme substrate complex (ES). The

associated reactions can be written as

S + E
k1


k2

ES
k3→ E + P. (2.3)

The assumption in these reactions is that complex formation is a reversible process but

product creation and release is irreversible. According to the law of mass action the
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reaction rates for this system are

f1 =k1[S][E]− k2[ES] (2.4)

f2 =k3[ES],

where k1, k2 and k3 are reaction rate parameters.

Mass action kinetics provides a faithful model of the reaction dynamics in case it

models elementary, physical interactions (such as binding and release in (2.3)). But it

is often only the dynamics of the substrate and the product that is of interest, and this

transformation cannot directly be modeled by mass action kinetics. This has resulted

in the derivation of kinetic laws that summarize the dynamics of a series of elemen-

tary interactions. We now look at two of the most widely used such kinetic laws, the

Michaelis-Menten equation and the Hill equation.

Michaelis-Menten kinetics relies on the assumption that the concentration of the

substrate is much larger than that of the enzyme, and therefore the enzyme-substrate

complex reaches a steady state and is not explicitly modeled. The speed of reaction

from substrate to product can be captured by a single reaction rate:

f = Vmax
[S]

K + [S]
. (2.5)

The parameters Vmax and K can be derived from the mass action parameters, and have

easily interpretable physical meanings. In addition, they can be measured more easily,

therefore Michaelis-Menten kinetics are popular when building quantitative pathway

models [23, 24].

The Hill equation can be used to model processes in which a substrate (S) can bind

to several different sites of a macromolecule, and bound substrates can influence the rate

of new substrates being bound, also called cooperativity [25]. The reaction rate can be

written as

f = V
[S]n

Kn + [S]n
. (2.6)

Here V and K are kinetic rate constants and the parameter n quantifies substrate

cooperativity, and can represent positive or negative cooperativity depending on its

value.

Several other rate laws have been derived [26] and are used for modeling purposes.
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Ordinary differential equation models

Given a model structure and reaction kinetics, it is straightforward to obtain an ordinary

differential equations (ODE) model of the dynamics. We construct an equation for each

modeled species xi, 1 ≤ i ≤ n, which describes its immediate concentration change at

any given time. The reaction rate producing the species will appear with positive sign

and the reactions consuming it with negative sign (ri,k > 0 and ri,k < 0 respectively, for

reaction 1 ≤ k ≤ K). The differential equation governing xi is written as

d[xi]

dt
=

K∑
k=1

ri,kfk, (2.7)

where fk is the kinetic rate of reaction k. The state of the system at time t is described

by the vector x(t) := (x1(t), . . . , xn(t)). The kinetic rate constants will be summarized

in a vector θ, which we will refer to as model parameters. We also define the vector

valued function F , which describes the right hand side of the equations in (2.7) as

ẋ(t) = F (x, θ). (2.8)

Given a value assignment to θ and initial conditions x(0), the solution of the ODE system

is the state trajectory x(t) for some time range t ∈ [0, T ]. Additionally, given that the

right hand side of the equations are C1 functions, there is a unique solution to the

equations [27]. Analytical solutions only exist for a restricted class of ODE systems, for

example ones whose right hand side is linear. In the case of large and non-linear systems

typically encountered in the pathway modeling context, closed form solutions will not

be available. Therefore, numerical integration methods are used to obtain approximate

solutions to the dynamics. Fix step-size solvers such as the fourth order Runge-Kutta

method (RK4) are fast and easy to implement [28]. However, due to a fix step-size

parameter, they are unsuitable for solving stiff problems, which are often encountered

in kinetic models due to different time-scales in the system [29]. Simulators for pathway

models therefore rely on more sophisticated solver packages which are efficient in a stiff

setting, such as LSODA [30] and CVODE [31].

As an example, we show the ODE description of the enzyme kinetic model described

by (2.3) in Figure 2.3. The individual equations are obtained by using (2.4) and (2.7).

Simulation is performed for t ∈ [0, 10] with initial conditions x(0) = (15, 10, 0, 0) and

parameters θ = (0.1, 0.1, 0.35) using the CVODE solver.
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d[S]

dt
=k2[ES]− k1[E][S]

d[E]

dt
=(k2 + k3)[ES]− k1[E][S]

d[ES]

dt
=− (k2 + k3)[ES] + k1[E][S]

d[P ]

dt
=k3[ES].
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Figure 2.3: ODE equations and time course solutions for a simple enzyme-substrate
system.

ODE models are an adequate description of pathway dynamics when the molecule

numbers are high enough to be treated as continuous values [32]. ODEs provide a

deterministic description of the dynamics. However, by allowing variability in initial

conditions and model parameters, it is possible to endow the model with a probability

distribution, as we do in Chapters 3 and 4 of this work. In case the quantity of con-

stituents is low, a continuous description of the dynamics may not be suitable. Stochastic

models which address this issue are introduced in the following section.

A further assumption in ODE models is that the contents of the cell are well-mixed

and the location of the components is not relevant. If representing spatial position is

necessary (for instance in pattern formation during development), partial differential

equation (PDE) models can be used. Compared to ODE models, PDEs are significantly

harder to calibrate and simulate [33].

Stochastic mechanistic models

Chemical reactions inside the cell often happen at low molecule numbers in a stochastic

manner. In this case it is reasonable to represent the quantity of species in terms of

molecule numbers instead of concentrations [34]. Stochastic models provide a way to

describe the discrete change in molecule numbers over time. Reaction events are assumed

to be distinct, and each reaction event changes the molecule numbers according to the

stoichiometric coefficients. The random occurrence of reaction events in time results in a

discrete state space stochastic process governing the species. A rigorous derivation of this

stochastic process (also referred to as the chemical master equation) based on statistical

physical considerations is described in [35]. The chemical master equation implicitly
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defines a continuous time Markov chain (CTMC) which can be exactly simulated using

the Gillespie algorithm [36]. The CTMC model also includes transition rate parameters,

and in fact, these parameters are even more challenging to learn than ones in ODE

models.

There are several ways of relating CTMCs and ODEs. First of all, the expectation

of the stochastic Markov process can be modeled using deterministic ODEs [37]. This

formally results in the same equations as the deterministic representation of the sys-

tem, however the species are measured in molecule numbers and the rate constants have

different meaning and numeric value. A more appropriate approximation to a CTMC,

which retains the stochasticity of the system, is one based on stochastic differential

equations (SDE) [38]. SDEs model the change in molecular quantities as diffusion pro-

cesses. SDEs can speed up the simulation process and are amenable to useful analysis

techniques known from other fields, most notably finance [39].

When a pathway contains species, some of which exist at low and others at high

molecule numbers, using a purely deterministic or purely stochastic model is impractical.

Hybrid simulation methods have been developed to deal with this problem. In this

context, species and reactions are partitioned, and a single simulation algorithm is given

which contains discrete and continuous state updates [40, 41].

2.2.2 Abstract models

It is often the case that a the species of interest which need to be included in a pathway

model do not directly interact with each other. Further, one may be interested in

modeling the activity level of each species rather than its molecular amount [42]. In such

cases standard kinetic laws are not applicable, and a more abstract description of the

influences among species is needed. Conceptually simple methods such as multilinear

regression [43] and principal component analysis [44] can reveal influences in a data-

driven manner. Models based on logic rules such as Boolean models [45] and fuzzy logic

models [46, 47] have also been proposed in this context.

Here we introduce Bayesian and dynamic Bayesian networks, which model influences

in a probabilistic framework.
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Bayesian networks

Bayesian networks are probabilistic graphical models represented as a directed acyclic

graph (DAG) [48, 49]. The graph consists of a finite set of nodes X and a set of edges

E ⊂ X ×X. The set of nodes X = {X1, X2, . . . , Xn} correspond to random variables

and the edges encode the independence structure of the joint distribution of X. Here

Xi ∈ X represents a finite valued random variable taking its value from the set V .

The Markov property induced by the edges states that a node is independent of its

non-descendants given its parents. A Bayesian network structure is faithful to the un-

derlying joint distribution when an independence relationship is implied by the Markov

property if and only if the same independence relationship exists on the corresponding

set of random variables.

The main advantage of the graph representation is that it allows a succinct parametriza-

tion of the joint distribution. Namely, it is enough to parametrize the distribution of

each node conditioned on its parents. We associate a conditional probability table

Θi = P (Xi|PA(Xi)) with each node. Here PA(Xi) is the set of parents of Xi de-

fined as PA(Xi) = {Xi1 , . . . , Xi`} with (Xik , Xi) ∈ E for 1 ≤ k ≤ `. Each entry

Θi(xi|xj1 , xj2 , . . . , xj`) encodes the probability of Xi taking a value xi ∈ V given the

value assignment (xi1 , xi2 , . . . , xi`) ∈ V ` to its parents. Using this parametrization, and

exploiting the Markov property, we can express the factorized joint distribution as

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|PA(Xi)). (2.9)

The conditional probability table entries can be used directly to calculate the probability

of a joint assignment.

Dynamic Bayesian networks

Dynamic Bayesian networks (DBNs) represent a set of random variables over time [50,

49]. In the DBN, a set of system variables X = X1, X2, . . . , Xn are modeled at a discrete

set of time steps t ∈ {0, 1, . . . , T}. The model consist of a node for each variable at each

time point, for instance, Xt
i denotes the random variable representing the value of Xi at

time t. Similar to general Bayesian networks, edges encode an independence structure

among the set of nodes. However, edges are restricted such that they are (i) directed

forward in time and (ii) only span a single time step. With these assumptions, for
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t > 0, we have the parenthood relationship PA(Xt
i ) ⊆ {X

t−1
1 , Xt−1

2 , . . . , Xt−1
n }, and

for the initial time point PA(X0
i ) = ∅. From here the set of edges E is defined as

(Xt−1
j , Xt

i ) ∈ E if and only if Xt−1
j ∈ PA(Xt

i ).

This implies a set of first-order Markov assumptions in time, namely, that given the

current state, the next state is independent of the previous state, or

(Xt−1
1 , Xt−1

2 , . . . , Xt−1
n ) |= (Xt+1

1 , Xt+1
2 , . . . , Xt+1

n )|(Xt
1, X

t
2, . . . , X

t
n). (2.10)

The parametrization of a discrete DBN model is through a set of conditional prob-

ability tables, one for each variable at each time point. The CPT for variable Xi at

time t, denoted Θt
i, will contain entries of the form Θt

i(x
t
i|x

t−1
i1

, xt−1
i2

, . . . , xt−1
i`

), rep-

resenting the probability of Xt
i taking the value xti ∈ V , given the value assignment

(xt−1
i1

, xt−1
i2

, . . . , xt−1
i`

) ∈ V ` to PA(Xt
i ).

A BN and DBN model of a small signaling network is shown in 2.4. Each node

represents the activity of a molecular species, in this case, a protein. The example

illustrates the difference in the way static BNs and DBNs are used in biology. BNs do

not have a time component and can only represent static (steady state or equilibrium)

influences among molecular species. In contrast, DBNs model the temporal influence

among species and can be learned based on time-course experimental data. Another

important difference is that BNs require acyclicity and therefore cannot model feedback

loops. Due to the fact that DBN variables are present across multiple time steps, the

forward directed edges can model feedback loops. For example, the edges RAF→ ERK

and ERK→ RAF constitute a feedback loop in the DBN in Figure 2.4. Note also, that

we have included edges in the DBN from each species to itself in the next time point.

This is intended to model forms of persistence, for instance the fact that a protein is

more likely to stay active once it has been activated.

2.2.3 Summary

We introduced both mechanistic and abstract pathway modeling formalisms. In the rest

of this thesis we will focus on ODE models to represent dynamics based on molecular

level interactions in a continuous time, deterministic manner. Our choice of ODEs

relies on the assumption that they provide an accurate description of dynamics when

molecular quantities are sufficiently high. Conversely, we will use DBNs to represent
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ΘNFκB :

P (NFκB = 1|TNFα = 0,PI3K = 0) = 0.1

P (NFκB = 1|TNFα = 0,PI3K = 1) = 0.3

P (NFκB = 1|TNFα = 1,PI3K = 0) = 0.4

P (NFκB = 1|TNFα = 1,PI3K = 1) = 0.8
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Figure 2.4: Bayesian network and dynamic Bayesian network representation of a small
signaling pathway model. The model is adapted and simplified from [51]. The dotted
edge from ERK ro RAF in the DBN forms a feedback loop. The same feedback cannot
be modeled on the static BN.

abstract, probabilistic interactions between molecular species when the modeling goals

require a larger scale but less detailed description.

2.3 Model calibration

Focusing on ODE models, we now discuss how unknown model parameters can be

estimated or inferred given experimental data. Dynamical pathway models typically

contain a number of unknown kinetic rate parameters. The initial concentration of some

species, if they are unknown, can also be considered parameters. Getting quantitatively

consistent values for these parameters is a significant challenge in current systems biology

efforts and is an active area of research [52].

Some parameters can be measured experimentally. For instance, the parameters of a
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reaction with Michaelis-Menten kinetic rate may be measured in vitro. This approach,

however, is impractical since experiments are very time consuming and expensive. Re-

sources would be better allocated making measurements on the system instead of its

elements in isolation. In addition, reaction rates measured in isolation may not be con-

sistent with those present in the studied system. For the above reasons, the estimation

of model parameters is carried out using computational methods.

We introduce two conceptually different ways of formulating the model calibration

problem. Parameter estimation poses an optimization problem for finding the single

best parameter vector. The underlying assumption is that parameters are constants

which have an unknown but exact value. Parameter inference relies on representing pa-

rameters are random variables. The parameters possess a prior probability distribution,

which is then updated by experimental data using probabilistic inference. The resulting

probability distribution is commonly referred to as the posterior distribution. Note that

the latter formalism still maintains that there is an underlying exact parameter value.

It is rather our limited knowledge or belief about the parameter value which is modeled

as a probability distribution.

2.3.1 Parameter estimation

Assume that we are given a set of experimental data Y , which contains measurements

for some of the variables at a few discrete time points. Our goal will be to find model

parameters θ̂ such that the simulated output of the model provides a good fit to the

data. The experimental data is structured as follows. Yi,j denotes the measured value

for species i at time point tj , where i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. In practice, data

is often available for a set of different experimental conditions and Y can be expanded

in the obvious way to show this.

Parameter estimation is formulated as an optimization problem with respect to an

objective function J . The objective function takes a vector of proposed model param-

eters as an argument and quantifies the difference between data and simulated model

output. The most commonly used objective function is the weighted sum of squared

differences:

J(θ) =
n∑
i=1

m∑
j=1

wi,j(xi(tj)|θ − Yi,j)2. (2.13)

Here xi(tj)|θ is the result of simulation when using parameter θ and wi,j is a weight
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corresponding to each data point. Weights are used in practice to account for the

differences in magnitude of species concentrations.

Given the objective function, parameter estimation is an optimization problem with

the goal of finding the least-squares parameter estimate

θ̂LS = argmin
θ

J(θ). (2.14)

The error function itself is quadratic, but since simulated curves depend on parameters

in a highly non-linear way, finding the minimum is a challenging non-linear optimization

problem. Parameter estimation methods use a search algorithm to find the optimum in

the (usually high-dimensional) space of parameters.

Several methods have been proposed to solve the optimization problem in the con-

text of pathway models [53]. Local methods such as Hooke-Jeeves pattern search [54]

or Levenberg-Marquardt method [55] are useful when the optimum is in near the initial

point that the search starts from. Often the range of parameters is wide and the pa-

rameter space contains numerous local minima. In this setting, global search methods

are needed, which implement ways of avoiding local minima. Stochastic ranking evolu-

tionary strategies [56] and genetic algorithms [57] are some of the popular methods that

have proved to work well in practice [58].

Global optimization methods often work well in practice but are based on heuristics

and are not proven to converge to the global optimum in a finite number of steps. It

is not possible to theoretically characterize the set of samples at any specific iteration

of the search. Most importantly, these methods only provide a single output to the

optimization problem. It is not known whether that is an optimal value and whether

there are any other “good” values.

2.3.2 Parameter inference

Parameter inference [59, 60] defines parameters as random variables in a Bayesian prob-

abilistic framework. This is both conceptually and also in methodology, fundamentally

different from parameter estimation. Even if the underlying parameter (such as a ki-

netic rate constant) does have a well defined and exact value, the probabilistic approach

allows us to model our belief or uncertainty about its value based on limited data. The

parameter vector θ is endowed with a prior distribution p0(θ), in the simplest case, uni-
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form over a bounded interval for each parameter. The experimental data Y is related to

the parameters through the likelihood function p(Y |θ), which expresses the probability

of observing Y given parameters θ. The form of the likelihood function is assumed to

be known, and can be evaluated using simulation.

Our goal is to constrain the distribution of the parameters by conditioning on ex-

perimental data. This conditioning is expressed in the posterior distribution, which we

denote π(θ|Y ). Using the Bayes theorem, we can express the posterior as

π(θ|Y ) =
p(Y |θ)p0(θ)

p(Y )
=

p(Y |θ)p0(θ)∫
p(Y |θ)p0(θ)dθ

. (2.15)

Note that in (2.15) the denominator is not a function of θ, and hence π(θ|Y ) ∝ p(Y |θ)p0(θ).

The posterior probability of the parameter is determined by how likely the parameter

is inherently (its prior), and its compatibility with the observed data (its likelihood).

The Bayesian framework allows several ways to determine model parameters:

argmax
θ

p(Y |θ) Maximum likelihood (ML),

argmax
θ

π(θ|Y ) Maximum aposteriori probability (MAP),

π(θ|Y ) Bayesian posterior.

While ML and MAP estimates recover a single parameter value, the goal of parameter

inference is to construct the full Bayesian posterior. Projections of the (usually high-

dimensional) parameter posterior can reveal the histograms of individual parameters

and the correlation between pairs of parameters. However, recovering the posterior

distribution is not the only goal of parameter inference. Namely, it can be useful to

evaluate the expected value of a function of θ with respect to the posterior. For instance,

the expected value of the function f(θ) with respect to the posterior is

Eπf =

∫
π(θ|Y )f(θ)dθ. (2.16)

Several methods have been proposed for calculating integrals of this form including

Markov chain Monte Carlo [61], sequential Bayesian filtering (including Kalman filters

and particle filters) [62], variational Bayesian methods [63] and approximate Bayesian

computation [64]. More details on these methods will be discussed in Chapters 3 and 4.

There is an important connection between parameter estimation and parameter in-

ference. More specifically, there is a correspondence between the sum of squared errors

and a special case of the likelihood function. Constructing the likelihood function usu-
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ally involves integrating out the possible realizations of the system given a parameter

value. In the context of ODE models we can exploit the properties that (i) the system

state trajectory is a unique and deterministic function of θ; (ii) Y is available at a finite

discrete number of time points; and (iii) the measurements are uncorrelated given the

current system state. With these properties, the general form of the likelihood simplifies

to p(Y |θ) =
n∏
i=1

m∏
j=1

p(Yi,j | xi(tj)|θ). Here again xi(tj)|θ is the result of simulation when

using parameters θ. It is often reasonable to assume that p(· | xi(tj)|θ), that is, the

distribution of a data sample conditioned on the system state, is Gaussian. It can then

be written as p(· | xi(tj)|θ) = N (xi(tj)|θ, σ2
i,j), where N (µ, σ2) is the normal distribution

with mean µ and variance σ2. The log-likelihood is then expressed as

log p(Y |θ) =
n∑
i=1

m∑
j=1

log p(Yi,j | xi(tj)|θ) = −C
n∑
i=1

m∑
j=1

(Yi,j − xi(tj)|θ)2

σ2
i,j

, (2.17)

with C being a positive constant. We can now establish a connection between the

maximum-likelihood and the least-squares estimate using (2.13) and (2.14) as

θ̂LS := argmin
θ

J(θ) = argmax
θ

log p(Y |θ) =: θ̂ML, (2.18)

with the choice of wij := 1/σ2
i,j .

2.4 Model analysis and verification

It is possible to generate hypotheses and gain insights about biological systems using

analysis techniques on the model representing it. In the context of ODE models, steady

state analysis concentrates on the behavior of the dynamics in the limit, including stable

states and limit cycles [65]. Bifurcation analysis reveals how the steady state landscape

changes as a function of changing parameters or initial conditions, and concentrates on

abrupt qualitative changes in limit behavior (for instance transition from limit cycle to

stable state) during a smooth change in parameters [66]. Sensitivity analysis provides a

quantitative measure of how the time-course dynamics or the steady state of the system

changes when varying parameters or initial conditions. Both local and global sensitivity

analysis methods are widely used and provide insights about variability and robustness

[67].

Having constructed and calibrated a quantitative model, it is important to verify
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that it is consistent with knowledge about the underlying system. Manually verifying

properties of interest based on simulation output is difficult and prone to interpretation

bias, especially if the pathway being modeled is large. Models are often constructed in

an iterative manner, and verification may need to be performed many times during this

process. This motivates us to choose a language to make statements about dynamics,

and use algorithms to automatically verify whether these properties are met by the

model. Temporal logics coupled with model checking algorithms have been applied for

this purpose in fields including program analysis [68] and circuit design verification [69],

and are recently also adopted for pathway models.

Model checking, in general terms, is used to verify state transition models with

respect to properties expressed in formal logic [70]. Model checking has found many

applications in systems biology. For instance, it has been used to verify properties of a

stochastic model of the mitogen activated protein kinase (MAPK) cascade [71], a model

of fibroblast growth factor signaling [72] and to analyze the network controlling the

nutritional stress response in E. coli using piecewise linear ODEs [73].

Properties about realizations of dynamical models can be expressed using temporal

logic. There are many choices for an appropriate logic depending on the modeling

formalism and the goals of verification. Here we focus on linear temporal logic (LTL),

which has proven to be particularly useful in systems biology as it can be interpreted

on a broad class of model types and can intuitively express properties of interest. An

LTL formula is interpreted on a single execution path and is therefore well suited for

deterministic ODE models. Using temporal operators in LTL it is possible to make

statements about reachability (F), stability (G) and ordering (U) of events, and these

statements can be combined using standard logic operators such as AND (∧), OR (∨),

and implies (⇒).

For instance, recall the small enzyme-substrate system from Figure 2.3. The property

FG[0 ≤[S]≤ 5] is interpreted as: at some time the substrate concentration will be in

the interval [0, 5], and from then on it will stay in the same interval. The formula [5 ≤

[E] ≤ 10]U[5 ≤ [ES] ≤ 10] states that the enzyme concentration is between [5, 10] until

the concentration of the enzyme-substrate complex reaches the interval [5, 10]. From

Figure 2.3, we easily see that both these properties are true. We will give a more precise

definition of the syntax and semantics of LTL formulas in Chapter 4.
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In the context of ODEs, since one must rely on numerical solutions, a bounded

LTL (BLTL), interpreted on finite time intervals is usually necessary. Further, when

the realizations of the system are stochastic, PBLTL, a probabilistic extension of BLTL

can be used. PBLTL is applicable on CTMCs and other stochastic models, but also

in a setting where an ODE system is endowed with a probability distribution due to

model uncertainty. A formula in PBLTL has the general form P≥rϕ, where ϕ is a BLTL

formula, and the intended meaning is, ϕ holds with at least probability r. Solving this

probabilistic model checking problem exactly is intractable for large models due to state

space explosion. However, statistical model checking provides an approximate solution,

and its efficiency does not depend on the size of the state space.

Statistical model checking (SMC) involves repeatedly simulating the system, veri-

fying the property for each realization and deciding whether P (S |= ϕ) > r that is,

whether the dynamical model S satisfies ϕ with at least probability r. The decision

can be made once sufficiently many samples have been evaluated [74]. The usual for-

mulation of SMC is based on a hypothesis test between H0: P (S |= ϕ) > r + δ and H1:

P (S |= ϕ) < r − δ [75]. The parameter δ defines an indifference region around r, in

which choosing either H0 or H1 is acceptable. The standard SMC scheme relies on the

sequential-probability ratio test (SPRT) as a stopping criterion [76]. After drawing m

samples, we compute a stopping criterion qm as

qm =
[r − δ](

∑m
i=1 zi)[1− [r − δ]](m−

∑m
i=1 zi)

[r + δ](
∑m
i=1 zi)[1− [r + δ]](m−

∑m
i=1 zi)

. (2.19)

Here zi is 1 if the ith simulated trajectory satisfies the formula and 0 otherwise. Hy-

pothesis H1 is accepted if qm ≥ 1−β
α , and hypothesis H0 is accepted if qm ≤ β

1−α . If

neither is the case then another sample is drawn. The constants α and β are chosen

by the user and signify the upper limit on false positive and false negative decisions.

Statistical model checking has been applied, for instance, to verify a large stochastic

model of T-cell receptor signaling [77].

There are many other works that aim to make model checking methods more appli-

cable for pathway modeling tasks. The method proposed in [78] makes the construction

of temporal logic formulas easier for practitioners by allowing biologically relevant, high-

level query templates to be pieced together and automatically translated into temporal

logic. Model checking has also been used to search for parameters with which the model
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fits specified dynamical properties [79, 80]. In [81] we proposed statistical model check-

ing coupled with global optimization to find parameters of ODEs with variability in

initial conditions, and used the approach to calibrate large pathway models.

There are a number of tools that are available for model checking biological pathway

models including BioCham [82], BioDiVinE [83] and MIRACH [84]. There are also

several general purpose tools that have been used for pathway models such as PRISM

[85], UPPAAL [86] and Breach [87]. For further details, we refer to a comprehensive

review of model checking applied in systems biology in [88].
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Chapter 3

Bayesian parameter inference

using kernel-enhanced particle

filters

3.1 Introduction

Quantitative models are essential for better understanding the dynamics of biological

pathways, and ordinary differential equations (ODEs) are the most often used modeling

formalism in systems biology. However, calibrating model parameters to be consistent

with prior knowledge and experimental data remains a significant challenge. The limited

nature of experimental data, coupled with the common unidentifiability of parameters

has motivated the representation of the model parameters as a probability distribution,

rather than a single value. This allows the representation of a finite or infinite set of

model parameters, each possible parameter vector weighted according to its support

from prior knowledge and experimental evidence. The advantages of a probabilistic ap-

proach include the coherent treatment of measurement noise, prior knowledge and also,

possibly, the stochasticity of dynamics, in a single quantitative framework. Further, the

uncertainty in the predictions made by the model can be quantified. The main difficulty

with this approach is that large-scale Bayesian inference is required for reproducing

the posterior distribution of model parameters. Designing efficient parameter inference

algorithms for ODE based pathway models is a difficult and open problem [59].

A class of algorithms which can approximate the distribution of parameters is sequen-
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tial Bayesian inference, also called Bayesian filtering and data assimilation [62]. These

methods were originally developed for inferring the hidden state of a system based on

noisy observations. However, by taking parameters as static state variables, they can

be extended to recover a distribution over parameters. Sequential inference methods

start with a prior distribution and iteratively update it by stepping forward in time

and incorporating the measurement data available at the current time point into the

distribution. The sequential nature of these methods increases efficiency by breaking up

inference into a series of simpler problems, and also enables the use of the methods in

settings where observations are received in real time [89].

Particle filters are especially well suited for sequential inference, since they approx-

imate the sequence of distributions by samples (called particles), which has proven

numerical advantages in high-dimensional settings [90]. Such high-dimensional settings

are very common when dealing with pathway models, as each model parameter corre-

sponds to an additional dimension in the parameter space. The particle filter starts

by generating a set of samples according to the prior distribution. These samples are

propagated forward in time using the model dynamics. When a new observation is

available, the samples are reweighted by the likelihood of the observation. The particles

are then resampled proportional to their weights to concentrate them in regions of high

probability. This method has been shown to result in samples distributed according to

the true posterior distribution [90].

A useful graphical tool called DA1.0 [13] has recently been released, which imple-

ments the particle filter algorithm for pathway parameter estimation, following the meth-

ods used in [91]. However, the estimation often fails in practice due to particle collapse.

Namely, since parameters are static, once they have been sampled initially, their value

cannot change. Resampling then results in the multiplication of only a few high-weight

particles, leading to a loss of diversity among samples, and, ultimately, to a collapsed

representation of the posterior. This phenomenon often appears when using particle

filters, and is also called particle degeneracy and sample impoverishment [92].

There have been two approaches proposed in the systems biology literature to deal

with this problem. A pragmatic, brute-force approach advocates using very high sample

sizes and peta-scale parallel computing to get satisfactory results [93]. However, this

approach does not address the root cause of particle collapse, the fact that parameters
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are static. Another possible approach to avoid particle collapse is to add random noise

to the particles at each step of the filter. This can help in introducing diversity since the

resulting particles will be spread to different positions randomly. In the context of ODE

pathway models, injecting noise was recently proposed in [94], adopting a method origi-

nally proposed in [95]. However, this method disrupts the estimate, since the randomly

generated noisy particles are no longer distributed according to the posterior. This can

lead to biased and inaccurate estimates.

To overcome these limitations we propose to use an improved particle filter, which

relies on applying a Markov transition kernel on the particles at each step [96]. The

method works by iterating over the (potentially collapsed) particles and proposing a

randomly generated new position. Then, the posterior probability of the current and

the proposed particle are compared, and the proposal is either accepted or rejected

according to an acceptance probability. The kernel (the combination of proposal and

acceptance) is designed in a way that the new samples are still distributed according to

the true posterior distribution.

We use case studies to show that the kernel-enhanced particle filter approach gives

more accurate estimates under parameter uncertainty than other methods previously

used for ODE based pathway models. A limitation of previous results on particle filters

for pathway parameter inference was that their performance was evaluated based on

tight convergence to the nominal model parameters. Arguably, this is not an adequate

basis of evaluation, since the goal of the inference task is finding the posterior distribution

representing the uncertainty in parameter values, rather than finding a single best value.

We address this by using the accuracy in making predictions according to the parameter

posterior as a valid basis of comparison between particle filters. Intuitively, a better

particle filter will provide estimates with smaller bias and lower variance with a given

sample size.

In our case studies, we first construct a small synthetic example to illustrate the

limitations of previously used particle filters in pathway parameter inference, and show

that the kernel-enhanced particle filters are more robust due to their ability to recover

from particle collapse. Next we use a model of the JAK-STAT signaling pathway (a

commonly used benchmark model for Bayesian inference) and evaluate Bayesian pre-

dictions about quantities of interest. We show that using an equal number of particles,
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predictions are made with much higher accuracy using kernel-enhanced filters than with

other particle filters. The significantly increased efficiency holds even when factoring

in the additional computational cost of performing kernel steps. Due to their accuracy

and efficiency, using kernel-enhanced particle filters will make parameter inference more

realistic for ODE based pathway models, and could lead to a wider adoption of Bayesian

inference in this context.

In the next section we define the basis of sequential Bayesian estimation and particle

filters and discuss how they have previously been used in the pathway modeling con-

text. Section 3.3 introduces the kernel-enhanced particle filter and proposes schemes for

implementing it on pathway models. We then evaluate the performance of our particle

filters and compare it to previously proposed ones in Section 3.4.

3.2 Background and previous work

In this section we establish the basis of using particle filtering for inferring the distribu-

tion of pathway model parameters. We first give a state space formulation of the ODE

model, and then introduce sequential inference methods for recovering the parameter

posterior. We also introduce previous works using sequential Bayesian inference, and

specifically particle filters, in the setting of pathway models.

3.2.1 Pathways as state space models

We introduced ODE models of biological pathways in Section 2.2.1. The basis for

performing sequential Bayesian estimation on ODEs is formulating the equations as a

discrete time state space model [97]. In a standard ODE model only the state evolution

is described. Measurements are regarded as external data, to which some model outputs

can be fit through distance measures, such as squared error distance. As opposed to

this, the state space model includes both the state evolution and observations as part

of a single probabilistic model. Since information about the state is only available

through observations, the state transitions are modeled between the available discrete

observation times, resulting in a discrete time description of the dynamics. Assume that

observations are available at time points t1, t2, . . . , tT . We will use the discrete time

index n ∈ {1, 2, . . . , T} to denote the observation at time tn as yn := y(tn). The same
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discrete indexing is used for the system state, that is, xn := x(tn).

The state space model is formally stated as

x0 ∼ p0(x) (3.1)

xn ∼ p(x|xn−1, θ)

yn ∼ g(y|xn).

Here, xn and yn are random variables representing states and observations, θ ∈ Rd is

a vector of d model parameters, p0 is a prior distribution, p(x|xn−1, θ) is the transition

model and g(y|xn) is the observation model.

The state space model will be able to represent a general class of deterministic and

stochastic dynamical models including ODEs, DTMCs, CTMCs and SDEs. ODE models

constitute a special case, since their dynamics are deterministic, and the transition model

p(x|xn−1, θ) needs to be expressed using the ODE equations. We will make use of Fθ,

the flow of the ODEs [27] to construct the state transition between successive time

points under the parameter vector θ. Fθ is a function R× Rdx → Rdx , where dx is the

number of state variables of the ODE, and is defined as

Fθ(t,x) = x +

t∫
0

F (x(τ), θ)dτ, (3.2)

where F is the right hand side of the ODE. With this choice, we have

xn := Fθ(tn − tn−1,xn−1). (3.3)

As a consequence of the discrete-time nature of this model, there are several in-

dependence assumptions that hold. First, the state xn is independent of all previous

states given the state xn−1. The states, therefore, form a Markov chain. Further, the

observation yn is independent of all other observations and states given the current

state xn. The independence assumptions in this description are intuitively captured by

a probabilistic graphical model, in particular, a hidden Markov model. We note that

HMMs have traditionally been used in a discrete state space setting, however, here we

follow the sequential state estimation literature, where the name is used for both dis-

crete and general state spaces [89]. Algorithms on the HMM allow us to reconstruct the

distribution of the hidden sequence of states given observations. Here our goal will be
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to use such algorithms to infer the value of the model parameters. This motivates us to

formally treat model parameters as part of the system state. We augment the system

state x with θ and introduce the notation s = (x, θ) to refer to the joint state-parameter

vector.

Using this formalism, even though the model parameters are static, they are formally

endowed with temporal dynamics. We introduce a time index on θ to represent its value

at time n as θn. We can extend (3.1) to include the process describing the parameter

dynamics as

θ0 ∼ p0,θ(θ) (3.4)

θn = θn−1.

The ODE flow F and the observation model g can be extended to the joint state s in

the obvious way. This formulation is shown as a graphical model in Figure 3.1.

θ0 θ1 · · · θn−1 θn · · ·

x0 x1 · · · xn−1 xn · · ·

y1 yn−1 yn

Figure 3.1: State space model with dynamic parameters.

This model structure is crucial since it allows us to infer the value of the parameters

sequentially. In the following section, we show how to infer the hidden states and

parameters of the system.

3.2.2 Sequential filtering

In this section we introduce filtering, a method to infer the hidden state of the model

conditioned on the observations up to time n. We use the notation y1:n to represent the

set of observations from time 1 to time n. The goal of sequential inference is to recover

the posterior distribution of the state at time n, written as π(sn|y1:n), for n ∈ {1, . . . , T}.
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The general form of the recursive formulas for filtering [89] are

π̂(sn|y1:n−1) =

∫
p(sn|sn−1)π(sn−1|y1:n−1)dsn−1 (3.5)

π(sn|y1:n) =
g(yn|sn)p(sn|y1:n−1)∫
g(yn|sn)p(sn|y1:n−1)dsn

.

Here the first equation is the prediction step which constructs the distribution of the

state at time n based on the previous posterior and the transition model. The new

observation yn is only introduced in the second, update step, where the likelihood of

the new measurement based on the predicted state is taken into account to construct

the posterior at time n.

In general, the equations (3.5) cannot be solved analytically. This is due to the fact

that the state transition is usually non-linear and the likelihood may not be Gaussian.

Several algorithms have been developed to solve the filtering problem [62]. Each one

has different assumptions about the transition and observation model.

The Kalman filter [98] assumes linear dynamics, and a linear observation model with

Gaussian noise. In this case the posterior is guaranteed to be Gaussian, and there is a

closed form solution to the filtering equations. The extended Kalman filter (EKF) [99]

was proposed to deal with non-linear dynamics. It relies on first-order linearization at

each discrete time point where an observation is available, and the propagation of the

Gaussian approximation via the linearized dynamics. The EKF can work well in prac-

tice, but only when the observation frequency is very high, and therefore the estimate

converges despite linearization. The unscented Kalman filter (UKF) [100] further relaxes

the assumptions by representing the Gaussian posterior using a deterministically placed

set of points (called sigma points) around a mean value. These points are propagated

using the true system dynamics, and the mean and covariance of the next posterior is

calculated from the empirical moments of the points.

Particle filters (PF) assume a fully sample based representation of the posterior,

and implement sampling schemes to directly approximate (3.5). Importantly, they work

without restrictions on the transition or observation model. Further, (as a general

property of Monte Carlo methods) the accuracy of particle filter estimates does not

directly depend on the dimensionality of the posterior.

Several sequential Bayesian inference methods have been used in the context of

pathway models. The extended Kalman filter [101, 102] and unscented Kalman filter
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Name Transition model/noise Observation model/noise Posterior
Kalman Filter (KF) Linear/Gaussian Linear/Gaussian Gaussian
Extended KF (EKF) Differentiable/Gaussian Linear/Gaussian Gaussian
Unscented KF (UKF) Non-linear/Gaussian Non-linear/Gaussian Unimodal
Particle Filter (PF) Non-linear/Arbitrary Non-linear/Arbitrary Non-parametric

Table 3.1: Recursive Bayesian inference methods on hidden Markov Models

[103] have been applied to parameter estimation in non-linear pathway models. The

local linearization employed in the EKF can cause the filter to diverge [101], thereby

making it necessary to use traditional parameter estimation methods in addition to

filtering. While the UKF is more robust to nonlinearity in the transition model, there is

still no guarantee against divergence, as shown, for instance, in [94]. In addition, both

EKF and UKF produce a unimodal posterior, uniquely characterized by a mean and

covariance matrix, which is not more informative than maximum likelihood parameter

estimates with local sensitivities. As we will also see from case studies in Section 3.4, the

parameter posteriors will often be far from Gaussian. The covariance-based posterior

representation of EKF and UKF can also degrade in high dimensions, since it requires

a matrix of size d2
θ for dθ parameters. We therefore focus on particle filters for the

parameter inference task.

The introduced sequential inference techniques are summarized in Table 3.1. The

next section introduces particle filters in more detail and discusses how they have been

applied in pathway modeling.

3.2.3 Particle filters

Particle filters approximate a sequence of probability distributions using sampling tech-

niques. Their flexibility, efficiency in high-dimensions, and applicability in on-line tem-

poral settings made particle filters essential in fields including finance, [104] robotics

[105] and geophysical science [106].

The main idea behind particle filtering is to represent a sequence of probability

distributions by a set of N random samples called particles. Each particle si has an

associated weight wi, i ∈ {1, 2, . . . , N}. These samples can be used as a discrete support

to approximate a probability distribution π as

π(s) ≈
N∑
i=1

wiδ(s− si), (3.6)

where δ denotes the Dirac-delta function. Perhaps the most important feature of this
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representation is that the particles need not conform to a grid or be spaced according to

a parametric rule. This allows particles to concentrate in the most important regions of

the distribution they represent. Therefore all resources can be allocated to those parts

of a distribution that matter most and parts that contribute less to the probability

mass are ignored. This sparsity is an especially important trait when representing high-

dimensional distributions.

The objective of particle filtering will be to solve the predict-update equations in

(3.5) without explicitly having to compute the integrals involved therein. In order to do

this, a sampling procedure is given, which ensures that particles in the posterior at time

point n will be approximately distributed according to π(sn|y1:n), that is, the posterior

with observations up to n.

The filter starts by sampling N particles from the prior, and the weights are initial-

ized uniformly. The particles are each propagated according to the model dynamics to

the next time point, where their weight is updated based on the likelihood of the current

observation. As the filter progresses in time, some of the particles can gradually accu-

mulate very low weights. This means that those samples are not in the high-probability

regions of the posterior density. Weight degeneracy can be assessed by quantifying how

far the distribution of weights is from being uniform. A commonly used measure is the

effective sample size Neff [107], calculated as

Neff =

(
N∑
i=1

(w̄in)2

)−1

, (3.7)

where w̄in := win/
∑N

j=1w
j
n is the normalized weight. A low effective sample size means

that most of the samples are located in low-probability areas. This motivates us to

eliminate the low-weight particles, and instead, allocate more resources to the promising

high-weight particles. Resampling achieves just this goal by taking N samples from the

multinomial distribution defined by the weights. More precisely, we resample a new set

of particles skr , k ∈ {1, . . . , N} with replacement where the probability of skr taking the

value of si is P (skr = si) = pi := win/
∑N

j=1w
j
n. Several resampling schemes have been

proposed in the literature that have better variance properties than simple multinomial

resampling. These include residual, stratified and systematic resampling [92]. We found

that the choice of resampling algorithm has little effect on the quality of the results in

our case studies, and therefore do not discuss these in more detail.
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Algorithm 1 shows the basic, most commonly used form of the particle filter, which

is also called the bootstrap filter [108].

Algorithm 1 Basic particle filter

Input: Number of particles N , measurements Y = y1:T , resample threshold κ
Output: Set of particles siT , i ∈ {1, . . . , N}
1: Sample initial particles from prior si0 ∼ p0(s), and set wi0 := 1/N , i ∈ {1, . . . , N}
2: for n=1. . . T do
3: for i=1. . . N do
4: Propagate particle sin := F(tn − tn−1, s

i
n−1)

5: Update weights win := win−1g(yn|sin)
6: end for
7: if Neff < κN then
8: Resample according to probabilities pi = win/

∑N
j=1w

j
n

9: Set win := 1/N , i ∈ {1, . . . , N}
10: end if
11: end for

Using this basic particle filter for parameter inference in state space models has first

been introduced in time series analysis [109]. The same idea has been applied for hy-

brid functional Petri-net (HFPN) models of biological pathways in [91] and [110]. This

method has been implemented in the graphical tool DA1.0 with many useful functional-

ities [13]. However, these methods suffer from sample impoverishment due to repeated

resampling, resulting in a collapsed representation of the parameter posterior. Since

resampling involves duplicating particles exactly, in the worst case, the particle filter

can end up with N particles all being the exact copy of a single one. This is especially

severe when the state evolves with degenerate dynamics, as in the case of static param-

eters. One pragmatic solution offered in [93] is to simply increase the sample size and

use massive parallelization to avoid particle collapse. A better solution to this problem

would be crucial for getting a good approximation to the posterior with limited sample

size.

In the context of ODE parameter inference, [94] proposes injecting noise as a way to

spread particles at each step of the filter. Following [95], a multivariate Gaussian random

vector θ′ ∼ N (θin,Σ) is picked around each particle thereby diversifying the otherwise

static parameters carried by the particles. The main problem with this approach is that

the perturbed parameters will generally not be distributed according to the posterior

π(sn|y1:n). This can lead to biased and inaccurate estimates. Our goal in Section 3.3

will be to use a method of particle diversification, which overcomes these limitations.
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3.2.4 Making predictions and evaluating particle filters

The goal of particle filtering is to construct a representation of a complicated posterior

distribution such that accurate predictions can be made with respect to it. A prediction

can be formalized as the expected value of a measurable function f : Θ→ R with respect

to the parameter posterior π, where Θ is the space of parameters. This expectation can

be written as an integral

Eπf =

∫
Θ
f(θ)π(θ|y1:T )dθ. (3.8)

Having a set of particles si = (xi, θi) with associated weights wi, i ∈ {1, . . . , N}, the

expectation can be approximated by a simple weighted average over predictions made

by each particle [92] as

Eπf ≈ ÊN :=

∑N
i=1w

if(θi)∑N
i=1w

i
. (3.9)

Here f is only a function of the parameters θ since the model is deterministic. This can

also be understood as an instance of Bayesian model averaging, where each particular

choice of parameters is a possible hypothesis, and we are averaging over predictions

made by each choice.

The theoretical convergence results that exist for particle filters are also understood

in terms of such predictions. It is shown in [90] that limN→∞ ÊN = Eπf with probability

1 for any bounded function f .

There is a wide variety of predictions we can make in this context. One obvious

choice is f(θ) := θ, in which case the mean of the parameter vector is calculated. The

prediction can also be on any of the state variables, based on the result of simulating

the system with θ. For instance, the peak level of activity of a protein, or the level it

settles at after a certain period of time may be of interest. We can also construct f to

express whether the system, when simulated with θ, satisfies a property expressed in

temporal logic (similar to the method in Chapter 4).

In the systems biology literature, the performance of particle filters [13, 94] and

other sequential Bayesian parameter inference methods [103, 102] has been studied with

a criterion other than the above. Namely, the criterion for showing that these methods

work in [94, 103, 102] was by assuming a nominal parameter vector θ∗, generating

synthetic measurement data with respect to θ∗, and showing that the mean or mode

of the distribution of particles is close to θ∗. In [13], evaluation is done based on the
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match of the maximum aposteriori parameter to the measurement data. These are

both criteria appropriate when the goal is parameter estimation rather than parameter

inference. The performance criteria have not revealed how accurately predictions are

made with respect to the Bayesian posterior which is being approximated. In our case

studies (see Section 3.4), we will use measures that quantify the prediction accuracy of

particle filters for parameter inference.

3.2.5 Summary

We reviewed a state space model formulation of ODE based pathway models. The state

space formulation allows us to infer hidden states and parameters sequentially by as-

similating observations iteratively in time, using the recursive predict-update equations.

We then discussed existing sequential inference methods including KF, EKF, UKF and

particle filters, and argued that particle filters are the appropriate method in this set-

ting. Particle filtering in its basic form (Algorithm 1) can be used to infer a parameter

distribution, but sample impoverishment often leads to degenerate estimates in practice.

The methods previously proposed to alleviate this problem when performing ODE path-

way parameter inference have important limitations. Finally, we showed how Bayesian

predictions can be made using particle filters, and argued that the accuracy of these

predictions is an appropriate basis of comparison between different methods.

In the next section we propose methods for inferring pathway parameters based on

the application of Markov transition kernels on the particles. The transition kernel is

designed to be consistent with the underlying posterior, and will achieve diversification

without adding disruptive noise.

3.3 Kernel-enhanced particle filter algorithms

In what follows, we introduce methods for dealing with sample impoverishment in par-

ticle filters. The goal is to diversify samples by spreading them randomly, but in a way

that the posterior distribution (which we want to approximate) is preserved. This is

possible by applying, to each particle, a Markov transition kernel, which is invariant to

the posterior. The use of Markov transition kernels on particles was first proposed in

the context of target tracking [96] and signal processing [111], and later extended to
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static variables in [112]. Here we adapt the idea of using kernel steps to the setting of

parameter inference in ODE based pathway models.

Generating a new particle s′ according to kernel K is expressed as s′ ∼ K(·|s),

where s is the original particle. The key is to design K as a Markov transition kernel

with stationary distribution identical to the target posterior π. Since it is hard to

directly sample from such a kernel, we design the kernel in two steps, a proposal and an

acceptance step.

We first look at how to design the proposal step. Recall that sin = (xin, θ
i
n) is

the ith particle representing the joint state-parameter vector at time n. Since our

model is deterministic, xin is a deterministic function of θin, through the ODE solution:

xin = Fθin(tn,x(0)) =
∫ tn

0 F (x(τ), θin)dτ . Therefore, when proposing a new position for

the particle, s′, we will design a kernel move for the parameters only, and then set the

states accordingly as a function of the parameters. Denote the proposal distribution by

q(s→ s′), meaning the probability of proposing s′ when the current particle is s. Then,

starting with the particle sin = (xin, θ
i
n), we propose s′ according to the following scheme.

sin = (xin, θ
i
n) −→

θ′ ∼ q(θin → θ′)

x′ := Fθ′(tn,x(0))
−→ s′ = (x′, θ′).

Here the notation q(θin → θ′) for the proposal is meant to highlight that q is only applied

on θ. However, from now on we will denote the proposal as q(s → s′), and understand

that only the parameter is newly proposed by the kernel, and the associated state is set

accordingly using simulation.

The acceptance step has to account for the fact that the proposed particle was picked

from q, but our goal is to sample from π. We can achieve this by either accepting or

rejecting the new particle. Denote the probability of accepting the new particle as

α(sin → s′). We need to find α such that the detailed balance holds with respect to π

[113]. The detailed balance ensures the symmetry of transition between s′ and sin with

respect to π, and is written as

π(s′|y1:n)q(s′ → sin)α(s′ → sin) = π(sin|y1:n)q(sin → s′)α(sin → s′). (3.10)
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With rearrangement we obtain the ratio of acceptance rates as

α(sin → s′)

α(s′ → sin)
=
q(s′ → sin)π(s′|y1:n)

q(sin → s′)π(sin|y1:n)
. (3.11)

One choice of α, which trivially satisfies (3.11) was introduced by Metropolis and Hast-

ings [114], and is written as

α(sin → s′) = min

(
1,
q(s′ → sin)

q(sin → s′)

π(s′|y1:n)

π(sni |y1:n)

)
(3.12)

= min

(
1,
q(s′ → sin)

q(sin → s′)

p0(s′)p(y1:n|s′)
p0(sni )p(y1:n|sin)

)
.

There are several important properties to note in (3.12). Due to the fact that only the

ratio of the posterior probabilities is needed, we can ignore the normalization constant

and directly write the ratios of the prior times the likelihood (second equation). It is

clear that to evaluate the acceptance rate the likelihood of both s′ and sni needs to be

calculated up to time n. To avoid simulating sni multiple times, it is possible to save

the likelihood values up to n during the filtering process. In case of the new particle

s′, the proposal itself involves simulating x′ based on the proposed θ′, and allows us to

calculate the likelihood of the trajectory up to n. The trajectory likelihood is calculated

as

p(y1:n|s′) =

n∏
k=1

g(yk|s′k), (3.13)

where the likelihood of the particle only depends on the state, that is, g(yk|s′k) =

g(yk|x′k), and x′k = Fθ′(tk,x(0)) is the state at time k simulated using θ′.

3.3.1 Particle filter algorithm with kernel steps

We now present the main algorithm of this section, the particle filter with kernel steps.

Algorithm 2 uses the proposal q in a generic form. There are many different choices for

a proposal distribution, and the choice can have a significant effect on the performance

of the algorithm. In the next section, we suggest choices that are expected to work well

for pathway models.

3.3.2 Sampling strategies

Here we look at possible ways of proposing new particles based on the current ones.

Due to weighting and resampling, the existing particles (even if collapsed) will generally
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Algorithm 2 Kernel-enhanced particle filter

Input: Number of particles N , measurements Y = y1:T , resample threshold κ
Output: Set of particles siT , i ∈ {1, . . . , N}
1: Sample initial particles from prior si0 ∼ p0(s), and set wi0 := 1/N , i ∈ {1, . . . , N}
2: for n=1. . . T do
3: for i=1. . . N do
4: Propagate particle sin := F(tn − tn−1, s

i
n−1)

5: Update weights win := win−1g(yn|sin)
6: end for
7: if Neff < κN then
8: Resample according to probabilities pi = win/

∑N
j=1w

j
n

9: Set win := 1/N , i ∈ {1, . . . , N}
10: end if
11: for i=1. . . N do
12: Propose θ′ ∼ q(θin → θ′) and simulate with θ′ to get x′

13: Set s′ := (x′, θ′)
14: Evaluate acceptance rate α(sin → s′)
15: Generate η ∼ Uniform[0, 1]
16: if η < α(sin → s′) then
17: Accept new particle and set sin := s′

18: end if
19: end for
20: end for

be concentrated in higher probability regions. Therefore it makes sense to propose the

kernel moves based on the current set of particles. In each case, we need to derive an

appropriate acceptance rate to account for the fact that the proposal distribution is not

equal to the posterior.

Particle based fixed proposal

The first kernel we consider involves a Gaussian proposal of predetermined width around

each particle. For instance, if the current particle is sin = (xin, θ
i
n), the proposal would

be θ′ ∼ N (θni ,Σ). Here Σ is the covariance matrix of the proposal. The entries of

the covariance matrix can greatly affect its efficiency. Namely, for a covariance matrix

with small entries, the random proposal will be close to the original particle. This will

typically result in high acceptance rates, but the resulting particles will still cluster

around the original ones. Larger variance terms will imply lower acceptance rates but

potentially more diversification. In our case studies we set the diagonal values of Σ

proportional to the prior range of each unknown parameter (in case of normal and

log-normal priors it can be set proportional to the prior variance of each unknown

parameter).
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The proposal in this case is clearly symmetric, that is, q(s → s′) = q(s′ → s) and

therefore the acceptance rate simplifies to the ratios of priors and likelihoods as

α(sin → s′) = min

(
1,

p0(s′)p(y1:n|s′)
p0(sni )p(y1:n|sni )

)
. (3.14)

We will refer to this method as PF-KGAUSS.

Adaptive proposal towards population mean

The previous method could have the disadvantage that proposed moves are clustered

around the existing individual particles. Further, the variance entries in the proposals

need to be set based on prior knowledge or tuned manually. It is possible to exploit

the population of particles to build adequate proposals. Namely, we can calculate the

population mean and variance of the particles, and use this information in the proposal.

This idea appeared in [95] and [94], but there it was used as a method to inject random

noise, rather than as a proposal step for a Markov kernel.

The population mean (µ̂n) and covariance matrix (Σ̂n) of the particles can be cal-

culated as follows.

µ̂n =

∑N
i=1w

i
nθ
i
n∑N

i=1w
i
n

. (3.15)

Σ̂n =

∑N
i=1w

i
n(θin − µ̂n)(θin − µ̂n)T∑N

i=1w
i
n

. (3.16)

The idea is to propose new parameters such that the mean of the proposal is shifted

towards the population mean, and the variance of the proposal is scaled according to

the population variance. The proposed parameter θ′ will be centered around the shifted

mean µin as

µin := aθin + (1− a)µ̂n (3.17)

θ′ ∼ N (µin, h
2Σ̂n), (3.18)

where a = (3δ − 1)/2δ, h2 = 1 − a2, and δ ∈ (1/3, 1) is a discount factor [95]. This

construction is appealing, since it preserves the original empirical mean and variance

(µ̂n and Σ̂n) [115]. Further, δ is the only parameter which needs to be chosen by the

user. Generally the value of δ, as recommended by [95], is chosen around 0.95− 0.99.

To adapt this proposal for our kernel based setting we need to derive an acceptance
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rate, which guarantees the preservation of the posterior. In this case the proposal around

the original parameter is not symmetric, since it is shifted towards the population mean.

Consequently the ratio of proposal probabilities in (3.12) cannot be eliminated. The

ratio of the proposal probabilities can be specified as

q(s′ → sin)

q(sin → s′)
=
φ(θin; aθ′ + (1− a)µ̂n, h

2Σ̂n)

φ(θ′; aθin + (1− a)µ̂n, h2Σ̂n)
, (3.19)

where φ(x;µ,Σ) is the value of the multivariate normal density function with mean

µ and covariance Σ, evaluated at x. This ratio will need to be used in (3.12) when

calculating the acceptance rate.

We will refer to this method as PF-KSHIFT.

Adaptive population based proposal

It is also possible to build a proposal only based on the population mean and variance.

The only way the proposed particles will depend on the original ones (and guaranteed to

still be distributed according to the posterior) is through the acceptance rate. Recall the

population mean and variance from (3.15) and (3.16). A new particle can be proposed

as

θ′ ∼ N (µ̂n, Σ̂n). (3.20)

Each proposed particle will still be accepted or rejected with respect to its corresponding

θin. Here, again, the proposal is not symmetric, and the proposal ratio appearing in the

acceptance rate (3.12) needs to be calculated as

q(s′ → sin)

q(sin → s′)
=
φ(θin; µ̂n, Σ̂n)

φ(θ′; µ̂n, Σ̂n)
, (3.21)

where, again, φ(x;µ,Σ) is the value of the multivariate normal density function with

mean µ and covariance Σ, evaluated at x.

We will refer to this method as PF-KPOP.

3.3.3 Computational cost

Performing kernel steps requires additional computation since the acceptance rate cal-

culation involves simulating the newly proposed particle. The basic particle filter does

not use this step, and is, therefore faster.

Assume that the total number of particles is N , and that data is available at T uni-
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formly spaced time points. The dominating computational cost of running the particle

filter is the numerical simulation of ODEs. We will assume that the ODE solver has a

linear time complexity, that is, solving the ODE equations for n time steps takes O(n)

time. The basic particle filter propagates particles sequentially from time n to n + 1,

for n = 0, 1, 2 . . . T , meaning that each particle is simulated once up to T , resulting in a

computational cost of O(NT ).

The kernel-enhanced filter, on top of the cost of the basic filter, will perform ad-

ditional steps. At each time step n, one needs to simulate the N newly proposed

particles from the initial time up n. For one iteration this is an additional cost of

O(Nn). The overall cost of the kernel steps for n = 1, 2, . . . , T will therefore be

N
∑T

n=1O(n) = O(NT 2), resulting in a total cost of O(NT 2) to run the filter. This

implies that the kernel-enhanced methods will have increased computational cost if mea-

surements are available at many time points. However, there are several other arguments

to consider.

First, as the number of measurement points increases, the additional information

gain from each data point will generally decrease. From the perspective of particles,

this means that the effective sample size will change slowly across time steps. This

implies that one could also decrease the frequency of kernel steps without degrading

performance. In particular, if the frequency of kernel steps is set proportional to the

simulation time rather than the number of measurement time points, then the original

O(NT ) cost is preserved.

Second, the accuracy of making predictions with a fixed number of particles is more

important than the time needed to run the particle filter. This is because generally,

the particle filter is ran once, and the particles are saved as a representation of the

parameter posterior for later use. Any prediction, which involves simulation, that is

made subsequently with the particles, will have a cost linear in N . Therefore we argue

that it is better to run the particle filter once, with higher computational cost, if the

stored particles will subsequently give more accurate predictions.

A more practical argument, also made in [13], is that increasing the number of

particles is limited by the available memory. There is more flexibility in increasing

processing time with a fix particle number, especially if a multi-threaded architecture is

available. Accuracy with a limited number of particles will be even more important when
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considering a GPU implementation of the particle filter [116], which is a memory-limited

environment.

Finally, as our case studies in the next section show, kernel-enhanced filters can reach

the same accuracy as the basic particle filter with significantly reduced sample size, and

this makes up for the additional time needed to run the filter.

3.4 Case studies

First we construct a small, synthetic example to show the robustness of kernel-enhanced

methods compared to other particle filters. Then we use a model of the JAK-STAT

pathway to compare different particle filters in making predictions with respect to the

Bayesian posterior. This model has been used in several works related to Bayesian infer-

ence including evaluating unscented Kalman filters [103], as well as Bayesian uncertainty

analysis and experimental design [117, 118]. Its use in the Bayesian inference context as

a benchmark is due to the fact that there is considerable parameter uncertainty given

the available experimental data. It is also relevant since wet-lab experimental data has

been published for the model, allowing computational methods to be evaluated in a

realistic setting.

We evaluate the three proposed kernel-enhanced particle filters, PF-KGAUSS (Gaus-

sian proposal around each particle), PF-KSHIFT (proposal shift towards population

mean) and PF-KPOP (proposal from population distribution), and compare these meth-

ods with ones previously used for pathway parameter inference. PF-BASIC is the basic

particle filter shown in Algorithm 1. PF-NGAUSS injects noise into the parameters by

moving them randomly using a multivariate Gaussian (similarly to PF-KGAUSS, but

without the acceptance step). PF-NSHIFT implements the noise injection method pro-

posed by Liu and West [95], and is the basis of the kernel-enhanced PF-KSHIFT method

(see Section 3.3). For all particle filters, resampling was done only when the effective

sample size was below N/3, where N is the number of particles. We implemented PF-

NGAUSS and PF-KGAUSS with an uncorrelated Gaussian around each particle whose

standard deviation along each parameter dimension was equal to 0.2 times the range of

the parameter. For the PF-NSHIFT and PF-KSHIFT methods, we set the parameter δ

to 0.95. The CVODE stiff solver was used to numerically solve ODEs [31]. We exploited
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the property that particles can be propagated in parallel, and ran all experiments on 12

cores with 2.27GHz Intel Xeon CPUs.

3.4.1 Enzyme-substrate process

An important limitation of the basic particle filter is that the parameters, sampled

initially, only get resampled, but their value does not change over time. Once a particle

is eliminated due to resampling it cannot be recovered, even if subsequent measurements

would assign higher probabilities to it. Noise injection based methods do have the

potential to recover from such a situation, but the random nature of perturbing particles

will decrease their efficiency. We expect that the kernel-enhanced methods, through the

principled diversification of particles according to the posterior, will show much better

robustness.

We illustrate this on a small, synthetic example of an enzyme catalyzed reaction

consisting of 4 species and 3 parameters. The model represents an enzyme which binds

to a substrate reversibly, and then releases a product, which accumulates over time. The

ODE equations are given in Figure 2.3 (Section 2.2.1). We set the parameters k1 = 0.1,

k2 = 0.1 and k3 = 0.35, and set the initial conditions of substrate to 15 and enzyme

to 10 units. A uniform prior distribution was assumed over the parameters, with the

ranges for parameters being k1, k2, k3 ∈ [0, 1]. We generated synthetic experimental data

with the nominal parameters for the product concentration [P ] at the equally spaced

time points 1, 2, . . . , 10, and added zero-mean Gaussian observation noise with standard

deviation of 0.5.

We then perturbed the measurement of the product at time 1 by adding a uniform

random number to it between 4 and 5. This perturbation has little effect on the overall

likelihood landscape. However, it can have a huge effect on the performance of particle

filters. This is because the filters progress forward in time and resample particles based

on the likelihood of the current measurements. Hence the first measurement point could

result in particles being early on resampled in a region which is not representative of the

overall posterior. This leads to particle collapse from which the particle filter should,

ideally, recover.

We ran each type of particle filter 200 times, independently, with 100, 1000 and 10000

particles. We quantified how well the resulting particles fit the measurements through
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the trajectory likelihood p(y1:T |si), where y are the measurements, T = 10 and si is the

ith particle. We calculated the logarithm of the mean of the trajectory likelihoods for

each run and plotted these values across 200 runs in Figure 3.2 (top). Here the interval

between the 5% and 95% quantile of log-likelihood values is shown.

To categorize which particle filter runs could “recover” after particle collapse and

converge to the high-probability region of parameter space, we set a threshold on the

trajectory log-likelihoods at −50 and calculated the percentage of runs which ended

above this threshold. We show the percentage of runs in which the particle filter could

recover and converge in Figure 3.2 (bottom).

The basic particle filter performs poorly, and even with 10000 particles, the log-

likelihoods are below −100. This is not surprising since the basic filter can only initially

sample and then resample particles; there is no mechanism to move them towards bet-

ter regions of parameter space upon particle collapse. Conversely, PF-KGAUSS and

PF-KPOP consistently achieve a log-likelihood above −25, and PF-KSHIFT behaves

similarly for larger particle numbers.

The noise injection based methods could in some cases converge to the correct region,

but not as consistently as kernel based methods. Investigating the relatively weaker

performance of PF-KSHIFT compared to the other two kernel based methods revealed

that after resampling in the first time step, the kernel proposal had very low variance,

and resulted in slower diversification. PF-KGAUSS and PF-KPOP had wider variability

in the proposal steps, which resulted in a faster and more consistent recovery.

In Figure 3.3, simulations are shown based on the result of different particle filter

methods (with 1000 particles). The gray shading shows the 5% to 95% quantile of

simulation trajectories. It is clear that PF-BASIC produces a collapsed estimate, that

is, only very few distinct particles remain due to resampling. PF-NSHIFT shows more

diversity but does not converge to the high-probability region, and while PF-NGAUSS

does converge, it has larger variability than the level of measurement noise would suggest.

The kernel based methods show good convergence and their spread is consistent with

the noise level of measurements. The spread of particles at each time step of the basic

filter and one kernel-enhanced filter is shown in the Appendix (Figure A.1).
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Figure 3.2: Performance of particle filters on the model of an enzyme-substrate process.
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Figure 3.3: Fit of 1000 particles to measurements of an enzyme-substrate process with
different particle filter methods. Gray shading corresponds to the 5% to 95% quantile
covered by particle trajectories, according to particle weights. Circles with error bars
show the measurement data. Dashed lines correspond to weighted mean and median
trajectories.
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3.4.2 The JAK-STAT pathway

In this section we compare the performance of particle filters on a model of the JAK-

STAT signaling pathway.

The JAK-STAT signaling cascade is initiated by erythropoietin (Epo), which, when

bound to a receptor, induces the phosphorylation of STAT protein in the cytoplasm.

Phosphoylated STAT dimerizes and enters the nucleus where it alters gene expression.

Subsequently the nuclear STAT goes through dissociation and dephosphorylation and

is transported back into the cytoplasm (see also [118]). The species in the model are

listed in Table 3.2, and the set of ODE equations describing the dynamics are given in

Figure 3.4.

Name Description Initial
amount

Epo Erythropoietin, input stimulus 2.0
STAT Unphosphorylated STAT monomer in cytoplasm 0
STATp Phosphorylated STAT monomer in cytoplasm 0
STATpd Phosphorylated STAT dimer in cytoplasm 0
STATn Total STAT in nucleus 0
X1 . . . XK Represent delay in STAT exiting nucleus (we use K = 10) 0

Table 3.2: Species in the JAK-STAT model.

STAT STAT
P

STAT
P

STAT
P

STAT
P

STAT
P

EpoR

Cytoplasm

Nucleus

d[STAT]

dt
= −k1[STAT][Epo] + 2k4[XK ]

d[STATp]

dt
= k1[STAT][Epo]− k2[STATp]2

d[STATpd]

dt
= −k3[STATpd] + 0.5k2[STATp]2

d[X1]

dt
= k3[STATpd]− k4[X1]

d[Xj]

dt
= k4[Xi−1]− k4[Xi] , j = 2 . . .K

d[STATn]

dt
= k3[STATpd]− k4[XK ]

Figure 3.4: ODE model of the JAK-STAT pathway under Epo stimulation.

The variables in the model and the 4 kinetic rate constants (θ = (k1, k2, k3, k4))

cannot be directly measured. However, experimental data for two indirect quantities

(total phosphorylated STAT, and total STAT in cytoplasm) has been published in [119].

The experiments report the mean and standard deviations of these two quantities at

17 time points. Figure 3.5 shows the experimental data. We use Gaussian likelihood

(based on the measurement means and standard deviations) when comparing the data to
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simulated trajectories. A uniform prior distribution over a range of possible parameter

values is chosen as p0 : k1 ∼ U [0, 5], k2 ∼ U [0, 30], k3 ∼ U [0, 1], k4 ∼ U [0, 5].
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Figure 3.5: Experimental data for the JAK-STAT pathway [119]. The Gaussian likeli-
hood is evaluated using the shown data points and standard deviations.

Prediction accuracy

In order to compare how accurately the different particle filters make predictions, we

needed to establish a reference, “ground truth” estimate. We chose a simple, impor-

tance sampling based estimate with very high sample size as reference. This method

involves first sampling independently from the prior as si ∼ p0(s), and then calculating

importance weights as wi = p(y1:T |si). The prediction is then made over N samples as

ÊN =

∑N
i=1w

if(si)∑N
i=1w

i
, (3.22)

where f is the function being predicted. By the strong law of large numbers, this estimate

will be consistent, that is Eπf = limN→∞ ÊN . Naturally, this method of estimation is

not efficient in general since many samples will come from low-probability regions. But

we found that with a sample size of at least 106, the estimate has small enough variance

around its mean to serve as a good reference. To this end, we ran importance sampling

100 times with a total of 106 samples, and averaged out the ÊN values across runs to

obtain the reference value.

We then ran each particle filter repeatedly, with a range of particle numbers and

stored the resulting particles in order to evaluate multiple predictions. As an illustra-

tion of the result of the particle filter algorithm, we plot particles obtained in a single

execution for each considered method. Figure 3.6 shows the positions of 1000 particles in
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parameter space obtained using the different particle filters. The kernel-based methods

show good diversity among samples and indicate that the high-probability regions are

clearly represented. The basic particle filter degenerates and only 3 distinct particles

remain. The noise injection methods show significantly more diversity, while weights

are closer to uniform, indicating that predictions will be disrupted by samples that are

spread to lower probability regions. Similar properties are seen when plotting the sim-

ulation trajectories corresponding to the 1000 particles against the experimental data,

as shown in Figure 3.7.
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Figure 3.6: Scatter plots and histograms of 1000 particles with different particle filter
methods. The plot in row i and column j shows either the 2-dimensional projection of
particles on the parameters ki and kj if i 6= j, or the weighted histogram of a parameter
ki if i = j.
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Figure 3.7: Fit to experimental data with 1000 particles with different particle filter
methods. The plots for PF-KGAUSS and PF-KSHIFT are similar to PF-KPOP and
are given in the Appendix (Figure A.2).

In what follows, for each particle number (10 values between 100 and 100000), we

calculated statistics for 200 independent runs of each particle filter. We wanted to take

into account both the variance and the bias of our estimates, and therefore chose the

mean squared error (MSE) with respect to the reference as the measure of prediction

accuracy. We found that PF-NGAUSS gave very poor predictions compared to other

filters and therefore we chose to exclude it from the remaining results.

The first task we considered was estimating the mean of parameters k1, k2, k3 and

k4, whose reference values were estimated as 1.8213, 17.6235, 0.1531, and 2.4480, respec-

tively. The results in Figure 3.8 show the average MSE across 200 runs for PF-BASIC,

PF-NSHIFT and three kernel enhanced methods. We see that PF-NSHIFT, which in-

jects noise at each step of the filter results in a lack of convergence to the reference in

two cases (k1, k4). The PF-BASIC method has decreasing MSE as particle numbers

grow, however, the variance across runs is much higher than in the case of the kernel-
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enhanced methods (PF-KSHIFT, PF-KGAUSS and PF-KPOP), and hence its MSE is

consistently above the other methods.
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Figure 3.8: Estimating the mean of parameters k1, k2, k3, k4, showing the mean squared
error of estimates.

Similar differences in performance are found when considering the behavior of the

unobserved species in the pathway, as predicted by the particles. We made predic-

tions about the behavior of nuclear STAT, specifically, we were interested in the peak

amount of nuclear STAT reached within 60 minutes. The reference value, estimated

using importances sampling was 1.1895. The results in Figure 3.9 show that the kernel-

enhanced particle filters made accurate predictions even with very low sample sizes. The

PF-NSHIFT method did not converge to the true value as the number of particles was

increased. PF-BASIC showed decreasing MSE with growing sample size, but produced

predictions with around 2 orders of magnitude higher MSE compared to PF-KPOP.

Next we looked at how much STAT monomer remains in the cytoplasm, once Epo

stimulation has ended, at the 60 minute time point. The reference value for this estimate

was 1.5387. The results are shown in Figure 3.10. Again we found that PF-BASIC had

much higher MSE compared to the kernel-enhanced methods. PF-NSHIFT showed

decreasing MSE up to 20000 particles, but the MSE failed to decrease further with
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higher sample sizes.
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Figure 3.9: Estimating the peak amount of nuclear STAT, showing mean squared error
of estimates.
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Figure 3.10: Estimating the amount of cytoplasmic STAT monomer at the last time
point, showing mean squared error of estimates.

Sample size and runtime efficiency

In all cases we found that PF-KPOP provided the lowest MSE for a given number

of particles. We therefore compared the relative efficiency of particle filters with PF-

KPOP as a baseline. Specifically we looked at how many particles are needed with

a given method to reach the same MSE as PF-KPOP with 1000 particles. We used

interpolation on the mean square errors for each particle filter method to arrive at the

approximate number of particles needed to match the MSE of PF-KPOP. The results

are shown in Table 3.3. We see that PF-BASIC needs between 49.6 and 101.5 times as

many particles as PF-KPOP to reach the same accuracy. PF-NSHIFT is comparable to

56



PF-KGAUSS and PF-KSHIFT in 2 out of 6 predictions, but performs much worse on

predicting k3, and fails to converge in 3 our of 6 cases. In summary, the noise injection

method shows good performance in some cases but is not reliable for making predictions

in general.

Prediction PF-KPOP PF-KGAUSS PF-KSHIFT PF-NSHIFT PF-BASIC
k1 1000 8850 9671 * 101503
k2 1000 14585 8312 12532 95612
k3 1000 6285 5500 17274 49558
k4 1000 7880 4758 * 74438
Max. STATn 1000 6824 2986 * 82480
Final STAT 1000 4538 3744 5946 91006

Table 3.3: Estimated number of particles needed to reach same accuracy (MSE) as
PF-KPOP with 1000 particles. (*estimate not reliable since MSE does not converge)

The results in Table 3.3 mean that the kernel-enhanced methods, and in particu-

lar PF-KPOP have much better sample size efficiency than both PF-BASIC and PF-

NSHIFT, and PF-BASIC will need, on average 82.4 times the number of samples to

reach the same accuracy as PF-KPOP.

We have seen that the sample size efficiency of kernel based methods are much better

than other particle filters. This is important, since we are usually interested in finding

the best possible set of particles, for a chosen sample size, to represent the parameter

posterior. However, it is also important to consider the time taken to run the filter,

and as discussed in Section 3.3.3, kernel-enhanced methods will generally be slower due

to the additional cost of kernel steps. In Figure 3.11 we show the runtime of the PF-

BASIC and PF-KPOP methods for different particle numbers. The other methods are

not plotted, since the kernel based methods closely resemble PF-KPOP and the noise

injection methods are similar to PF-BASIC in terms of runtime. Clearly, the basic

particle filter is faster, and the ratio of runtimes for kernel based methods stabilizes at

around 5 times that of the basic particle filter.

To quantify the relationship between runtime and prediction accuracy, we calculated

how much time it takes to run each particle filter to reach the same accuracy as that of

PF-KPOP for 1000 particles. To do this, we referred to the estimated particle numbers

in Table 3.3, and then used these sample sizes to estimate the time needed to run each

particle filter. The results are shown in Table 3.4. The PF-KPOP method takes, on

average, 8.74 seconds with 1000 particles, and to reach the same accuracy, the PF-

BASIC method will need 56.12 seconds on average. This means that, even though the
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Figure 3.11: Particle filter average runtimes depending on the number of particles used.
The runtime of PF-NSHIFT matches PF-BASIC, and the runtime of PF-KGAUSS and
PF-KSHIFT are closely overlapped with PF-KPOP, hence they are not shown.

basic particle filter is faster, it needs 6.4 times the runtime to reach the same accuracy

as PF-KPOP due to the need for a much higher number of particles. The other kernel-

enhanced methods outperform the basic particle filter in all cases, but the results are

close, with PF-KSHIFT being somewhat better than PF-KGAUSS. Interestingly, the

noise injection method PF-NSHIFT performs only worse than PF-KPOP by a small

margin in 3 out of 6 cases, but in the other 3 cases it does not converge, and therefore

cannot reach the reference accuracy, even with very high sample size and runtime.

Prediction PF-KPOP PF-KGAUSS PF-KSHIFT PF-NSHIFT PF-BASIC
k1 8.74 39.6 38.3 * 70.6
k2 8.74 62.6 34.0 11.5 66.1
k3 8.74 28.2 25.0 13.3 31.3
k4 8.74 35.3 22.4 * 50.0
Max. STATn 8.74 30.6 14.4 * 56.1
Final STAT 8.74 20.8 17.8 9.0 62.6

Table 3.4: Estimated time needed (in seconds) to reach same accuracy (MSE) as PF-
KPOP with 1000 particles. (*estimate not reliable since MSE does not converge)

We finally summarize the overall sample size efficiency and runtime efficiency of each

particle filter compared to PF-KPOP. The sample size and runtime required by each

particle filter to reach the same accuracy as PF-KPOP with 1000 particles is shown in

Figure 3.12.
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Figure 3.12: The relative number of particles (sample size) and runtime needed to match
the accuracy of PF-KPOP with 1000 particles. Sample sizes and runtimes are shown
relative to that of PF-KPOP, which is normalized to 1 to serve as reference. (* For
PF-NSHIFT, the cases where convergence did not occur are not included.)

3.5 Summary

In this chapter we proposed improvements on previously used particle filters for pa-

rameter inference in ODE based pathway models. The main issue with particle filters

is that the set of particles can collapse into a few distinct samples resulting in inaccu-

rate estimates. We proposed three variants of kernel-enhancement, in which, at every

time point, a Markov transition kernel is applied on each particle. This resolves the

problem of particle collapse while still guaranteeing that the true parameter posterior is

preserved. The kernel steps consist of a proposal, in which new particles are proposed

in random (but usually guided) directions. Then the ratio of posterior probabilities of

the old and new particles are compared to accept or reject each proposal. The accep-

tance or rejection is based on a formula that guarantees new samples to be distributed

according to the posterior. Hence diversification is achieved while preserving the target

distribution of the filter.

A small synthetic case study demonstrated that contrary to other particle filters, the

kernel-enhanced methods can robustly recover from a collapsed particle state. Our case

study on the JAK-STAT pathway has shown that predictions with the kernel-enhanced

particle filters result in significantly reduced mean squared error compared to the basic

particle filter, and particle filters relying on random noise injection. In particular, our
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case study showed that the kernel-enhanced particle filter relying on proposals from the

particle population statistics (PF-KPOP) was around 60 to 100 times more sample-size

efficient than the basic particle filter. Even when factoring in the additional runtime

cost to perform kernel-steps, the kernel-enhanced method achieved the same accuracy

around 4 to 8 times faster than the basic filter.

Representing the parameter posterior in terms of particles opens up several interest-

ing possibilities. For instance, it is possible to update the particles with new measure-

ment data, simply by running the filter up to the time point of the new measurement

and updating particle weights based on the corresponding likelihood value. This method

can also be used in experimental design since it allows us to test how the parameter

landscape (and, as a consequence, the uncertainty in predictions) changes when new

data points are introduced. Finally, particles could be used to select between multiple

alternative models based on Bayesian scores. Some of these tasks have been proposed in

the context of Bayesian inference [117, 118, 102, 9] but using methods other than par-

ticle filters. Using kernel-enhanced particle filters could make these tasks more realistic

in practice, since, as our case studies have shown, they give an accurate representation

of the parameter posterior with limited sample size.
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Chapter 4

Verification of pathway dynamics

under Bayesian uncertainty

4.1 Introduction

Analysis and verification is crucial for building reliable models of biological pathways.

Verifying a pathway model involves making statements about the intended behavior of

the pathway expressed in temporal logic. Model checking algorithms can then be used

to verify whether the model satisfies the specified properties [88]. Verifying properties

of a pathway model is especially challenging when the model has a component of uncer-

tainty. In this case manually examining simulation traces will not reveal properties of

the system. Statistically valid techniques are needed to formulate properties and check

whether they are satisfied with sufficiently high probability.

In this chapter we propose a novel method to verify properties of a model under

parameter uncertainty. We focus on ordinary differential equations (ODE) based mod-

els whose parameters are not exactly known and cannot be directly measured. Their

value can only be partially inferred from noisy and limited experimental data. As also

argued in Chapter 3, treating model parameters as random variables is reasonable in

this context. Using a Bayesian approach one can incorporate previous knowledge about

the parameter values through a prior distribution. The prior is then updated using the

likelihood of the observations to obtain a posterior distribution over the parameters.

The main contribution of this chapter is providing a framework for verifying properties

of a model characterized by such a Bayesian posterior distribution.
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The method proposed here provides an important link between two areas of systems

biology research. There is a growing body of work on Bayesian inference in systems

biology [59], meanwhile, there is strong interest in the formal verification of pathway

models [88]. However, the interface of the two areas has been largely unexplored. The

method proposed here is important in this context since it enables the verification of

an uncertain model with its possible realizations (corresponding to different parameter

values) weighted according to their support from prior knowledge and experimental data.

The approximate probabilistic verification of dynamical systems usually involves

simulating independent realizations of the system. However, under Bayesian parameter

uncertainty, sampling independently according to the posterior distribution is usually

not possible. Previously proposed statistical model checking methods [75, 74] require

that the samples are independent and are therefore not applicable in this context. Our

method provides a solution to perform statistical model checking when using dependent

samples from the parameter posterior distribution of an ODE model.

We propose a Markov chain Monte Carlo (MCMC) based statistical model checking

framework. The MCMC scheme produces a sequence of dependent random realizations

of the model dynamics over the parameter posterior. Using this sequence of samples, we

construct hypothesis tests to decide whether the model satisfies a temporal logic property

with at least a given probability. Two different hypothesis tests are introduced, with

one using an initially chosen fix sample size, and the other one making the decision

in a sequential and adaptive manner, based on the result of previous samples. Using

recent results from the theory of general state space Markov chains, we prove sample

size bounds for both hypothesis tests.

There is a strong connection between this chapter and Chapter 3 in that both address

parameter uncertainty in ODE based pathway models. In Chapter 3 we used particle

filter algorithms to obtain samples from the parameter posterior. Here we propose a

method to do model verification based on the posterior. In principle, one could use a

particle filter to obtain a representation of the parameter posterior and then use the

particles to perform model verification. Here, instead, we build on an MCMC method-

ology for several reasons. First, in the context of formal verification, an approximate

answer is only acceptable if it is based on strong statistical guarantees. We are able to

derive such statistical error bounds for MCMC estimates, but similar error bounds for
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finite sample size particle filter estimates have not yet been established. Second, here we

directly exploit the fact that MCMC collects samples in a sequence, and our sequential

hypothesis test can adaptively stop the sampling procedure once enough samples have

been collected. In contrast, particle filter sample sizes would need to be fixed in advance,

and the filter would need to be run up to the maximal time point before verification

could begin. For these reasons we build on an MCMC methodology, but view other

forms of Bayesian inference to perform model verification under parameter uncertainty

as an interesting direction for future research.

First, we apply our method on an ODE model of the JAK-STAT biochemical path-

way [119]. The empirical results show that the proposed method enables verification

with respect to the Bayesian parameter posterior with reliable error bounds. We also

find that sequential testing is often significantly more efficient than the fix sample size

test. Next, we use our method on a model of the extrinsically triggered apoptosis path-

way (EARM1.3) [120], a large model containing 69 dynamical species and 71 unknown

parameters. We find that some important qualitative properties are preserved, while

others cannot be verified under substantial parameter uncertainty arising from the lim-

ited nature of experimental data. In both case studies we use wet-lab experimental data

available from the literature, demonstrating the practical applicability of our method.

The rest of this chapter is organized as follows. In the next section, we review some

of the basic concepts behind our method and discuss previous work. In Section 4.3 we

introduce our method in detail. This includes defining the temporal logic for expressing

dynamical properties and our main algorithms for performing statistical model checking

using MCMC. Section 4.4 provides theoretical error bounds and sample size guarantees

of our algorithms, and compares the efficiency of the hypothesis tests. Section 4.5

addresses some of the important practical aspects of using this method. In Section 4.6

we apply the proposed method to perform verification on two pathway models. We

conclude with a summary of the main contributions and results.

4.2 Background and previous work

Properties about dynamical systems can be formally expressed as formulas in temporal

logic. Using temporal logic, one can conveniently describe both qualitative and quan-
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titative dynamical properties of interest. The technique of model checking [70] is used

to automatically verify if a model satisfies these properties. Model checking has been

used for the analysis of dynamical embedded systems [121] and hybrid systems [122],

and is of significant interest in systems biology [123, 77, 124]. Both temporal logic and

model checking techniques have also been extended to analyze dynamical systems with

a component of stochasticity. In this context one verifies if a property is satisfied with

a certain probability.

When the state space of a stochastic model can be explicitly enumerated (for instance

in the case of discrete state space Markov chain models), the reachable states can be

traversed to find the probability of a dynamical property being satisfied [72]. However,

due to state space explosion this is intractable for large pathway models. It will also

be impossible in the case of non-linear ODE models where an explicit reconstruction of

the state transitions is not possible. In this case a statistical model checking approach

can be used to perform implicit verification based on repeated simulation of the model

dynamics.

Statistical model checking (see also Section 2.4) aims to verify whether a dynamical

system S satisfies a temporal logic property ψ with probability at least r, or more

formally, whether S |= P≥r(ψ). For a single realization (also called a trajectory) of the

system, ψ is either satisfied or not. By imposing a probability measure over the set

of trajectories, one can define the probability of satisfaction of ψ, denoted Pψ. This

probability is compared to a threshold r, and the verification problem is generally posed

as a hypothesis test between H0 : Pψ ≥ r+ δ and H1 : Pψ ≤ r− δ, with δ being a chosen

indifference region [75]. The hypothesis test is solved using statistical approximations

based on repeated simulation of the system [74]. Importantly, statistical model checking

assumes that each sampled realization of the system is statistically independent.

As we have discussed in Chapters 2 and 3, the dynamics of ODEs is governed by a

set of kinetic parameters whose value is often not known and not directly observable.

In a Bayesian framework, the uncertainty in the parameter values is represented by a

probability distribution. Following Chapters 2 and 3, we refer to the probability distri-

bution of parameters conditioned on a set of observations as the posterior distribution.

As the parameter values determine the system dynamics, the parameter distribution

also induces a probability measure over the possible realizations of the system dynam-
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ics. However, obtaining independent samples from a posterior distribution is impossible

in all but very special cases. Verification relying on independent samples cannot be

used in this setting, and we are not aware of any previous work that has addressed this

limitation.

Sampling independent system trajectories according to a prior distribution is usually

straightforward. In [81], we showed that when there is a uniform distribution on the

model parameters, one can use random sampling and a standard statistical model check-

ing scheme to verify if a property is satisfied with a given probability. This was used

with the motivation of modeling small, local variability in rate constants among individ-

ual cells. A more complete characterization of a pathway model’s parameter space with

respect to logic properties was addressed in [73], where piecewise-multiaffine differential

equations are considered, for which it is possible to identify regions of parameter space

where the model satisfies a temporal logic property. The above approaches deal with

parameter uncertainty as a prior property of the system, rather than its uncertainty

conditioned on data, which we address here. A recent work [125] considers the problem

of parameter learning in CTMC models. The goal is to find parameters such that the

probability of satisfaction of a set of temporal logic properties becomes most likely. Even

though parameters are treated in a Bayesian framework, there are important differences

from our setting, namely in [125] (i) the properties themselves are used as “data” with

respect to which parameters are tuned and (ii) Bayesian inference is not performed,

instead, a global optimization procedure is used to find the single maximum likelihood

or maximum aposteriori-probability parameter estimate.

In our approach we use a Markov chain Monte Carlo (MCMC) method to collect a

sequence of samples from the space of possible parameters. The chain is designed to en-

sure that the samples are distributed according to the parameter posterior. MCMC is a

general strategy to obtain samples from distributions that are hard to sample from [126].

These samples can then be used to analyze properties of interest. The MCMC method

has been used in systems biology to explore the parameter posterior of ODE models

[127, 128, 16]. These works, however, have not addressed the problem of probabilistic

verification. Further, these works do not use error estimates for the results obtained

using MCMC. Claims for the correctness of the approach rely on methods such as the

Gelman-Rubin diagnostic [129, 130] to qualitatively assess convergence, rather than pro-

65



vide quantitative confidence intervals. In contrast, here we build on recent results in

statistical theory to explicitly bound the error in our MCMC estimates. In fact, the

efficiency and accuracy of our statistical model checking algorithms crucially depend on

MCMC error bounds for finite sample sizes.

4.3 Statistical model checking under Bayesian uncertainty

In this section we develop the methodology for performing statistical model checking

under Bayesian uncertainty. We first define our temporal logic to express dynamical

properties. Then we show how hypotheses can be posed to express whether the model

satisfies a property with at least a given probability. Then a Markov chain Monte Carlo

method is presented to collect samples from the parameter posterior, and our two main

algorithms, a fix sample size test and a sequential test is proposed to decide between

the hypotheses.

4.3.1 ODE models with Bayesian parameter uncertainty

An ODE model describes the time-derivative of a set of variables x(t) ∈ Rdx through

a system of (possibly non-linear) equations (see also Section 2.2.1). The equations are

stated as

ẋ(t) = F (x(t), θ).

Here θ ∈ Rdθ is a vector of model parameters. To simulate the model, initial conditions

x(0) need to be set, and throughout the rest of the chapter we assume that these are

given. However, if this is not the case, initial conditions could also be treated as part of

the set of unknown model parameters.

We constrain model parameters (whose values are not exactly known) to be in a

bounded set Θ ⊂ Rdθ , and for simplicity define this set as the hypercube arising by

constraining parameter θi to the interval [ai, bi], where ai < bi ∈ R, 1 ≤ i ≤ dθ. The set

of possible parameter values will thus be Θ = [a1, b1]× [a2, b2]× . . .× [adθ , bdθ ].

Importantly, we assume that a prior probability density p0(θ) is given over Θ. One

can use the prior to encode existing knowledge about the joint distribution of parameters.
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In the simplest case, p0(θ) will be uniform over Θ, defined as

p0(θ) =


c if θ ∈ Θ

0 otherwise.

(4.1)

Here c =
(∏dθ

i=1(bi − ai)
)−1

is a constant ensuring that p0 integrates to 1.

When more is known about the value of the parameters, a Gaussian or a log-normal

distribution is used as a prior. For instance, an uncorrelated Gaussian prior would have

the form p0(θ) =
dθ∏
i=1
N (µθi , σ

2
θi

). In principle, truncation may be needed in these cases

to integrate to 1 over the bounded Θ, but in practice the tail probabilities will decay

fast enough that this effect is negligible.

Now assume that we have a set of observations Y , and recall from Section 2.3 that

Yi,j denotes the measured value for species i at time point tj . We will use the Gaussian

likelihood to assess how well a particular set of parameters explains the experimental

data. The form of the likelihood is

p(Y |θ) = C

n∏
i=1

m∏
j=1

exp

(
(Yi,j − xi(tj)|θ)2

√
2σ2

i,j

)
, (4.2)

where C is a constant ensuring a unit integral, xi(tj)|θ is the value of species i at time

tj when using parameters θ, and σi,j are the standard deviations of each data point. In

case not all variables are observed or if the state is observed through a function g of the

state, as y(tj) = g(x(tj)), the likelihood can be modified in the obvious way.

Using the prior and the likelihood, we can express the posterior distribution of pa-

rameters as

π(θ|Y ) =
p(Y |θ)p0(θ)

p(Y )
=

p(Y |θ)p0(θ)∫
p(Y |θ)p0(θ)dθ

. (4.3)

The parameter posterior will introduce a component of uncertainty in the ODE

model. Intuitively, it will “weight” realizations of the model based on their support

from prior knowledge and observations. In the following sections, we provide methods

to verify whether properties expressed in probabilistic temporal logic are met with a

given probability, with respect to the posterior.
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4.3.2 Probabilistic properties and verification

In this section we first define a temporal logic on trajectories of the ODE model. The

logic will be able to express dynamical properties on the system variables such as “the

concentration of STAT starts in the interval [0,0.1], after which it reaches the interval

[1,2] and stays in the interval [1,2]”. We then extend the logic to a probabilistic setting

where there is a probability distribution over the set of trajectories. Finally, we show

how deciding whether a property holds with at least a given probability can be posed

as a hypothesis test.

Properties on a single trajectory

To specify the dynamical properties of a single realization of the system, we first encode

them as formulas in a specification logic. We assume that analyzing the dynamics of

the system is of interest only up to a maximal time point T . Accordingly, we use a

bounded version of linear time temporal logic (BLTL)[70]. The formulas in this logic

are interpreted at a finite set of time points T = {0, 1, . . . , T} corresponding to all the

relevant time points of interest. With a slight abuse of notation, we will directly use

these integer time indices to specify the state at the corresponding time point. For

instance x(1) will denote the state at time point 1.

In our setting a trajectory is represented by ςθ, which (given fix initial conditions)

is fully defined by the choice of parameters θ since the ODE system is deterministic. A

trajectory will be defined by the set of states ςθ = (x(0)|θ, x(1)|θ,. . . , x(T )|θ), where

x(i)|θ is the value of system variables at time point i when the corresponding ODEs are

simulated with the parameter set θ. ςθ(t) = x(t)|θ for t ∈ T . The transitions from x(i)|θ

to x(i+ 1)|θ is ensured by the fact that once we fix the parameters values, the systems

of ODEs has a unique solution and is characterized by a continuous function (for more

details, see [81]).

Atomic propositions in BLTL will be of the form (i, L, U) with L ≤ U . This is

interpreted as “the value of xi falls in the interval [L,U ]”. When describing the case

study, for easier readability, we will use the [L ≤ xi ≤ U ] notation with the same

intended meaning.

The syntax of formulas in BLTL are defined as follows:
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• Every atomic proposition is a BLTL formula.

• The constants true and false are BLTL formulas.

• If ψ and ψ′ are BLTL formulas then ¬ψ and ψ ∨ ψ′ are also BLTL formulas.

• If ψ is a BLTL formula then G≤tψ and F≤tψ are also BLTL formulas, where t ≤ T

is a positive integer.

• If ψ and ψ′ are BLTL formulas then ψU≤tψ′ is a BLTL formula, where t ≤ T is a

positive integer.

Logic operators such as ∧, ∨ and ⇒ are defined in the standard way and allow the

construction of complex combinations of statements.

Properties of the system dynamics defined by the ODEs can be efficiently expressed

using BLTL. The semantics of BLTL will be defined by ςθ, t |= ψ (expressing that the

trajectory ςθ satisfies the property ψ are time t), as follows.

• ςθ, t |= (i, L, U) iff L ≤ ςθ,i(t) ≤ U where ςθ,i(t) is the ith component of ςθ(t).

• ςθ, t |= ψ ∨ ψ′ iff ςθ, t |= ψ or ςθ, t |= ψ′.

• ςθ, t |= ¬ψ iff ςθ, t 6|= ψ.

• ςθ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t+ k′ ≤ T , ς, t+ k′ |= ψ′ and

ςθ, t+ k′′ |= ψ for every 0 ≤ k′′ < k′.

Finally, we say that ςθ |= ψ (that is, the trajectory ςθ satisfies ψ) iff ςθ, 0 |= ψ. The

derived temporal operators G≤t and F≤t are defined as follows.

F≤tψ ≡trueU≤tψ,

G≤tψ ≡¬F≤t¬ψ.

This provides the basis for verifying a single trajectory of the ODE system. We next

introduce a probabilistic extension of BLTL which applies to sets of trajectories.

Statistical model checking as a hypothesis test

Under assumptions of continuity and measurability on the ODE equations, we can assign

a probability to the trajectories satisfying a given formula ψ with respect to the distri-

bution of parameters (for a detailed discussion, see [81]). We can define the probability
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of the system satisfying a formula ψ with respect to the parameter posterior π(θ|Y ) as

Pψ =

∫
Θ
π(θ|Y )I(ςθ |= ψ)dθ, (4.4)

where I is the indicator function taking value 1 if ςθ |= ψ, and 0 otherwise.

To express properties of this nature, we will encode them in a formalism called

PBLTL[131], which is a probabilistic extension of BLTL. Formulas in PBLTL are of the

form P≥r(ψ) (or P≤r(ψ) ), where ψ is a BLTL formula and r is a real number in (0, 1).

The PBLTL formula P≥r(ψ) expresses that we want to verify whether the probability

measure of the trajectories satisfying ψ (or Pψ) is at least r.

Deciding whether P≥r(ψ), can be posed as a hypothesis test [132, 75, 74]. Our goal

is to decide between the following two hypotheses.

H0 : Pψ ≥ r + δ, (4.5)

H1 : Pψ ≤ r − δ,

where P≥r(ψ) is a PBLTL formula and δ is a parameter defining an indifference region.

We refer to an algorithm that chooses between the two hypotheses as a hypothesis test.

The hypothesis test makes an error, if it chooses H0 when H1 holds (Type-I error), or

if it chooses H1 when H0 holds (Type-II error). If neither hypothesis holds (that is,

Pψ ∈ (r − δ, r + δ)), either decision is considered correct. For simplicity, we will just

consider the overall error rate (denoted by ε) covering either error type. It is important

that the desired error rate ε, along with δ and r can be chosen by the user.

Due to the difficulty of sampling independently from the posterior, we will use a

Markov chain Monte Carlo method, which produces a sequence of dependent samples

from the posterior, to decide between the hypotheses.

4.3.3 MCMC for statistical model checking

Our goal in this section is to design a Markov chain in a way that its stationary dis-

tribution matches the parameter posterior π(θ|Y ). Then, if the chain is stationary, it

will provide a sequence of samples from the posterior. The chain starts at an initial

parameter sampled from the prior. In each subsequent step of the chain, one first uses

a proposal distribution to pick the next candidate parameter, and then applies the ac-

ceptance ratio to accept or reject the proposed candidate. At each step of the Markov
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chain, the trajectory corresponding to the current parameter vector is verified, and these

samples are used to decide whether P≥rψ.

There are many possible ways to construct an adequate proposal distribution and

acceptance rate. The only requirement is that the resulting Markov chain have a unique

stationary distribution, and that the stationary distribution is identical to the posterior

π(θ|Y ). A sufficient condition for the existence of a stationary distribution is detailed

balance, which states that the probability of being in state θn and move to the state θm

is equal to the probability of moving from θm to θn, or more formally,

π(θn|Y )P (θn → θm) = π(θm|Y )P (θm → θn). (4.6)

Here P is the overall probability of the transition, which is a combination of the proposal

and the acceptance rate. The uniqueness of the stationary distribution holds if the

Markov chain is ergodic. A simple sufficient condition of ergodicity is that there exists

a finite integer k such that any state can be reached from any other state in exactly k

steps.

It is important to point out that our statistical model checking scheme, and the-

oretical analysis in Section 4.4 will hold for any Markov chain that fulfills the above

properties. The design of an efficient Markov chain is often problem-specific and is an

orthogonal problem to our main contribution (for more details on constructing efficient

chains, we refer to [133]). Here we introduce a standard MCMC scheme based on the

Metropolis-Hastings algorithm [114].

We denote the proposal by q(θn → θ), which represents the probability of proposing

θ if the current parameter value is θn. A good choice for the proposal is q(θn → θ) =

N (θn,ΣMH), a dθ-dimensional multivariate Gaussian with mean identical to the current

parameter vector, and covariance matrix ΣMH. Here ΣMH can be diagonal with entries

representing variances along each dimension independently.

ΣMH =


σ2

MH,1 0 0

0
. . . 0

0 0 σ2
MH,dθ


In practice it is important to choose the entries of the covariance matrix carefully,

since it affects the mixing properties of the chain. In the case of pathway models,
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prior knowledge about individual parameters, or initial test runs will provide sufficient

information to choose the diagonal entries.

The acceptance rate needs to be chosen in a way that the detailed balance is kept

with respect to the posterior. The acceptance rate follows from the Metropolis-Hasting

scheme, where the candidate is accepted with probability α, determined by the proposal

and the posterior as follows.

α = min

(
1,
q(θ′ → θn)

q(θn → θ′)

π(θ′|Y )

π(θn|Y )

)
= min

(
1,
q(θ′ → θn)

q(θn → θ′)

p0(θ′)p(Y |θ′)
p0(θn)p(Y |θn)

)
. (4.7)

Note that the normalization constant p(Y ) appearing in the posterior is eliminated, and

one only needs to evaluate the prior and the likelihood at the original and at the proposed

parameter value. In our case the proposal q is symmetric, and therefore equation (4.7)

simplifies to

α = min

(
1,

p0(θ′)p(Y |θ′)
p0(θn)p(Y |θn)

)
. (4.8)

This choice of acceptance rate will ensure detailed balance, and imply reversibility.

It also is easy to see that the resulting chain will be ergodic. This simply follows from

the fact that the proposal Gaussian will propose any parameter in Θ with nonzero

probability, and the acceptance rate is also always positive in Θ. Therefore any state

can be reached from any other state within one step, implying ergodicity.

The above conditions ensure that the Markov chain will converge to the true poste-

rior. To ensure that the chain has sufficiently converged, we take an initial t0 number

of steps in the Markov chain, called the burn-in time. The estimation done with respect

to the samples (in our case the verification task) is only started after the burn-in phase.

We now introduce the function getMCMCsample, which takes as input the current

parameter values, takes a single step in the Markov chain, and returns the new parameter

values.

Function getMCMCsample
Input: parameter vector θin. Output: parameter vector θout

1: Sample a new parameter vector based on proposal: θ′ ∼ q(θin → θ)

2: Calculate acceptance ratio α = min
(

1, p0(θ
′)p(Y |θ′)q(θ′→θin)

p0(θin)p(Y |θin)q(θin→θ′)

)
3: Generate η ∼ Uniform[0, 1]
4: if η < α then
5: return θout := θ′

6: else
7: return θout := θin
8: end if
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We are now ready to present two tests between the hypotheses in (4.5). These tests

use getMCMCsample as a subroutine. The main idea is that at each step of the Markov

chain, the trajectory corresponding to the current parameter value is simulated and

verified with respect to a given property ψ. Once a sufficient number of samples have

been verified, we can stop the Markov chain and decide between hypotheses H0 and H1.

4.3.4 Fix sample size hypothesis test

A fix sample size hypothesis test is shown in Algorithm 1. This test assumes that we

have fixed N , the total number of samples to collect, and thus a choice of either H0

or H1 is returned after exactly N steps. The algorithm first takes t0 burn-in steps to

ensure convergence to the posterior. Then in each of N steps, a property ψ is verified.

If the number of times it is verified to be true is at least rN then H0, otherwise, H1 is

chosen. With parameters δ and r, and chosen error rate ε, N should be set to

N :=

⌈
log(1/ε)

γδ2

⌉
, (4.9)

where γ is the spectral gap of the Markov chain, and is discussed in detail in Section

4.5.1. We will prove in Section 4.4 that this choice of N achieves an error rate of ε in

deciding the hypothesis test.

Algorithm 1 Fixed sample size hypothesis test
Input: BLTL property ψ, threshold probability r, observations Y , number of samples N , number
of burn-in steps t0, prior p0, proposal q.
Output: Choice of H0 or H1.

1: Sample initial parameter vector from the prior ϑ0 ∼ p0(θ)
2: for i := 1 . . . t0 do
3: ϑi := getMCMCsample(ϑi−1)
4: end for
5: Set S := 0 and θ0 := ϑt0

6: for n := 1 . . . N do
7: θn := getMCMCsample(θn−1)
8: Simulate the trajectory ςθn

9: if ςθn |= ψ then
10: S := S + 1
11: end if
12: end for
13: if S ≥ Nr then
14: return H0

15: else
16: return H1

17: end if
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4.3.5 Sequential hypothesis test

A sequential sample size hypothesis test is shown in Algorithm 2. This test uses sequen-

tial hypothesis testing to adaptively set the number of steps before stopping (based on

the result of verification on samples gathered so far). The stopping condition is governed

by a threshold M . At each step, a property ψ is verified. The number of times up to

step number n when ψ was verified to be true is counted by S. If S crosses the upper

threshold nr + M then H0 is chosen, if it crosses the lower threshold nr −M then H1

is chosen, otherwise we continue taking samples.

Figure 4.1 shows the lower and upper stopping conditions and an example trace of

S crossing the upper threshold.

H0 chosen

H1 chosen

nr +M

nr −M
S

n

Figure 4.1: Sequential hypothesis test with an example running sum crossing the upper
stopping condition.

It is important to note that the sequential hypothesis test will always stop within a

finite number of iterations with probability 1, as shown in Section 4.4.

4.4 Theoretical analysis

In this section we present bounds on the error of the hypothesis tests introduced in the

previous section. In what follows, we state results in more general terms. Namely, results

hold for any reversible Markov chain on state space Ω ⊂ Rd with a unique stationary

distribution π. The Markov chain described in the previous section is an instance of such

a chain. In our dynamical systems verification context, Ω will correspond to Θ ⊂ Rdθ ,

the set of possible model parameters, and π corresponds to the posterior π(θ|Y ). For

the general discussion, we assume that a square-integrable function f (in other words

f ∈ L2(π)), with 0 ≤ f(x) ≤ 1 for x ∈ Ω is evaluated at each step of the Markov
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Algorithm 2 Sequential hypothesis test
Input: BLTL property ψ, threshold probability r, observations Y , stopping condition M , number
of burn-in steps t0, prior p0, proposal q.
Output: Choice of H0 or H1.

1: Sample initial parameter vector from the prior ϑ0 ∼ p0(θ)
2: for i := 1 . . . t0 do
3: ϑi := getMCMCsample(ϑi−1)
4: end for
5: Set n := 1, S := 0 and θ0 := ϑt0

6: loop
7: θn := getMCMCsample(θn−1).
8: Simulate the trajectory ςθn

9: if ςθn |= ψ then
10: S := S + 1
11: end if
12: if S ≥ nr +M then
13: return H0

14: else if S ≤ nr −M then
15: return H1

16: else
17: Set n := n+ 1 and continue
18: end if
19: end loop

chain. The function f corresponds to evaluating I(ςθ |= ψ), taking 1 or 0, depending on

whether the property of interest is satisfied with the current parameters. Consequently,

the expectation Eπf will correspond to Pψ in our setting.

4.4.1 Concentration of the Markov chain estimate

In this section we show a Hoeffding-type concentration inequality for estimates made

using dependent samples obtained from a Markov chain. It provides an upper bound

on the probability that the sum of f(Xi) deviates from its expected value. This will be

the basis of the stopping conditions for our hypothesis tests. This result was proven for

Markov chains on finite state spaces in [134]. The result has only recently been extended

to general state spaces in [135]. This form of the result follows from [134] and [135] with

rescaling to exploit the fact that the values of f are bounded between 0 nd 1.

Theorem 4.1 (Hoeffding inequality for reversible Markov chains). Let X1, . . . , Xn be a

stationary reversible Markov chain with spectral gap γ, and unique stationary distribu-

tion π. Let f ∈ L2(π) such that 0 ≤ f(x) ≤ 1 for every x ∈ Ω. Let Sn :=
∑n

i=1 f(Xi),

then for any t ≥ 0,

P (|Sn − n · Eπf | ≥ t) ≤ 2 exp

(
− t

2 · γ
n

)
. (4.10)
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Note that the requirement that the chain be stationary is ensured by choosing a

sufficiently long t0 initial burn-in time.

4.4.2 Sample sizes and error bounds for the tests

Suppose that X1, X2, . . . is a reversible Markov chain on Ω ⊂ Rd, with unique stationary

distribution π, and f : Ω → [0, 1] is a bounded function. Our objective is to do a test

between the following two hypotheses, given r ∈ (0, 1) and δ ∈ (0,min(r, 1− r)), (this is

a more general form of (4.5)).

H0 : Eπf ≥ r + δ,

H1 : Eπf ≤ r − δ.

In the following sections, we discuss two tests to choose between these hypotheses. The

first one is a fixed sample size test (a generalized form of Algorithm 1), while the second

one is a sequential test (a generalized form of Algorithm 2).

Fixed length hypothesis test

Suppose that we have a sample of length n consisting of the values f(X1), . . . , f(Xn).

Let Sn := f(X1) + . . .+ f(Xn). We will use the following hypothesis test.

• If Sn ≥ nr, accept hypothesis H0,

• otherwise accept hypothesis H1.

The next theorem bounds the Type-I and Type-II errors of the test, which correspond

to accepting hypothesis H1 when in fact hypothesis H0 holds, and vice-versa.

Theorem 4.2 (Error bound for fixed length hypothesis test). For the fixed length hy-

pothesis test, both the Type-I and Type-II errors are bounded by

exp
(
−γδ2n

)
. (4.11)

Proof. Suppose that H1 holds, implying that Eπf ≤ r− δ. A false decision is made (H0

is chosen) if Sn ≥ nr. From here

Sn − nEπf ≥ nr − (nr + nδ) = nδ
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Applying the Hoeffding inequality (Theorem 4.1), we get

P (Sn − nEπf ≥ nδ) ≤ exp
(
−γδ2n

)
.

The same holds under the opposite hypothesis.

This result is directly applicable to Algorithm 1, and implies that in order for the

probability of a false decision to be smaller than ε, the sample size N should be chosen

as

N ≥ log(1/ε)

γδ2
. (4.12)

Sequential hypothesis test

We now turn to establishing a stopping condition for the sequential hypothesis test. The

sequential test is as follows. We fix a threshold M > 0. Denote Sn := f(X1)+. . .+f(Xn)

as before. First, set n = 1, then

• if Sn ≥ nr +M , accept hypothesis H0,

• if Sn ≤ nr −M , then accept hypothesis H1,

• otherwise, set n := n+ 1 and repeat.

In contrast to the fix length hypothesis test where n was chosen in advance, here, n

is variable and M is the parameter chosen in advance to guarantee an error rate of ε.

The following proposition bounds the errors of the test with a particular choice of M .

Theorem 4.3 (Error bound for sequential hypothesis test). For the sequential hypoth-

esis test, both the Type-I and Type-II errors are bounded by

exp (−2γδM) · exp

(
− M

1− r
· γδ2

)
· 2

γδ2
. (4.13)

Proof. Suppose that H1 holds, and thus Eπf ≤ r − δ. A false decision occurs (H0 is

chosen) when, for any n ≥ 1, Sn ≥ nr+M . From here Sn−Eπf ≥ nr+M−(nr−nδ) =

M + nδ. Applying the Hoeffding inequality (Theorem 4.1), we get

P (Sn − Eπf > nδ +M) ≤ exp

(
−γ(nδ +M)2

n

)
≤ exp (−2γδM) · exp

(
−nγδ2

)
.
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It is easy to see that the probability of a false decision is then bounded by the sum

of these terms over all possible n. We also exploit the fact that since Sn ≤ n, when

n ≤M/(1−r), it always holds that Sn ≤ nr+M . Therefore the first bM/(1−r)c terms

of the sum will be 0.

∞∑
n=bM/(1−r)c

P (Sn − Eπf > nδ +M) ≤ exp(−2γδM)

∞∑
n=bM/(1−r)c

exp(−nγδ2)

≤ exp(−2γδM) exp

(
− M

1− r
· γδ2

)
· 1

1− exp (−γδ2)

≤ exp (−2γδM) · exp

(
− M

1− r
· γδ2

)
· 2

γδ2
.

The same holds under the opposite hypothesis.

This result is directly applicable to Algorithm 2, and implies that in order for the

probability of a false decision to be smaller than ε, the parameter M should be chosen

as

M =
log(2/(εγδ2))

2γδ + γδ2/(1− r)
. (4.14)

4.4.3 Efficiency of fix length and sequential tests

We have already shown that having chosen r, δ and ε, the fix sample size test will take

n = log(1/ε)
γδ2 steps. The number of steps before the sequential test stops (either H0 or

H1 is chosen) is a random variable. We now examine the expected number of steps (we

refer to this as the stopping time T ) of the sequential test. In what follows, we will be

able to show the following important properties

• With the same choice of r, δ and ε, the expected stopping time of the sequential

test is around half that of the fix sample size test if either H0 or H1 holds, that is,

Eπf 6∈ [r − δ, r + δ].

• If Eπf is “further” from the edges of the indifference region. the stopping time of

the sequential test decreases even more.

• Even if neither hypothesis holds, that is, Eπf ∈ [r−δ, r+δ], the test will stop with

probability 1, and “forcing” a decision after a 2M/δ steps will have only marginal

effect on error.

First we derive an upper bound for the expected stopping time of the sequential test.
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Theorem 4.4. For the sequential test, with M chosen as in (4.14), the expected stopping

time satisfies

E(T ) ≤ log(1/ε)

2γδ2
+O

(√
log(1/ε)

2γδ2

)
, (4.15)

under both hypotheses.

Proof. Under hypothesis H1, the probability of the event that T ≥M/δ+ t is less than

equal to the event that Sn > nr −M at step n := bM/δ + tc. Under H1, Ef ≤ r − δ,

thus.

P (Sn > nr −M) = P (Sn > nEπf + nδ −M)

= P (Sn > nEπf + (t− 1)δ),

Using the Hoeffding inequatiy we see that for any t > 0

P (T ≥M/δ + t) ≤ exp

(
−γδ2 · (t− 1)2

M/δ + t

)
. (4.16)

To arrive at the expected stopping time, we use the fact that for any real valued random

variable, E(X) ≤
∫∞
t=0 P (X ≥ t).

E(T ) ≤M
δ

+

∫ ∞
0

P (T ≥M/δ + t)dt

≤M
δ

+

∫ ∞
0

exp

(
−γδ2 · (t− 1)2

M/δ + t

)
≤M
δ

+ 2

√
M + 2δ

γδ3
+

2

γδ2
=

M

δ
+O

(√
M

δ

)

Where the second step comes from an upper bound for the exponential integral. We

now substitute M as in (4.14) to get

E(T ) ≤ log(1/ε)

2γδ2
+O

(√
log(1/ε)

2γδ2

)
, (4.17)

The same holds under the opposite hypothesis.

By comparing (4.12) with (4.15), we can see that the sequential test typically requires

less than half of the samples of the fix length test.

Our bound in (4.15) is based on the worst case, when Eπf is exactly on the border of

either hypothesis region. In practice Eπf will often be further from r, and |Eπf − r| > δ

will hold. It is easy to show that in this case the denominator of (4.15) can be changed

from 2γδ2 to 2γδ(|r − Eπf |), resulting in earlier expected stopping.
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It is also clear that the test will stop in a finite amount of time almost surely, even

if none of the two hypotheses is satisfied (that is, if Eπf ∈ [r − δ, r + δ]). In practice,

however, we do not know whether this is the case, and one may need to stop the run after

a certain number of steps, depending on available resources. By (4.16), the probability

that the chain runs for more than 2M/δ steps is less than

exp

(
−γδ2 · (2M/δ − 1)2

2M/δ

)
, (4.18)

under both hypotheses, which is very small in practice. Therefore, if this happens, one

can stop and choose H0 if S2M/δ ≥ (2M/δ)r and H1 otherwise. This modification of the

original test only changes the Type-I and Type-II errors at most by the amount (4.18).

4.5 Practical considerations

4.5.1 Estimating the speed of mixing

The sample size bounds assume that we know the spectral gap of the Markov chain,

denoted γ. The spectral gap is a quantity describing the mixing properties of the Markov

chain. Intuitively, a small value of γ corresponds to a slowly mixing chain, meaning

that many steps have to be taken before samples become approximately independent.

Conversely, a fast mixing chain (with large γ) will produce a sequence of samples that

become close to independent within a few steps. As seen from the sample size bounds in

Section 4.4, a slowly mixing chain will require a larger sample size to carry out hypothesis

testing.

The spectral gap is a property defined on reversible Markov chains. For Markov

chains on finite, discrete state spaces, the spectral gap is simply the difference between

the two largest eigenvalues of the transition matrix. In the general state space case,

which applies in our setting, the spectral gap is somewhat more difficult to define, and

the precise definition is given in Appendix B. Here we focus on how to estimate γ in

practice.

In practice, the spectral gap has to be estimated from the output of the Markov

chain. In general the output of the Markov chain is a function f : Ω → R, where Ω is

the state space of the chain. In our case, f denotes the model checker verifying a single

trajectory based on a chosen parameter, and therefore f : Θ → {0, 1}. The main issue
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is that the spectral gap is an inherent property of the Markov chain, independent of f ,

but we can only monitor the output of f to estimate the spectral gap. If the output

of the chain is computed for several functions f , then we recommend to compute γ̂ for

each of them and use the minimum of those estimates. Once a reliable estimate for γ

has been obtained, the same value holds for any f used in later runs.

At each step Xi ∈ Ω of the chain we have access to f(Xi), and we need to estimate

γ from the sequence of values f(X1), . . . , f(XN ). In [14], we have shown that a good

estimator for γ can be derived by estimating two related values: (1) Vf := V arπf , the

variance of f with respect to π, and (2) σ2, the asymptotic variance of the mean of f

with respect to π as N →∞. More precisely, σ2 is defined as

σ2 = lim
N→∞

1

N
V arπ

[
N∑
i=1

f(Xi)

]
. (4.19)

A simple and consistent estimator for Vf is through the sample variance, namely

V̂f :=
1

N − t0

(
N∑

i=t0+1

f2(Xi)

)
−

(
1

N − t0

N∑
i=t0+1

f(Xi)

)2

. (4.20)

Estimating σ2 is more difficult, and several methods have been proposed in the litera-

ture [136]. The estimation typically relies on the lagged autocovariance of the output

sequence f(Xi). In [14] we have proposed such an estimator, and showed that it has good

theoretical properties and is reliable in practice. Let ρ̂k denote the empirical k-lagged

autocovariance. Then the estimate for the asymptotic variance is

σ̂2 =

(
ρ̂0 + 2

η∑
k=1

ρ̂i

)
, (4.21)

where η is the chosen maximal lag, and the standard estimator for the autocovariance

terms is

ρ̂k =

∑N−η
i=t0+1 f(Xi)f(Xi+k)

N − t0 − η
− 1

2

(
∑N−η

i=t0+1 f(Xi))
2 + (

∑N−η
i=t0+1 f(Xi+k))

2

(N − t0 − η)2
. (4.22)

As for the choice of t0 and η, in [14], we show that setting t0 := 0.1N and η := 10N1/3

will result in a consistent estimate for σ2. It is important to note that N and t0 chosen

for estimating σ2 and Vf is not necessarily the same as ones used in subsequent runs of

the Markov chain.
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Having obtained σ̂2 and Vf , we can now calculate the estimated spectral gap as

γ̂ := 2σ̂2/V̂f . (4.23)

4.5.2 Decoupling sampling and model checking

Typically, one will be interested in verifying several different properties of a model. It is

impractical to re-run the full MCMC procedure for each property independently. We can

exploit the fact that the Markov chain based sample collection is essentially independent

from the model checking task. The sequence of parameter samples collected by the

Markov chain only depends on the model and the experimental data, and not on the

property that is being verified.

Running the Markov chain and performing model checking both involve simulating

the system. Namely, the Markov chain simulates the system with each proposed param-

eter value, and evaluates the likelihood with respect to experimental data. Independent

from this, the model checker needs to simulate the system (possibly under different ini-

tial conditions) to verify against a given temporal logic property. For these reasons, in

practice, it is better to first run the Markov chain for a large number of steps “off-line”,

and store the collected parameter samples for later use in verification.

Assuming that a sufficiently long sequence of parameter samples has been stored, it

is possible to run the same fix sample size or sequential hypothesis tests on this stored set

of samples. In fact, there are two important optimizations that this enables in practice.

First, many of the parameters that the Markov chain generates are identical. This

is because each time a proposed parameter is rejected, the previous parameter is kept

(the Markov chain stays in its original state). Depending on the design, the Markov

chain will typically have an acceptance rate between 10−40%. Naturally, it is enough to

perform verification with each distinct parameter, and take into account the multiplicity

of the parameter in the hypothesis test. For instance, assume parameter θi is kept for

m steps before another parameter is accepted, then one would add m · I(ςθi |= ψ) to the

sum tracking the number of samples satisfying the property ψ in the hypothesis tests

(see Algorithms 1 and 2 in Section 4.3).

Second, it is possible to parallelize the decoupled verification phase. For the fix

sample size test, massive parallelization is possible, since each stored parameter can be
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verified independently. For the sequential test, it is possible to introduce batches of

samples that are verified in parallel. After verifying a batch of samples, the stopping

condition of the sequential test is checked, and the procedure either stops and makes a

decision, or another batch of samples is simulated and verified.

4.6 Case studies

The proposed method was implemented in C++, and runtimes were measured on a

2.83 GHz computer with 8GB of RAM. We first apply our method on a model of the

JAK-STAT pathway and then on a larger model of extrinsic apoptosis.

4.6.1 The JAK-STAT pathway

A model of the JAK-STAT signaling pathway was introduced in Section 3.4.2. Here

we use the same ODE model and experimental data, which have been presented. The

model contains 4 unknown parameters. We use a Markov chain as introduced in Section

4.3 to collect samples from the space of parameters according to the posterior distribu-

tion, while evaluating the corresponding trajectories against properties of interest. The

parameter ranges and the square root of the covariance matrix diagonal entries (σMH)

used to define the MCMC proposal distribution are provided in Table 4.1.

Parameter Limits σMH

k1 [0, 5] 0.02
k2 [0, 30] 0.5
k3 [0, 1] 0.01
k4 [0, 5] 0.02

Table 4.1: Parameter ranges and entries in the proposal covariance matrix

We chose 16 discrete time points between 0 and 60 minutes to represent trajectories

with respect to BLTL formulas (in the formulas below we will use the absolute time

rather than the discrete time index).

We are mainly interested in the dynamics of nuclear STAT (STATn), since it is

involved in gene expression [119]. Specifically, we verify dynamical properties of STATn

under various types of Epo stimulation (Epo is an input set externally and does not

appear in the formulas).

Property 1 STATn reaches a high level and then settles at a low level under transient
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Epo stimulation

ψ1 = F≤60([1 ≤ STATn ≤ 2] ∧ F≤60(G≤60([0 ≤ STATn ≤ 0.5]))). (4.24)

Experimental analysis of algorithms

We use the verification of P≥r(ψ1) to empirically analyze different aspects of our ap-

proach. We ran m = 2000 independent instances of the MCMC sampler for a total of

2 ·105 steps each (with t0 = 104 burn-in steps). We use the output of the m independent

chains as a basis for constructing empirical results.

To get a reliable estimate of the true underlying probability of satisfaction Pψ1 , we

took the overall average of the estimates from all m chains, and treated the obtained

value Pψ1 ≈ P̂ψ1 = 0.888 as the reference for Pψ1 . The method described Section 4.5.1

was used to estimate the value of the spectral gap to obtain γ = 0.0127.

We first examine the empirical error rate of the fixed sample size hypothesis test.

For a fixed sample size n, we define the empirical error rate En as the ratio of chains

choosing H0 if H1 holds (or the ratio choosing H1 if H0 holds). If neither H0 nor H1

holds (when r − δ < Pψ < r + δ), then En := 0. We set r = P̂ψ1 − δ and calculated

En for a range of sample sizes up to n = 2 · 105. For the same set of sample sizes, we

calculated the error rate bound derived from equation (4.12) as εn = exp(−nγδ).

Figure 4.2 shows En and εn as a function of n for different values of δ. It is apparent

that En decreases monotonically with increasing sample size n, and that En is higher for

lower values of δ. Importantly, Figure 4.2 demonstrates that the theoretical bounds on

the error rate are reliable in practice, since the empirical false negative rate is consistently

below this upper bound (En ≤ εn for all examined n, δ).

We next look at results for sequential hypothesis testing. The sequential hypothesis

test method enables the early termination of the sampling chain if the running estimate

crosses a threshold. We refer to the number of samples collected in the Markov chain

before a decision is made as the stopping time (see also Section 4.4). In Figure 4.3, the

empirical cumulative distribution of stopping times is shown for the hypothesis test on

Pψ1 for a set of r values in (0, 1). Here the value of δ = 0.05 and ε = 0.01 is fixed. As

a reference, we note that the corresponding fixed sample size test would take 1.45 · 105

samples. The plot shows that for values of r distant from the true probability, sequential

sampling consistently terminates with small variability at low sample sizes. When r is
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Figure 4.2: Empirical error rates for the fixed sample size test for a range of sample sizes.
Dashed lines show the theoretical upper bounds derived from (4.12). Here r = P̂ψ1 − δ
and ε = 0.01 are fixed, and 3 distinct δ values are shown.

close to the true probability, the stopping times show significantly higher variability.

Figures 4.4 and 4.5 show the mean empirical stopping times for a range of r values for

different values of δ, and different values of ε, respectively. For values of r close to P̂ψ1 ,

some chains did not stop within 2 · 105 samples, and the corresponding mean values

are therefore not determined. These empirical results are consistent with sequential

hypothesis testing in the independent sample setting [132].

We also evaluated the empirical error rate in the sequential hypothesis test, and found

that out of the m = 2000 parallel runs, no error was made under all examined choices

of r, ε, δ. This, on one hand shows that the specified error bound (4.13) was indeed met.

On the other hand, it suggests that the bound (4.13) might not be sharp and M could

be chosen even smaller than described by (4.14), resulting in earlier stopping.

Further properties

We now look at two further properties regarding STATn. Recall that property ψ1

specified the behavior of STATn under transient Epo stimulation. Here we specify

the behavior of STATn under two rounds of transient Epo stimulation (ψ2) and under

sustained Epo stimulation (ψ3), (again, Epo is set externally and thus does not appear

in the formulas). Figure 4.6 shows 3 different time courses for the externally set Epo

stimulation used when verifying with respect to ψ1, ψ2 and ψ3.

Property 2 STATn reaches a high level and then settles at a medium level under two
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Figure 4.3: Empirical distribution of stopping times with sequential hypothesis test for
different values of r. Here δ = 0.05 and ε = 0.01 is used.

rounds of transient Epo stimulation

ψ2 = F≤60([1 ≤ STATn ≤ 2] ∧ F≤60(G≤60([0.5 ≤ STATn ≤ 1]))). (4.25)

Property 3 STATn reaches a very high level and then settles at a very high level under

sustained Epo stimulation

ψ3 = F≤60(G≤60([1.5 ≤ STATn ≤ 2])). (4.26)

Table 4.2 summarizes the results of the verification with properties ψ1 to ψ3.

Property r δ ε, Outcome
Samples/time

taken (sequential)
Samples/time
taken (fixed)

P≥r(ψ1) 0.8 0.05 0.01 True 143384/315s 145045/319s
P≥r(ψ2) 0.8 0.05 0.01 True 54789/125s 145045/328s
P≥r(ψ3) 0.8 0.05 0.01 False 13698/36s 145045/317s

Table 4.2: Verification results on properties of the JAK-STAT pathway model. Out-
comes (true or false) were the same for fixed length and sequential tests.
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Figure 4.6: Epo stimulation dynamics. These time courses are used as (deterministic,
externally fixed) inputs when verifying ψ1, ψ2 and ψ3 respectively. Transient stimula-
tion [119] (left), two rounds of transient stimulation [119] (center), sustained stimulation
(right).
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4.6.2 Extrinsic apoptosis reaction model

The extrinsic apoptosis reaction model (EARM) is an ODE model of apoptosis in re-

sponse to the death ligand TRAIL. Several versions of the model were published in

recent years, and the model has been used to classify cell types based on the apoptotic

process, to study cell-cell variability due to varying initial conditions, and variability

due to stochastic dynamics [138, 139, 140, 141, 142]. The work in [139] is specifically

relevant, since there, model checking is used to characterize properties of the model

under a range of initial conditions. We will verify similar properties of the model here,

but under Bayesian parameter uncertainty. Here we use the version of the model called

EARM1.3, following [16, 140].

The EARM1.3 model is considerably large. It contains 69 dynamical variables rep-

resenting the active and inactive form of proteins and their complexes. We assume that

71 parameters are unknown, the set of unknown parameters being the ones representing

the kinetic rates of binding, release and catalysis.

TRAIL

Receptor

C8

FLIP

C3

C6

cPARP

XIAP

Mitochondrion

Cell membrane

BCL2

Bid

Smac

Apoptosome

Bax

Cyc

Pore

Bar

Figure 4.7: Simplified diagram of the EARM1.3 extrinsic apoptosis model.

Measurement data is available for the effector caspase reporter protein (EC-RP),

which is a metric for the direct initiation of cell death. The EC-RP data is normalized

to arbitrary units, and is compared to the model variable cPARP (cleaved PAPR protein)

using a Gaussian likelihood function. There is significant uncertainty in many of the

parameters (as also observed in [16]), partly due to the fact that measurements are noisy,
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and are only available for the single, most downstream species. Accordingly, there is also

variation in the dynamics of the internal, unobserved species. It is important to verify

that certain characteristic properties hold, even under the model uncertainty arising from

the limited data. In our setting, the EARM1.3 model is set up to represent HeLa cancer

cells. We choose values for initial conditions, parameter prior distributions, degradation

and synthesis rates following [140]. The ligand amount was set to 3000 units, which

corresponds to 50ng/ml of TRAIL treatment in HeLa cells.

Name Initial amount Name Initial amount
Receptor 1000 PARP 1000000

Flip 2000 Bid 60000
Caspase-8 10000 Mcl-1 20000

Bar 1000 Bax 80000
Caspase-3 10000 Bcl-2 30000
Caspase-6 10000 Pore 500000
Caspase-9 100000 CytoC m 500000

Apaf 100000 Smac 100000
XIAP 100000

Table 4.3: Initial amounts in the EARM1.3 pathway model.

According to [16], we use independent log-normal prior distributions for the param-

eters. The prior mean and variance for each parameter is shown in Table 4.4.

Name (µ, σ2) Name (µ, σ2) Name (µ, σ2) Name (µ, σ2)
kf1 (−6.4, 2.0) kr1 (−6.0, 2.0) kc1 (−2.0, 1.2) kf2 (−6.0, 2.0)
kr2 (−3.0, 2.0) kf3 (−7.0, 2.0) kr3 (−3.0, 2.0) kc3 (0.0, 1.2)
kf4 (−6.0, 2.0) kr4 (−3.0, 2.0) kf5 (−7.0, 2.0) kr5 (−3.0, 2.0)
kc5 (0.0, 1.2) kf6 (−7.0, 2.0) kr6 (−3.0, 2.0) kc6 (0.0, 1.2)
kf7 (−7.0, 2.0) kr7 (−3.0, 2.0) kc7 (0.0, 1.2) kf8 (−5.7, 2.0)
kr8 (−3.0, 2.0) kc8 (−1.0, 1.2) kf9 (−6.0, 2.0) kr9 (−3.0, 2.0)
kc9 (1.3, 1.2) kf10 (−7.0, 2.0) kr10 (−3.0, 2.0) kc10 (0.0, 1.2)
kf11 (−6.0, 2.0) kr11 (−3.0, 2.0) kf12 (−7.0, 2.0) kr12 (−3.0, 2.0)
kc12 (0.0, 1.2) kf13 (−2.0, 2.0) kr13 (0.0, 2.0) kf14 (−4.0, 2.0)
kr14 (−3.0, 2.0) kf15 (−3.7, 2.0) kr15 (−3.0, 2.0) kf16 (−4.0, 2.0)
kr16 (−3.0, 2.0) kf17 (−3.7, 2.0) kr17 (−3.0, 2.0) kf18 (−4.0, 2.0)
kr18 (−3.0, 2.0) kf19 (−4.0, 2.0) kr19 (−3.0, 2.0) kc19 (0.0, 1.2)
kf20 (−3.7, 2.0) kr20 (−3.0, 2.0) kc20 (1.0, 1.2) kf21 (−3.7, 2.0)
kr21 (−3.0, 2.0) kc21 (1.0, 1.2) kf22 (0.0, 2.0) kr22 (−2.0, 2.0)
kf23 (−6.3, 2.0) kr23 (−3.0, 2.0) kc23 (0.0, 1.2) kf24 (−7.3, 2.0)
kr24 (−3.0, 2.0) kf25 (−8.3, 2.0) kr25 (−3.0, 2.0) kc25 (0.0, 1.2)
kf26 (0.0, 2.0) kr26 (−2.0, 2.0) kf27 (−5.7, 2.0) kr27 (−3.0, 2.0)
kf28 (−5.2, 2.0) kr28 (−3.0, 2.0) kf31 (−3.0, 2.0)

Table 4.4: Prior distributions for the parameters of the EARM model. The priors are
log-normal, with variance σ2 and mean chosen as µ := log10 knom, the logarithm of the
nominal parameter values.

When running MCMC on the space of parameters, we propose steps in the loga-

rithmic space with σMH := 0.1875. With this choice, an acceptance rate of 0.15 − 0.2

89



was reached resulting in good mixing. We estimated the spectral gap of the Markov

chain according to Section 4.5.1 and obtained γ = 0.002. We then used our fixed sample

size and sequential hypothesis testing methods (with parameters r = 0.9, ε = 0.01 and

δ = 0.05) to verify properties of the model. Note that with these parameters the fix

sample size hypothesis test will always take 921035 samples, irrespective of the prop-

erty being verified and the choice of r. We therefore ran the MCMC procedure for a

total of 106 steps (with 10000 burn-in steps) and stored the sequence of parameters

for subsequent verification (see the decoupling method proposed in 4.5.2). The MCMC

procedure took less than 6 hours to run.

Time of apoptosis

First we were interested in verifying the timing of apoptosis. Apoptosis is marked by the

cleavage of PARP, and cells can be considered dead once the amount of cleaved PARP

(cPARP) reaches 50% of total PARP. With our initial conditions, this is at 5 · 105. The

property ϕ1a specifies that apoptosis will happen within 5 hours.

ϕ1a = F≤5[cPARP > 5 · 105]. (4.27)

The property was verified to be true. We next verified whether all cells were alive

within the first 3 hours.

ϕ1b = G≤3[cPARP < 5 · 105]. (4.28)

This, again, was verified to be true. From here we see that the time of apoptosis falls

between 3 and 5 hours after ligand treatment.

Effector caspase delay

In some cell lines the activity of the effector caspase almost immediately follows the

activity of the upstream initiator caspase. In other cases there is significant delay be-

tween the two, possibly due to the need for mitochondrial membrane permeabilization

(MOMP). We want to verify whether either the delayed effect or the immediate effect

is preserved under model uncertainty. We express the activity of the initiator caspase

through total cleaved Bid (tBid) reaching at least 10% of total Bid within 4 hours. Once

this happens, we specify that cPARP stays below 50% of total PARP for 1 hour, mean-
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ing that the effector caspase is not active during this time. The property is written as

follows:

ϕ2a = F≤4([tBid > 6000] ∧G≤1[cPARP < 5 · 105]). (4.29)

The property is verified to be false. We tested the opposite property, namely that cells

die within 1 hour of initiator caspase activity, expressed as

ϕ2b = F≤4([tBid > 6000] ∧ F≤1[cPARP > 5 · 105]). (4.30)

This property was also verified as false. Hence we find that neither the immediate,

nor the delayed effector caspase activity holds with high probability. In this case, our

limited information about parameter values (the model uncertainty) does not allow us

to conclude that either property holds motivating us to add more measurements to

constrain our parameters and predictions.

We added measurements available for IC-RP [120, 16], the initiator caspase reporter

protein. This reporter measures the activity of initiator caspases, and is a metric for the

formation of tBid. We then ran the MCMC procedure again, this time using both EC-RP

and IC-RP data. The results show that the new data was sufficient to reduce parameter

uncertainty in making predictions about effector caspase delay. The properties on the

time of apoptosis (ϕ1a and ϕ1b) still held true with at least 0.9 probability. Further,

property ϕ2a was now verified to be true. This indicates that there is, indeed, substantial

delay in effector caspase activity.

Next we were interested in whether the property of effector caspase delay holds

directly on the levels of the active caspases. This would require that EC-RP and IC-

RP data together are sufficient to constrain the uncertainty in caspase dynamics. We

formulated properties on the activity of Caspase-8 and Caspase-3 by assuming that the

caspases can be considered active once the active form (marked by asterisk) reaches 0.01

times the total amount of caspase. The property ϕ3 expresses that there is at least 1

hour of delay in Caspase-3 activation following Caspase-8 activation.

ϕ3 = F≤4([Caspase-8∗ > 100] ∧G≤1[Caspase-3∗ < 100]). (4.31)

Interestingly, ϕ3 could not be verified to hold true with high probability. The opposite

property (stating that there is no delay) similarly, could not be verified to hold true

with sufficiently high probability.
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In summary, we found that model predictions depend heavily on the amount and

nature of experimental data used to constrain model parameters. We could reliably pre-

dict the timing of cell death given EC-RP data. Adding IC-RP data constrained cleaved

Bid dynamics sufficiently to find that, with high probability, there is substantial delay

between initiator and effector caspase activity. However, the uncertainty in parameters

prevented us from making reliable predictions using the model about caspase dynamics.

More details about the dynamics of species appearing in the specified properties is

given in Appendix B.

4.7 Summary

In this chapter we proposed a method for performing statistical model checking on

pathway models under Bayesian parameter uncertainty. This enabled us to verify if

properties of interest expressed in temporal logic hold with respect to the parameter

posterior distribution. This is important in systems biology since due to the large

number of model parameters and limited, noisy experimental data, parameter values

cannot usually be constrained to a single value. Despite parameter uncertainty, certain

important properties of the model dynamics may be preserved, and our method enables

the verification of these properties.

The main technical challenge in performing verification is that obtaining independent

samples from the posterior is not possible. We relied on dependent realizations of the

system collected using a Markov chain Monte Carlo method. Using error bounds on the

finite sample size estimates obtained with MCMC, we derived hypothesis tests to decide

whether a temporal logic property holds with at least a given probability.

Our first case study on the JAK-STAT pathway showed that even though parameter

values cannot be well constrained, predictions made using the model (specifically the

dynamics of nuclear STAT protein) are reliable. We also found that the empirical

false decision rates for both the fixed sample size and sequential hypothesis tests are

in all cases below our derived error bounds. Next we turned to a large ODE model

of extrinsically triggered apoptosis. Here a very wide region of parameters could fit

measurement data, and the dynamics of many species showed large variability. We

found that properties involving species directly constrained by experimental data are

92



verified to hold with high probability. However, certain important properties of the

model could not be verified to hold due to variability in dynamics.

Here we considered dynamical systems described as systems of ODEs. It is possible

to generalize the methodology to continuous-time Markov chain (CTMC) and stochastic

differential equation (SDE) models [143, 60]. In these models the system state over time

is described by a stochastic process. By conditioning on observations, one can consider

the posterior distribution of the system state (and any unobserved parameters), and

verify the system’s behavior with respect to this distribution. MCMC methods have

been proposed for sampling the posterior in such models [144], and our probabilistic

verification methods could be adapted to this context. It will also be interesting to

examine the use of methods other than MCMC, such as particle filters or approximate

Bayesian computation [64], however, rigorous bounds on the required sample size in

these settings is still an open question.

Our case study on the extrinsic apoptosis model was set up to represent the typical

characteristics of HeLa cells. There are versions of the model for other cell lines such

as HCT115, SKW6.4 and T47D [139], and it would be interesting to verify properties

for these cell lines as well. More generally, the case study showed that our proposed

method works on large biochemical pathway models with real experimental data. This

motives us to apply the method on other pathway models where limited experimental

data could result in large uncertainty.
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Chapter 5

Learning dynamic Bayesian

network models of pathway

dynamics

5.1 Introduction

Changes in signal transduction are a key component of many complex diseases including

cancer. These changes are systemic in that their ground cause cannot usually be reduced

to a single element or even a single pathway. Some of the acquired characteristics of

cancer cells, including the ability to evade apoptosis and the insensitivity to anti-growth

signals can be linked to simultaneous changes in multiple signaling pathways [145]. A

key challenge is to understand the changes involved in the transformation to a diseased

state, and to find treatments to reverse or mitigate the effect of these changes.

Computational models are essential in combining prior knowledge with experimen-

tal data, and making predictions in this context [4, 1]. The modeling formalism chosen

needs to capture the dynamics of representative elements (usually the phosphorylation

of proteins) across several relevant pathways. The commonly used ordinary differential

equations (ODEs) formalism, which we have studied in Chapters 3 and 4, requires de-

tailed information about the reactions and their kinetics. It is difficult to capture effects

between elements that do not directly interact with each other, or when the mechanism

of the interaction is not well understood. In addition, ODE models do not capture the

stochasticity inherent in the dynamics of the underlying system. An alternative is to
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work with stochastic models whose dynamics are described in terms of continuous time

Markov chains [146, 147, 148]. However, these models are also based on molecular level

interactions and due to many unknown rate constants, it is computationally challenging

to deal with realistic biochemical networks. Scaling up is therefore restricted in both

the number of elements that can be modeled, and also in the portion of overall cellular

signaling covered. These properties highlight the need for a more abstract formalism

that can overcome these limitations.

Probabilistic graphical models including Bayesian networks and dynamic Bayesian

networks have received much attention as pathway models [12, 149, 150], primarily in

the context of gene regulatory networks. Here random variables (nodes in the graphical

model) are associated with the activity of a molecular species. In contrast with ODEs

and CTMCs, these models capture the interactions between elements as conditional

probability distributions, and do not require explicit knowledge of the underlying bio-

chemical mechanisms. Boolean and logical models offer a similar, abstract description of

relationships, but they are built on fixed, deterministic logical rules [47, 51]. Probabilis-

tic models will be able to better handle and incorporate several sources of uncertainty.

These include the noisiness of experimental data, the uncertainty arising from stochastic

dynamics, the variability among a population of cells, and also the uncertainty induced

by missing (unmodeled) elements.

In this chapter we propose dynamic Bayesian networks (DBNs) [10] as an appropriate

model of signal transduction in this context. We develop a novel method for learning

the parameters of dynamic Bayesian networks from experimental data, and then show

how the model can be used to make predictions. Specifically, we use the learned DBN

models to find “treatment” conditions that achieve specified system behaviors.

Via a separation of concerns, we assume the structure of the DBN is known. Specif-

ically, we assume that directed interactions between the species involved in the pathway

can be obtained using prior knowledge networks [151, 152]. We then tackle the problem

of learning the relevant parameters of the DBN that are induced by the conditional prob-

ability tables associated with the nodes of the DBN. Existing Bayesian network learning

algorithms [153, 49] rely on discretizing the data, and then counting the occurrence of

value combinations in the data to determine conditional probability parameters. This

approach will require a very large amount of data, and necessitates the discretization
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of otherwise continuous data. Further, the conditional probabilities whose associated

value combination did not appear in the data set will be undefined.

To address these shortcomings, we propose to learn DBN parameters using a con-

strained optimization approach. Linear constraints are used to incorporate prior knowl-

edge about the nature of interactions, which can be typically classified as activations or

inhibitions. The match to experimental data is captured by an objective function, which

can be posed as a linear expression. Procedurally, the learning starts from an initial

time slice, where the marginal probability distribution of each model variable is known.

We formulate and solve a linear programming problem for each time slice by using the

marginal distributions at the previous time slice. Linear programming (LP) is often

tractable even for large problems and is guaranteed to find a globally optimal solution

when it exists [154]. Previous work has proposed LP based approaches to structure

learning [155, 156] for gene regulatory networks in a deterministic setting. In contrast,

our method learns the dynamics of a probabilistic system model.

The second component of our work is a framework for finding treatment conditions

to achieve specified dynamics. During disease progression cells undergo a transforma-

tion from a healthy to a diseased state. An important aspect of this transformation

is a change in the way cells respond to external stimuli including growth factors and

inflammatory signals. Using targeted perturbations (for instance with drugs that inhibit

specific kinases) it is possible to reduce the effect of some of these changes, and this is

the basis of several existing molecular drugs [157]. Using a DBN model it is possible

to simulate the effect of such perturbations on elements of (possibly multiple) signaling

pathways. An important challenge is that the state of the DBN is described by a com-

plicated probability distribution. Consequently, we need to provide a way to formulate

the biologically relevant properties which should be attained through perturbations, and

show how to evaluate them on a DBN model.

We propose a framework based on a probabilistic temporal logic adapted for DBNs

following [158]. The logic can be used to specify dynamical properties such as: “AKT

reaches a high level with high probability under insulin stimulation”. These types of

statements are straightforward to construct and can be algorithmically verified when

written as a temporal logic formula. Model checking has been previously applied to

pathway models [71, 78] and also specifically to DBN models [158]. However, in these
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studies the goal was to assert and verify the properties of a model. Here, instead,

we exploit model checking to monitor the system dynamics under various treatment

conditions, and determine which conditions will ensure the specified temporal patterns.

If the set of all possible treatment conditions is discrete and small, we can exhaustively

search through them and report the ones satisfying a property. Otherwise, we can use

an optimization procedure on the space of possible treatments, and find ones with which

the number of satisfied properties is maximized.

We used our approach to model a network of signaling proteins involved in the

progression of liver cancer. This part of the work is in collaboration with the Department

of Systems Biology, Harvard Medical School, where all experiments were performed.

Protein phosphorylation data was collected for 12 key proteins taken from major cancer

pathways in 4 cell types. The cell types comprise human primary hepatocytes (HPH),

an immortalized hepatocyte cell line (HHL5), an early stage transformed hepatocyte line

(HepG2), and a late stage transformed hepatocyte cell line (Focus). These cell types

cover a range of stages from a healthy to a diseased, cancerous state.

The experimental data consists of measurements under multiple perturbations. Each

perturbation involves stimulation with one of five ligands, combined with one of five

small molecule drugs (kinase inhibitors). We have constructed a prior knowledge network

(PKN) based on the signaling pathway database GeneGO (www.genego.com) from which

we derived a DBN structure. We then used our approach to learn the parameters of a

DBN model for each cell type. We validated our models by training with only a part of

the available data and comparing predictions with the remaining, unseen data. Further,

a limited number of additional treatment combinations (multiple ligands combined with

multiple inhibitors) were measured for the HepG2 cell line, and our DBN model could

accurately predict activity under these conditions.

Subsequently, using our probabilistic model checking method we searched for com-

binations of kinase inhibitors that modify certain properties of diseased cells to match

those of healthy cells. This component of our work is motivated by increasing evidence

that combinations of drugs can be significantly more effective than individual drugs for

complex diseases including cancer [159]. Our approach can be adopted to search for

such treatments and guide experiments in promising directions.

We defined a set of 18 characteristic dynamical properties that are verified to hold on

98



the DBN representing healthy cells. For instance, in one of the properties, we specified

that the protein cJUN stays at a low level with high probability under TNFα stimulation.

This holds in healthy cells but does not hold in diseased cells, and in fact, none of the

single inhibitors can prevent sustained cJUN activation in Focus cells. We then searched

the set of possible combinations of kinase inhibitors and evaluated them with respect to

each of the 18 properties. Our analysis yielded interesting results, for instance, we found

that on the Focus cell line, with any single inhibitor at most 6 of the properties can be

satisfied. But when using the combination of 2 inhibitors, as much as 10 characteristic

properties of healthy cells can be met.

The rest of this chapter is organized as follows. In Section 5.2, we introduce dynamic

Bayesian networks as models of biological pathways and review previous work. We

show how parameters defining the dynamics of these models can be learned using linear

programming in Section 5.3. In Section 5.4, we propose a temporal logic and model

checking framework to evaluate treatment conditions using the DBN model. In Section

5.5 we present a case study of our approach on liver cancer cell lines, and conclude the

chapter with a summary.

5.2 Background and previous work

5.2.1 Bayesian and dynamic Bayesian networks

A technical introduction to Bayesian and dynamic Bayesian networks was given in Sec-

tion 2.2.2. Here we review their use in the context of modeling biological pathways.

Bayesian networks have been used extensively in computational biology [160], and

specifically in representing gene regulatory networks [149, 161, 10]. They are a natu-

ral choice in this context, since they allow the modeling of indirect and probabilistic

influences among genes of interest. The structure of the model gives an easy to inter-

pret, graphical representation of dependences (and conditional independences) between

genes, without the need to include elements related to the exact mechanism of the ef-

fect, including mRNA and proteins. BNs have also been used to capture the structure of

signaling pathways in [11]. Here phosphorylation was measured at a single cell level, on

proteins involved in T-cell signaling. The single-cell data under multiple perturbation

conditions enabled the learning of a Bayesian network structure among the proteins.
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One limitation of BNs is their static nature, that is, the fact they do not include a

time component. This precludes the modeling and prediction of time course dynamics.

Even though time-resolved data is often available, this information is not exploited, and

instead, activity or no activity is summarized by a single value (as in [11]). Another

important limitation of Bayesian networks is that their structure is limited to acyclic

graphs. It is not possible to model feedback loops – a very important characteristic

of biological pathways – using Bayesian networks. These limitations are resolved by

dynamic Bayesian networks, which we discuss next.

DBNs are a special class of Bayesian networks [50], which include an explicit time

component. Each variable is represented at multiple time points, and edges represent

dependencies among variables in time. A basic assumption about DBN structure when

modeling biological pathways is that edges point forward in time [162]. This is a natural

assumption when describing temporal physical processes. This implies that DBNs are

guaranteed to be acyclic, and therefore feedback effects can be modeled across time

points. The first work to propose using DBNs for learning gene regulatory pathways

was [162]. Here the structural expectation maximization (SEM) algorithm was used to

infer the topology of a synthetic network consisting of 5 genes. The ability to model

feedback loops and to use time-course data motivated many other works in which the

aim is to learn the structure of a gene regulatory network, including [163, 164, 165, 166]

and [167].

More recently, DBNs were applied in the context of protein signaling in [12]. Here

a conditional Gaussian parametrization of the variables is assumed, and with a specific

choice of priors, the posterior probability of possible network structures can be obtained

in a closed form. The method was used to learn the structure among signaling proteins in

a breast-cancer cell line using reverse-phase protein array data. The structure inference

revealed possible links among proteins that have not been known before.

In all the above works (both for BNs and DBNs), the goal was inferring the structure

of a pathway model. These studies can elucidate important topological information, but

do not consider DBNs as executable simulation models of pathway dynamics. A relevant

work in this context by Liu et al. [15] proposes learning a DBN as an approximate but

more efficient representation of an ODE model. The structure of the DBN is directly

derived from the ODE equations, and repeated simulation of the ODEs is performed to
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populate the conditional probability tables of the discrete DBN. Approximate inference

methods on the DBN can then be used to perform simulation, sensitivity analysis and

model checking [158]. An important limitation of this approach is that it requires an

existing ODE model, which is in itself a considerable effort to build. Further, even with

a very large set of generated ODE trajectories, many of the conditional probabilities in

the DBN will be undefined. Our approach differs from [15] in several aspects. First, here

we propose a method to learn conditional probabilities directly from experimental data

rather than from an existing dynamical model. Further, we do not rely on discretizing

and counting value combinations to determine conditional probability parameters. In-

stead we solve a constrained optimization problem in a way that the data is kept on its

original, continuous scale. A useful feature of the constrained optimization approach is

that through the imposed constraints, all entries in the conditional probability tables

will be set.

5.2.2 Identifying drug effects

Biological networks are redundant and key processes are often controlled by several

interacting pathways. Consequently, many diseases are difficult to treat using a drug

targeting a single protein or gene. One possible solution is to use multiple drugs tar-

geted at distinct pathway elements to achieve a coordinated effect [168]. However,

experimentally evaluating such combinations is an arduous and expensive process due

to the exponential blowup of possible combinations. Computational models of pathways

could play a very important role in predicting responses to combination treatments, and

several recent works have attempted to do this. A structure learning approach is con-

sidered in [169] and [170], where the effect of a set of cancer drugs is learned through the

removal of edges from a signaling network model. This reveals interesting differences

in the effect of each drug, however, does not provide a predictive, dynamical model of

combinatorial drug effects. In [171] and [172], a generic template of ODE based cou-

pling is proposed between proteins. In this model, the time derivative of a protein’s

concentration depends on a non-linear transfer function of the linear combination of its

parents’ concentration levels. The goal is to find an optimal model structure with respect

to steady-state experimental data. The model is then used to predict the steady-state

response under multiple perturbations. However, predicting transient dynamics under
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perturbations are not considered. Further, a systematic way of finding combinations

meeting given criteria is also missing. In Section 5.4 we will address these shortcomings.

5.3 Learning DBN parameters using linear programming

In this section we describe our method to learn the parameters of a DBN model from

experimental data.

5.3.1 Structure from prior knowledge

First we assume that a signed prior knowledge network (PKN) is available. The PKN is

defined on a set S = {S1, S2, . . . , SN} of N molecular species of interest. The PKN gives

a signed parenthood relationship between these species via the function PA : S → 2R,

where R = S × {+,−}. If (Sj ,+) (or (Sj ,−)) is in PA(Si) then this indicates that

Si acts directly as an activator (or inhibitor) on Si. Such structural information is

available from several free and commercial interaction network databases such as KEGG

[173], GeneGo (www.genego.com), Cell Signal Technology (www.cellsignal.com) Science

Database of Cell Signaling (www.stke.sciencemag.org), and the NCI Pathway Interaction

Database [174]. All of these databases also provide information on the qualitative nature

of connections, including labels for activation or inhibition.

The next step is constructing a DBN structure from the PKN. We assume that the

structure of the DBN does not change over time, that is, the parenthood relationship of

the PKN is kept through all time points of interest. This could be a strong assumption

when considering long-timescale processes such as gene expression during development

[175]. However, it is reasonable when modeling signal transduction due to the shorter

time scale of interest.

The DBN is constructed by representing the set of species S as random variables at a

finite, discrete set of time points 0, 1, . . . , T . At each time point t the node set will consist

of St = {Sti | 1 ≤ i ≤ N}. The edges of the DBN are defined through the parenthood

relationships, namely, (St−1
j , Sti ) ∈ E iff (Sj ,−) ∈ PA(Si) or (Sj ,+) ∈ PA(Si). We also

include edges from a variable to itself, that is, (St−1
i , Sti ) ∈ E, for all 1 ≤ i ≤ N . These

edges (also called persistence edges in [162]) are used to express that once a species is

activated, it may remain active (or deactivate slowly) irrespective of its parents. We
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always set persistence edges with a positive sign.

A key assumption made when constructing a DBN is that edges only span between

neighboring time points t − 1 to t. This is a first-order Markov assumption on the

dynamics of the underlying process. Namely, it implies St+1 |= St−1|St, which, with the

parenthood relationship, is equivalent to the assumption that for each node Sti ,

St+1
i |= (St−1,St\PA(Sti )) | PA(Sti ). (5.1)

This will not hold if species other than the parents of Sti influence its value when going

from t − 1 to t. Therefore the accuracy of the DBN representation relies on choosing

time points sufficiently close to each other. If measurement times are far apart compared

to the speed of underlying dynamics, one solution is to use interpolation on the data

points, as described in Section 5.3.5.

Example We use a small running example to illustrate some aspects of our approach.

The model includes 4 proteins involved in epidermal growth factor (EGF) signaling. The

PKN for the model is shown in Figure 5.1(a), and the corresponding DBN in Figure

5.1(b). The set of species in the PKN are S = {EGF, SOS, MEK, ERK}, and the par-

enthood relationship describes, that, for instance, PA(SOS) = {(EGF,+), (ERK,−)}.

In the DBN representation, random variables are introduced at each time point, for in-

stance, at t = 1, we have nodes S1 = {EGF1,SOS1,MEK1,ERK1}. The parenthood re-

lationship is extended to the DBN as, for instance, PA(SOS2) = {SOS1,EGF1,ERK1}.

The first-order Markov assumption imposed by the DBN would imply that, for instance,

MEK1 |= EGF0, and MEK2 |= EGF0 | (SOS1,MEK1).

5.3.2 Parametrization and constraints

The concentration level of each species in the DBN is represented as a discrete value

taken from a finite set. For convenience we assume all species take values from V =

{v1, v2, . . . , vK}, where V is a set of non-negative numbers with v1 < v2 < . . . < vK .

However, our construction will naturally hold when variables take values from different

discrete sets. With these choices, the parameters of the DBN can be summarized as a

set of conditional probability tables (CPTs), one for each node.

The CPT for the node Sti is denoted Θt
i, 1 ≤ t ≤ T , and it describes the probability
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Figure 5.1: The prior knowledge network (PKN) and the derived dynamic Bayesian
network (DBN) representation of a small pathway.

of Sti taking a value in V , given a value assignment to its parents. As suggested by the

notation, CPTs are assumed to be time-variant, meaning that, in general, Θt
i will not

be equal to Θt′
i if t 6= t′. This is important especially if the time steps between available

measurements are not uniform. The entries in the CPTs can be written as Θt
i = {θti,j,k},

where θti,j,k = P (Sti = vk | PA(Sti ) = πi,j). Here πi,j is the jth possible value assignment

to the parents of Si, and j ∈ {1, . . . ,K |PA(Si)|}, i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}. We

will naturally require that
∑K

k=1 θ
t
i,j,k = 1.

For the variable Si, the number of parent value assignments (we will also refer to

these as parent configurations) is K |PA(Si)|, and for each parent configuration the CPT

contains the entries of a conditional probability distribution described by K values. The

total number of parameters in one time slice of the DBN is therefore
∑N

i=1K
|PA(Si)|+1.

The number of parameters in each CPT grows exponentially with the number of parents,

but does not depend on the overall number of variables or time steps. This highlights

the fact that a sparse DBN structure (in which a node has few parents compared to the

overall number of nodes) is a succinct representation of a large stochastic model.

A key idea in our approach is exploiting the labels in the PKN to impose constraints

on our DBN parameters. We call these constraints monotonicity constraints, and base

them on the following insights. A positive or activating relationship between a parent

species and its target implies that if the parent takes on a higher value, the target’s

value should not decrease. Conversely, for a negative or inhibitory relationship, the

parent’s higher value implies that the target’s value should not increase. In the context
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of the DBN, we impose these constraints on the expected value of each species at time

t conditioned on the value of its parents at time t− 1. For instance, suppose that Y is

a parent of X with a positive relationship, and suppose that V = {L,H}, with L < H.

Then we demand that

E(Xt|Y t−1 = L) ≤ E(Xt|Y t−1 = H), (5.2)

capturing the intuition that as the concentration level of Y increases the concentration

level of X ought to increase (or at least not decrease). The conditional expected values

are easy to derive from the CPT entries, since

E(Sti |PA(Sti ) = πi,j) =
K∑
k=1

vkP (Sti = vk|PA(Sti ) = πi,j) =
K∑
k=1

vkθ
t
i,j,k. (5.3)

More systematically, we can define a partial ordering relation on the set of parent

configurations via:

πi,j1 4 πi,j2 iff ∀Y ∈ PA(Si)


πi,j1(Y ) ≤ πi,j2(Y ) and Y is an activator, or

πi,j1(Y ) ≥ πi,j2(Y ) and Y is an inhibitor.

(5.4)

Here we use the notation πi,j(Y ) ∈ V to refer to the value which is assigned to Y by the

parent configuration πi,j .

Example (continued) We continue the running example from the previous section.

Assume that the set V contains two values, v1 = 0 and v2 = 1, and so K = 2. The CPT

of MEK1 (in generic notation S1
3) would consist of 8 entries of the form

θ1
311 = P

(
MEK1 = 0|MEK0 = 0,SOS0 = 0

)
θ1
312 = P

(
MEK1 = 1|MEK0 = 0,SOS0 = 0

)
θ1
321 = P

(
MEK1 = 0|MEK0 = 1,SOS0 = 0

)
· · ·

θ1
342 = P

(
MEK1 = 1|MEK0 = 1, SOS0 = 1

)
.

Here, for instance, parent configuration π3,1 corresponds to
(
MEK0 = 0, SOS0 = 0

)
and

π3,2 to
(
MEK0 = 1, SOS0 = 0

)
. MEK has a positive edge from both of its parents, and

the monotonicity constraints will give a partial ordering on the parent configurations as

π3,1 4 π3,2, π3,1 4 π3,3, π3,2 4 π3,4 and π3,3 4 π3,4. The relationship between π3,2 and

π3,3 is not constrained. The partial ordering is described by a total of 4 monotonicity

constraints. In terms of the CPT entries, for example, the relationship π3,1 4 π3,2 is
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expressed as the constraint

P
(
MEK1 = 0|MEK0 = 0,SOS0 = 0

)
· 0 + P

(
MEK1 = 1|MEK0 = 0, SOS0 = 0

)
· 1 ≤

P
(
MEK1 = 0|MEK0 = 1,SOS0 = 0

)
· 0 + P

(
MEK1 = 1|MEK0 = 1, SOS0 = 0

)
· 1.

5.3.3 Experimental data

Next, we assume that a set of measurement data D is available, containing measurements

for each modeled species Si ∈ S. The data set consists of observations of each species Si

at time points 1, . . . , T , under C ≥ 1 experimental conditions, henceD is a data matrix of

shape N×T×C. We denote by Dt
i,c the measurement of Si at time t under experimental

condition c ∈ {1, . . . , C}. Each experimental condition can be characterized by (i) a set

of initial conditions (marginals) and (ii) a set of clamped nodes. The initial conditions

describe the probability distribution of variables at the initial time point. The initial

joint distribution is usually uncorrelated, and can be simply represented as a product of

marginal distributions for each node. Clamped nodes have a fixed marginal distribution

through the whole duration of the experiment. For instance, an inhibited node may

be represented by a marginal distribution taking a low value with probability 1. We

also allow for repeats of the same experiment by simply considering each repeat as

an experimental condition, but with identical initial conditions and clamped nodes.

Importantly, we assume that the experimental data is normalized (or the set of discrete

value V is set) in a way that guarantees v1 ≤ Dt
i,c ≤ vK for all i, t, and c. Since the

data is on a continuous scale between v1 and vK , it makes sense to draw correspondence

between the expected value of Sti under experimental condition c and the data point

Dt
i,c. In the next section we describe an optimization problem that achieves this.

Example (continued) A dataset of our running example could consist of two exper-

imental conditions (C = 2), corresponding to the existence or lack of EGF stimulation.

This can be interpreted on the DBN by having the marginal of EGF clamped to a

high value (mt
1,1(0) = 0,mt

1,1(1) = 1, t ∈ {0, . . . , T}) in the first condition, and to a

low value (mt
1,2(0) = 1,mt

1,2(1) = 0, t ∈ {0, . . . , T}) in the second condition. In both

conditions, the initial distributions of the remaining three species could be set to a low

value: m0
i,c(0) = 1,m0

i,c(1) = 0, i ∈ {2, 3, 4}, c ∈ {1, 2}.
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5.3.4 Parameter optimization

Our goal is to find parameters for our DBN model such that the expected values of

species, as inferred from the DBN, match the experimental data. Taken together with

the monotonicity constraints, we can pose this as a constrained optimization problem.

The main idea behind our parameter optimization is to start from the initial marginals

defined by the experimental conditions, and iteratively (i) learn the parameters for the

next time point based on the data for that time point, and then (ii) infer the marginals

for each experimental condition at the next time point to be able to continue with step

(i). This is an iterative process, which, after T steps will give us the parameters at all

time steps.

Since both the monotonicity constraints and the fit to data will be defined in terms of

expected values, it makes sense to pose the optimization problem in terms of conditional

expectations rather than directly the CPT entries, which are conditional probabilities.

We denote the conditional expectations as θti,j = E(Sti | PA(Sti ) = πi,j), and draw the

connection between these parameters and the CPT entries as

θti,j :=

K∑
k=1

vkθ
t
i,j,k. (5.5)

Inductively assume we have marginals available at t− 1 with t ≥ 1. (Note that the

initial marginals (t = 0) are fully defined by the experimental conditions.) Each marginal

will be a vector describing the probability distribution of node Sti for each experimental

condition c, and is denoted as mt−1
i,c := (mt−1

i,c (v1), . . . ,mt−1
i,c (vK)). Through the (yet

unknown) parameters θti,j , we can project these marginals, approximately, to expected

values at time step t through the formula

E(Sti,c) =

K|PA(Si)|∑
j=1

θti,jPc(PA(Sti ) = πi,j) (5.6)

≈
K|PA(Si)|∑

j=1

θti,j
∏

S`∈PA(Si)

mt−1
`,c (πi,j(S`)). (5.7)

In the first equation Pc(PA(Sti ) = πi,j) expresses the joint probability of the parent

configuration πi,j under experimental condition c. The second equation then uses an as-

sumption of independence to approximate this joint probability by a product of marginal

probabilities, where mt−1
`,c (πi,j(S`)) is the marginal probability assigned to S` ∈ PA(Si)
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at time t − 1 by the configuration πi,j . The approximation of joint probabilities by a

product of marginals also appears in the widely used factored frontier (FF) algorithm

[176], and is shown to often work well in practice. This approximation is necessary for

large models, since representing the joint distribution would be intractable.

We are now ready to formulate the constrained optimization problem for time t by

collecting what we have discussed so far, as follows:

Boundary constraints: ∀i, j : v1 ≤ θti,j ≤ vK ,

Monotonicity constraints: ∀i, j1, j2 for which πi,j1 4 πi,j2 : θti,j1 ≤ θ
t
i,j2 ,

Objective value: F t =
N∑
i=1

C∑
c=1

d
(
Eti,c , D

t
i,c

)
=

N∑
i=1

C∑
c=1

d

K|PA(Si)|∑
j=1

θti,j
∏

S`∈PA(Si)

mt−1
`,c (πi,j(S`)) , D

t
i,c


(5.8)

Here d is a distance measure between a data point and an expected value. Notice that the

constraints are linear, and the expected value is also a linear function of the parameters.

Therefore, if we choose d to be the L1 distance, the problem can be expressed as a linear

programming (LP) problem. It is also possible to choose the L2 distance, in which

case the problem becomes one of quadratic programming (QP), or more specifically, a

linearly constrained least-squares problem. Section 5.5.4 will show that the predictive

performance of using either method is similar. Therefore we focus on LP, since it can

be solved more efficiently.

The general form of linear programming is

minimize fTx

subject to Ax ≤ b,
(5.9)

where x is a vector of unknown variables (corresponding to the vector of parameters

θti,j in our case), the coefficients in f correspond to the objective function, and A and b

specify the constraints. The boundary and monotonicity constraints in (5.8) are trivially

expressed through A and b. We now show how the objective value can be expressed as
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a linear function. The objective value, using the L1 distance, is

F t =

N∑
i=1

C∑
c=1

∣∣Eti,c −Dt
i,c

∣∣ . (5.10)

This can be expressed as a linear function by using slack variables yti,c (see also [154]).

Namely, we can add the constraints

yti,c ≥ Eti,c −Dt
i,c and (5.11)

yti,c ≥ Dt
i,c − Eti,c, (5.12)

and use the objective value F
′t :=

∑N
i=1

∑C
c=1 y

t
i,c.

The linear programming problem can be solved efficiently using standard algorithms

available in many free and commercial software packages (for more details, see Section

5.3.5). The solution of the optimization problem gives us the values of conditional

expected value parameters θti,j . We now need to reconstruct conditional distributions

from these values. This is an ill-posed problem for K ≥ 2, since the distribution will

have K entries, while the expected value is a single scalar. To resolve this, we use the

minimum variance criterion, which finds the distribution with minimum variance, whose

expected value is consistent with the conditional expectation. That is, we set θti,j,k such

that

K∑
k=1

vkθ
t
i,j,k = θti,j and (5.13)

K∑
k=1

(vk − θti,j)2θti,j,k is minimized .

The minimum variance criterion is reasonable, since, lacking information about the exact

shape of the distribution, we are characterizing it by its first moment.

Having obtained θti,j,k, for all i, j, k, we can now infer marginals at time t from time

t− 1 using the same assumptions as in equation (5.6) as

mt
i,c(vk) :=

K|PA(Si)|∑
j=1

θti,j,k
∏

S`∈PA(Si)

mt−1
`,c (πi,j(S`)). (5.14)

Since we now have available all the marginals at time t for experimental conditions

c ∈ {1, . . . , C}, we can proceed to the next time step to learn θt+1
i,j,k, and continue

iteratively up to the last time T .
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5.3.5 Properties and extensions

Properties of the LP problems

We observe that in (5.8) the constraints on the parameters are independent for each

species. Further, the objective function is a summation of species-wise objective func-

tions. This is because the optimization is solved step by step in time, hence the pa-

rameters, and the marginals for each condition at the previous time point are fixed.

Therefore, in the present construction, the parameters can be learned locally for each

species. In fact, at each time point t, we can solve the N local LP problems in parallel.

This decomposability is also crucial, since it means that the size of each LP problem

is locally determined. Namely, for each node, the LP will be of exponential size in the

number of parents but independent of the overall number of nodes.

Proposition 1. (1) The number of variables (other than slack variables) solved for

by the decomposed LP problem for Sti is K |PA(Si)|. (2) The number of monotonicity

constraints needed to fully specify the partial ordering is |PA(Si)|K |PA(Si)|−1(K − 1).

Proof. Part (1) holds since the variables in the LP problem are the set of conditional

expected values {θti,j}. There is one such expected value for each parent configuration,

the total number of which is K |PA(Si)|. For part (2), consider that with all other parents

fixed, a parent will have K − 1 monotonicity constraints between its value assignments

v1, v2, . . . , vK , and The number of possible fixed configurations for all other parents is

K |PA(Si)|−1.

In a pathway, the number of species that directly influence any particular species

is often limited and thus the graph of DBN will usually be sparsely connected. As

seen from Proposition 1 each individual LP problem will remain tractable even for large

pathways.

We can also easily see that the LP problem for each Sti will always have a solution.

Proposition 2. The LP problem posed at node Sti will always be feasible and have an

optimal solution.

Proof. The LP problem is feasible if there exists a value assignment to the unknown

variables which satisfy all the constraints. In our case, simply setting θti,j = ν, where

ν is a constant such that v1 ≤ ν ≤ vK , will trivially satisfy both the boundary and
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monotonicity constraints. The slack variables will also always be feasible simply by

yti,c ≥ |Dt
i,c − Eti,c|. Further, since the slack variables are bounded from below, and we

are solving a minimization problem on the sum of slack variables, an optimal solution

is guaranteed to exist.

Solving the LP problems

Any optimal solution to a feasible LP problem is also globally optimal, and can be

found in polynomial time [154]. Several algorithms including the simplex method and

interior point methods have been proposed and implemented in tools to solve large LP

problems efficiently in practice. It is often the case that more than one optimal solution

exists for the optimization problem. One shortcoming of LP solvers is that they only

return a single optimal solution. Therefore our learned DBN will be based on only one

of potentially many existing solutions.

The most important free LP solvers include lp solve [177] and the GNU Linear

Programming Kit (www.gnu.org). Several commercial solvers including IBM CPLEX

(www.ibm.com), and ones included with software such as MATLAB (www.mathworks.com)

are also available. Benchmarks show that current solvers can handle on the order of 106

variables and constraints [178].

Interpolation

Until now, we have taken the time slices of the DBN model to correspond to the time

points where measurement data is available. However, effects in the underlying system

could propagate at a speed which is not necessarily consistent with the time points when

measurement data is obtained. The first-order Markov assumption may be too restric-

tive to adequately represent the system dynamics. This can be resolved by introducing

additional, intermediate time slices in the DBN. By introducing these additional time

slices, variables that are correlated in the underlying system can be correlated in the

DBN as well. However, data is needed to formulate the objective function of the opti-

mization problem at each time step. Therefore we provide a simple interpolation method

by which the formulation of an objective function becomes possible at intermediate time

steps.

Based on the DBN structure we first compute Tcorr, the number of time steps after
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which all variables that can get correlated will be correlated. Between any two time

points t and t+ 1 at which we have data, we introduce Tcorr − 1 additional time points

and use linearly interpolated values as data for these time points using the actual data

values available at t and t+1. Suppose we introduce the time points (τ, τ+1, . . . , τ+Tcorr)

to replace (t, t+ 1). Then the associated data points are set as

D̃τ+k
i,c = Dt

i,c +
k

Tcorr
(Dt+1

i,c −D
t
i,c) for 0 ≤ k ≤ Tcorr. (5.15)

Using these data points, we can formulate a sequence of LP problems to learn the

DBN parameters.

Example (continued) In our running example, Tcorr = 3, since EGF0 will be first

correlated with ERK3 through the path EGF0 → SOS1 → MEK2 → ERK3.

5.4 Treatment evaluation using model checking

The second main contribution of this chapter is developing the means for identifying

treatment conditions using which the dynamics of the pathways under study can be

reshaped. Treatment conditions typically consist of the addition of ligands or inhibitors,

which stimulate or block certain pathway components. Under treatment conditions,

pathways will change their dynamics in response to internal or environmental cues. It is

important to predict these changes computationally, since the set of possible treatments

is usually combinatorial, and only a small subset can be studied experimentally. If we

are able to find possibly relevant treatments with the help of the model, experiments

can be focused towards verifying this limited set of conditions.

Treatments on a pathway can be translated to DBN models through imposing ini-

tial conditions and clamping nodes. Having learned a DBN model using the method

described in Section 5.4, we can use inference to recover the state distribution under

various treatments. However, characterizing the “behavior” of a DBN model is chal-

lenging since the system state is described by a sequence of probability distributions in

time. A language or formalism is needed to make statements about the state trajectory.

This formalism needs to be interpretable on a DBN, and needs to be able to express bi-

ologically relevant behavior types. Here we propose to use a probabilistic temporal logic

to make statements about the temporal evolutions of the probabilistic system state.
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In a discrete DBN the marginal distribution of variables can be efficiently recovered

using inference. This motivates us to make temporal logic statements about the state

evolution of the system through its sequence of marginal distributions. An appropriate

temporal logic will therefore be interpreted on a sequence of probability distributions.

This is different from the logic used in Chapter 4 (PBLTL) in that here we will make

statements about the marginal distributions of variables, rather than individual realiza-

tions of the state dynamics. Such logics have been developed before in the literature

for Markov chains [179, 180], and also specifically for DBNs [158]. We adopt here a

probabilistic bounded linear temporal logic (PBL) from [158]. By making statements

explicitly on marginal distributions, PBL is well suited for performing model checking

on DBNs.

5.4.1 Probabilistic temporal logic for the DBN

The atomic propositions of PBL are defined as (i, v)#r, where i refers to the species

Si ∈ S, v ∈ V , # ∈ {≤,≥} and r is a probability threshold in (0, 1). The atomic

proposition (i, v) ≥ r is satisfied at time t if and only if mt
i(v) ≥ r (similarly for

(i, v) ≤ r), where mt
i(v) is the marginal probability of species Si being at level v at time

t.

The formulas of PBL are generated by the following syntax:

• The truth constants true and false are formulas.

• Every atomic proposition (i, v)#r is a formula.

• If ϕ and ϕ′ are formulas then so are ¬ϕ and ϕ ∨ ϕ′.

• If ϕ and ϕ′ are formulas then so is ϕUϕ′ .

The temporal operators G (always from now), F (some time from now) can be derived as

Fϕ = trueUϕ; Gϕ = ¬F(¬ϕ). The logical operators ∧,⇒ and⇔ are defined as follows.

ϕ∧ϕ′ = ¬(¬ϕ∨¬ϕ′), (ϕ⇒ ϕ′) = (¬ϕ∨ϕ′), and (ϕ⇔ ϕ′) = (ϕ⇒ ϕ′)∧ (ϕ′ ⇒ ϕ). This

syntax allow us to express a range of system dynamics patterns as illustrated in Table

5.1.

The formulas of PBL are interpreted on the sequence of marginal distribution vectors

σ = s0s1 . . . sT of the DBN. Here the state st = (mt
1,m

t
2, . . . ,m

t
n) is a vector of marginal
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Required dynamics Formula Explanation
ERK is not activated G((ERK, vL) ≥ 0.8) ERK is always at a

low level with high
probability.

ERK is transiently acti-
vated

F((ERK, vH) ≥ 0.8)
∧F(G((ERK, vL) ≥ 0.8))

ERK reaches a high level
after which it remains at
a low level.

ERK is activated and sus-
tained

F(G((ERK, vH) ≥ 0.8)) ERK reaches a high level
and stays at a high level.

Table 5.1: Examples of PBL properties for the dynamics of the protein ERK. Here
V := {vL, vH}, and vL denotes a low value and vH a high value.

distribution for each variable in Sti ∈ St, 1 ≤ i ≤ N . We let σ(t) = st and st(i) = mt
i.

We let σ(t) |= ϕ denote that ϕ holds at t, and define its semantics as follows.

• σ(t) |= (i, v) ≥, r iff mt
i(v) ≥ r,

• σ(t) |= (i, v) ≤, r iff mt
i(v) ≤ r,

• σ(t) |= ¬φ iff σ(t) 6|= ϕ

• σ(t) |= φ ∨ φ′ iff σ(t) |= ϕ or σ(t) |= ϕ′

• σ(t) |= Oϕ iff σ(t+ 1) |= ϕ,

• σ(t) |= ϕUϕ′ iff ∃t′ : t ≤ t′ ≤ T and σ(t′) |= ϕ′, and ∀t′′ : t ≤ t′′ < t′, σ(t′′) |= ϕ.

Using the above inductive definition, we say that the DBN D meets the specifications

ϕ iff σ(0) |= ϕ, and we denote this as D |= ϕ.

The task of a model checker is to determine whether a specification ϕ is met. Given

a sequence of marginals σ and a specification ϕ the model checker returns either true

or false depending on whether σ(0) |= ϕ. We perform model checking in an on-line

fashion, in which it is possible to stop early if the truthhood of the property can already

be determined. Such an on-line model checker is presented in [158], which we refer to

for more details.

In our setting one performs inference on the DBN to reproduce the sequence of

marginals, which the model checker can verify. We now look at inference algorithms on

the DBN.
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5.4.2 Inference on the DBN

Inference on a DBN involves recovering the joint probability distribution of the set of

variables at each time point. The joint distribution at a given time point is called the

belief state. Exact inference on DBNs is intractable in general [50, 181]. In fact, for

DBNs with many variables, even representing the belief state is intractable, since with

N variables, KN entries are needed to represent it. Approximate inference algorithms

rely on breaking up the belief state into a product of lower dimensional distributions.

The Boyen-Koller (BK) algorithm [181] propagates joint distributions on smaller clusters

of variables, whose product is a surrogate for the full belief state. The factored frontier

(FF) algorithm [50] uses a cruder representation of the belief state, by only maintaining

the marginal distribution of each node. The belief state is then approximated by the

product of individual marginals. The marginals at the previous time slice are mapped

directly to the ones at the next time slice, without reconstructing the full belief state.

Recently a parameterized version of FF called hybrid FF (HFF) was proposed [182].

The idea behind HFF is to maintain a limited number of spikes corresponding to entries

in the full belief state, resulting in improved accuracy.

Here we use the factored frontier algorithm (FF) since it is efficient for large pathway

models. This is crucial, since we will need to use inference repeatedly, under a large

number of conditions, when searching for treatments. We now describe the FF algorithm

in more detail.

We denote the marginal distribution of the variable Sti as mt
i with mt

i(v) denoting

the (marginal) probability of Sti assuming the value v, with v ∈ V . Given the marginal

distribution of species at the initial time point t = 0, the task is to infer the marginals at

the time points t = 1, 2, . . . , T . The approximate marginals FF computes are denoted as

m̂t
i. Starting with m̂0

i = m0
i , FF uses the following scheme to propagate the approximate

marginals:

m̂t
i(v) =

K|PA(Si)|∑
j=1

P (Sti = v|PA(Si) = πi,j)
∏

S`∈PA(Si)

m̂t−1
` (πi,j(S`)) (5.16)

=

K|PA(Si)|∑
j=1

θti,j,k
∏

S`∈PA(Si)

m̂t−1
` (πi,j(S`)).

Recall that πi,j(S`) ∈ V denotes the value assigned to S` ∈ PA(Si) in the parent
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configuration πi,j , and the conditional probability parameters θti,j,k are obtained using

the method outlined in Section 5.3.

The set of marginals thus computed can be viewed to be an approximate, factored

representation of the joint system state and can be used to monitor the evolution of the

system state over time.

5.4.3 Treatment evaluation

Model checking is commonly used to verify inherent properties of a model. Here we

propose to use model checking as a method to monitor the behavior of a DBN model

under multiple conditions, and find ones with which a specified property is met. A

treatment condition can be characterized by clamping the marginal distribution of a

subset of nodes to an externally set value. For instance, we can model the effect of a

molecular inhibitor by clamping its target to a marginal taking a low value with high

probability. Alternatively, if the inhibitor itself is a node in the DBN, one can set its

marginal to one that assigns high probability to a high value.

More generally, assume that we can clamp a subset of species Z ⊂ S, and let Z =

{Z1, Z2, . . . , Zm}. The clamped species can be associated with their corresponding DBN

nodes in the obvious way. A treatment condition can be described by the set of externally

fixed marginals MZ := {mt
Zi
}, 1 ≤ i ≤ m, 0 ≤ t ≤ T . There are technical restrictions

on the marginals, namely, we require mt
Zi

(v) ≥ 0 and
∑

v∈V m
t
Zi

(v) = 1.

The effect of a treatment can be evaluated by performing inference on the DBN

with respect to MZ . In Section 5.4.1 we defined how D |= ϕ (that is, that the DBN D

meets the property ϕ) can be determined using the sequence of marginals for each time

point. We will denote the DBN model subject to the treatment condition MZ as DMZ
.

Consequently, we will say that the DBN meets the property ϕ under the treatment

MZ if the marginals, when performing inference under MZ , meet ϕ. We denote this

as DMZ
|= ϕ. This gives the conceptual basis of evaluating treatment conditions with

respect to dynamical properties on a DBN.

Example (continued from Section 5.3) Recall the example DBN model in Figure

5.1. Assume that we have inhibitors available for SOS or MEK (Z = {SOS,MEK}).

One treatment condition could involve inhibiting MEK alone (Z ′ = {MEK}). This
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can be achieved by clamping MEK to a low value with high probability, that is, MZ′ is

defined as setting m0
MEK(0) := 1,m0

MEK(1) := 0, and then letting mt
MEK := mt−1

MEK for

t = 1, 2, . . . , T . It is then possible to verify if DMZ′ |= ϕ, where ϕ is a PBL property.

5.4.4 Treatment finding

Having the means to evaluate the effect of a given treatment, we can also pose the inverse

problem of finding a treatment with given properties. There will usually be several prop-

erties of interest ϕ1, ϕ2, . . . , ϕL which should be satisfied using a treatment condition.

Our goal will be to look for treatments that maximize the number of satisfied proper-

ties. Until now we have considered combinations of both ligand stimuli and molecular

inhibitors as possible treatment conditions. However, here it makes sense to focus only

on inhibitors, since stimulation by ligands is controlled by the cell’s environment, and

usually not part of a drug treatment regime. Further, we will assume that if a node is

clamped, its marginal is set to a pre-determined fixed value and the marginal entries

are not, themselves, subject to optimization. With these assumptions a treatment will

be fully characterized by Z ′ ⊆ Z, since the marginals MZ′ will be a fix function of Z ′.

Our goal will now be to

find Z ′ ⊆ Z

such that
L∑
i=1

DMZ′ |= ϕi is maximized. (5.17)

In other words, we are searching for the subset of clamped nodes with which the

highest number of properties are satisfied. There are other constraints we can include

in the optimization problem. For instance, we can restrict the maximum number of

clamped nodes to a fixed value (e.g. require that |Z ′| = 2 to search for the best pair of

clamped nodes).

If the set of possible treatment conditions is low, an exhaustive search over the

subsets of Z will be possible. Otherwise we can use a global optimization method on

the discrete search space to find the best treatment. A treatment condition can be

encoded as a binary vector of length |Z|, where the ith component of the vector is 1 iff

Zi ∈ Z ′. Many discrete search methods exist that can solve a maximization problem

on such a vector, including tabu search [183] and genetic algorithms [57]. More recently

a discrete version of the Hooke-Jeeves method was used to perform optimization on
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pathway models [158] and can also be applied here.

5.5 Modeling signaling in liver cancer cell lines

In this section we apply our proposed method to model signaling in the progression of

liver cancer [184, 43]. We learn 4 DBN models corresponding to 4 cell types ranging from

healthy to late stage cancer cells. We use cross validation and additional experiments

to assess if our models can predict the dynamics of protein activity under previously

unseen perturbations.

Then we use our treatment evaluation formalism to specify characteristic properties

of healthy cells and search for combinations of small molecule drugs (kinase inhibitors)

with which the most number of properties can be satisfied on each of the diseased cell

line models. Our results are valuable for guiding further experimentation, and could

lead to a better understanding of changes in signaling during cancer progression and

possible treatments.

This experimental study was conducted in collaboration with the Department of Sys-

tems Biology, Harvard Medical School, where all wet-lab experiments were performed.

5.5.1 Experimental data

To identify differences in signaling associated with tumor progression, experiments were

conducted on four human liver cell types. Primary hepatocytes (HPH) are isolated

from human donors and represent healthy liver cells. HHL5 cells are representative

of immortalized but not overtly transformed cells [185]. HepG2 [186] and Focus [187]

cell lines are both derived from hepatocarcinomas but Focus cells represent a higher

pathological grade of cancer.

Measurements were conducted under multiple conditions. Cells were exposed to one

of 5 ligands, in the presence or absence of one of 5 small molecule kinase inhibitors.

Multiplex bead-based immuno-sandwich assays using Luminex technology (BioPlex as-

says; www.luminexcorp.com) were performed. This provided simultaneous quantitative

measurements on the levels of modification of 12 signaling proteins under a total of 30

conditions (plus controls). The ligands and inhibitors used, and the measured proteins

are listed in Table 5.2. Measurements of signaling activity were obtained 10, 30, 90 and

118



GSK3s

INS IGF TNF TGFA IL1

1

CREB 1

JNK12 1

p90RSK 1

p38 1

ERK12 1

HSP27 1

p70S6K 1

cJUN 1

Ikb 1

AKTs 1

IRS1s

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

1

A
K

T
i

GSK3s

INS IGF TNF TGFA IL1

1

CREB 1

JNK12 1

p90RSK 1

p38 1

ERK12 1

HSP27 1

p70S6K 1

cJUN 1

Ikb 1

AKTs 1

IRS1s

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

1

A
K

T
i

HPH HHL

GSK3s

INS IGF TNF TGFA IL1

1

CREB 1

JNK12 1

p90RSK 1

p38 1

ERK12 1

HSP27 1

p70S6K 1

cJUN 1

Ikb 1

AKTs 1

IRS1s

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

1

A
K

T
i

GSK3s

INS IGF TNF TGFA IL1

1

CREB 1

JNK12 1

p90RSK 1

p38 1

ERK12 1

HSP27 1

p70S6K 1

cJUN 1

Ikb 1

AKTs 1

IRS1s

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

A
K

T
i

D
M

S
O

P
I3

K
i

M
E

K
i

M
T

O
R

C
i

p
3
8
i

1

A
K

T
i

HepG2 Focus

Figure 5.2: Experimental data on primary liver cells (HPH), an immortalized cell line
(HHL5) and two transformed liver cancer cell lines (HepG2, Focus).

360 minutes after applying ligand stimulation. Previous studies have established the se-

lectivity and linearity of these measurements [43]. The phosphorylation events assayed

correspond to sites of activating modification and therefore serve as a surrogate for the

level of activity of the signaling protein.

Data was normalized to the [0, 1] range with respect to the no-treatment control and

the measurements at the initial time point, following the methodology of [42]. The data

organization and processing was carried out in the MATLAB toolbox DataRail, which

was developed for high-throughput data management and integration [188]. Figure

5.2 shows the full experimental data set visualized with DataRail. The data consists of

measurements on 4 cell types (plotted separately), across 5 ligand treatments (columns),

combined with no inhibitor (DMSO) or one of 5 small molecule drug inhibitors (sub-

columns). Each rectangle contains a filled time-course plot of measured activity for the

initial time and 4 measurement time points of 12 proteins (rows).
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Ligand Description

INS Insulin
IGF-1 Insulin related growth factor
TGFα Transforming growth factor
TNFα Tumor necrosis factor
IL-1α Interleukin-1

Inhibited species Inhibitor drug

AKT MK2206
mTORc AZD8055
PI3K ZSTK474
p38 PHA818637
MEK PD325901

Protein Phosphorylation site

AKT S473
cJUN S63
CREB S133
ERK1/2 T202/Y204, T185/Y187
GSK-3 S21/S9
HSP27 S78
Ikb S32/S36
IRS-1 S636/S639
JNK T183/Y185
p38 T180/Y182
p70S6K T421/S424
p90RSK T359/S363

Table 5.2: Ligands, inhibitors and measured proteins used to collect experimental data
for the liver cancer study.

5.5.2 Prior knowledge network

A prior structure was first assembled from the GeneGo database containing a total of

29 nodes and 71 edges. The set of nodes includes 5 ligands, which only have outgoing

edges, 12 proteins, whose phosphorylation is measured, and 12 hidden (unmeasured)

nodes, out of which 4 can be inhibited in experiments using small molecule drugs (p38

is in the set of measured proteins but can also be inhibited). This prior structure is

shown in Figure 5.3 (a).

We reduce the prior structure to a prior knowledge network (PKN), as defined in

Section 5.3.1, by two transformation steps. First, we compress out hidden nodes as

follows. The prior structure is a directed graph in which two nodes are connected if

there is a sequence of directed edges (a path) between them. Starting from each ligand,

we find paths on which the internal nodes are hidden nodes, until the first measured

node is reached. We then add a direct edge from the ligand to this measured node.

The same is done starting from each measured node, which has at least one edge to an

unmeasured node. The signs on the new edges are set consistent with the signs along

the path they replace. For instance, a path with two negative edges will be replaced

by a positive edge, and a path with one negative and one positive edge with a negative

one. Thereby, all hidden nodes are removed, and their effect is represented through

the newly added edges. Second, we model inhibitors explicitly, as input nodes, with

outgoing edges to the targets of the species they inhibit, but with opposite sign. For

instance, MEKi (the inhibitor of MEK) will be modeled as an input node with outgoing
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(b)

Figure 5.3: Prior knowledge network for signaling in liver cancer. (a) Prior structure
extracted from databases. (b) Compressed PKN used as basis for DBN construction.
Green arrows show activation, and red arrows inhibition.

inhibitory edges to p38, ERK and GSKs (since MEK had outgoing activation edges to

p38, ERK and GSKs). Following this procedure, the resulting structure has 22 nodes,

including 5 ligands, 5 inhibitors and 12 measured species. The total number of edges is

78. The PKN is shown in Figure 5.3 (b).
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5.5.3 Model learning

Learning the DBN parameters involves solving one LP problem for each of 12 measured

species at 4 time points. For the 12 proteins in the DBN we chose 3 discrete levels at 0, 0.5

and 1, and for the nodes representing ligands and inhibitors we set two levels at 0 and

1. We added 1 intermediate time point between each measurement time (the correlation

time Tcorr = 2 for this pathway). Thus, the total number of LP problems solved is 96.

For the 12 measured species in the pathway, the number of DBN parameters ranged

between 9 and 6912, and the number of LP constraints were between 72 and 41532 (for

p90RKS and p70S6K respectively). The time taken to learn the DBN was, on average

44.3 seconds for each cell line, on a 3.3GHz desktop computer. The LP problems were

solved using the CPLEX (www.ibm.com) solver. We note that the LP problems at each

time slice could also be solved in parallel, further speeding up learning.

5.5.4 Validation with test data

We first show that a DBN learned using our proposed approach has predictive abil-

ity. To do so, we performed cross validation as follows. Recall that the original data

contains combinations of a ligand (one out of 5) combined with either no inhibitor or a

single inhibitor (one out of 5). To imitate the existence of unmeasured combinations, we

masked data for all species at all time points for 5 such combinations. Each run of cross

validation uses a different set of masked cases. For instance, in the first run, the com-

binations INS+PI3Ki, IGF+MEKi, TNFα+MTORCi, TGFα+p38i and IL-1α+AKTi

were masked, and the pairings were rotated to generate the remaining 4 cross validation

runs. In each run, we used the remaining data as a training set, learned the correspond-

ing DBN model, and then used inference on the resulting model to predict the masked

data.

We chose the mean absolute deviation as a measure of prediction accuracy, motivated

by the fact that DBN parameters were learned from the training data using the same

distance measure. The mean absolute deviation in predicting the time course dynamics

by the cell type specific DBNs was 0.064 for HPH, 0.041 for HHL5, 0.097 for HepG2

and 0.085 for FOCUS. These error rates are all below 10% of the possible range of

predicted values, and are comparable to the magnitude of measurement noise in the

data set. We also compared these values to predictions against scrambled data (the
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Figure 5.5: Prediction accuracy (mean absolute deviation) with respect to masked data
for each species, under different ligand treatments. Values averaged across 5 cases, all
cell lines and time points.

Cell type DBN Scrambled Random

HPH 0.064 0.104 (p < 10−12) 0.446
HHL5 0.041 0.071 (p < 10−12) 0.474
HepG2 0.097 0.161 (p < 10−16) 0.439
Focus 0.085 0.176 (p < 10−30) 0.444

Table 5.3: Mean absolute deviation of estimates from the true data values for liver cell
lines. The p-value of t-tests between the DBN predictions and the predictions with
respect to scrambled data are also shown indicating the significance of the difference.

order of masked data values were randomly scrambled when comparing to predictions)

and random predictions (uniform random predictions in the [0, 1] interval). These results

are shown in Table 5.3.

The prediction accuracy broken down by ligand and measured protein is shown in

Figure 5.5. There is some variability across ligands and proteins, but in all cases the

mean absolute deviation is below 0.25, and in most cases below 0.1. We also compared

the accuracy of predictions by the time point of measurement (Figure 5.6, top). The

early dynamics (10 and 30 minutes) are generally harder to predict, and better accuracy

is seen in predicting the later dynamics (90 and 360 minutes).

Next we looked at the effect of the number of interpolation time points used. DBNs

were learned with 0 to 4 interpolation time points; the prediction accuracies are shown

in Figure 5.6 (bottom). There is only a slight increase in accuracy with an increasing

number of interpolation time points, but the time needed to learn the model grows

linearly with the number of interpolation times. Therefore the choice of 1 interpolation

time point (equal to the correlation time of the DBN) is a reasonable choice.

Finally, we compared whether posing the constrained optimization problem using

the L1 measure (linear programming, LP) or the L2 measure (quadratic programming,
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Figure 5.6: Prediction accuracy on cross validation data for data at different time points
(a) and when learning with different number of interpolation time points (b)

QP) affects prediction accuracy. Using QP is more computationally intensive than LP,

and therefore its use is only justified if it provides considerable improvements. The

results in Figure 5.7 show that there is little difference between using LP or QP in terms

of accuracy. In fact, the mean absolute deviation of predictions is better for only 1 out

of 4 cell types with QP. When using the root mean square error to assess prediction

accuracy (a measure more well suited for QP), there is only a very small change in the

accuracy of LP and QP. Learning DBN parameters using QP took, on average, 330.8s

for each cell line, making it around 7 times slower than the same procedure with LP.

We conclude that the more efficient and scalable LP is a good choice for posing the

constrained optimization problem used to learn DBN parameters.

5.5.5 Experimental validation

An important component of our work is predicting dynamics under combination of lig-

ands and inhibitors that have not appeared in the training data set. In the previous

section we assessed the performance of learned DBNs on predicting a masked portion of

the training set. In this section we make use of additional experimental data measuring

the effect of some further treatment combinations. These combinations are summa-
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Figure 5.7: Comparison of prediction accuracy when solving the optimization with the
L1 norm (linear programming, LP) and L2 norm (quadratic programming, QP).
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Figure 5.8: Structure of validation experiments on the HepG2 cell line. Ligand sets 1−7
are measured combined with inhibitor sets A–K. Bold ligand sets are only combined with
bold inhibitor sets. Other ligand sets are combined with all inhibitor sets.

rized in Figure 5.8. Excluding control measurements, this gives a total of 56 treatment

conditions, some examples being TNFα + PI3Ki + MEKi and INS + TGFα + p38i.

The validation experimental data is limited, namely, it is only available for the

HepG2 cell line, and at the single 30 minute time point. Further, the value of the

fluorescence measurements cannot reliably be compared to those in the original training

set. However, it is possible to determine whether a certain treatment combination

resulted or did not result in the activation of a protein. Therefore we used the validation

data in the following way. We normalized the validation data to the [0, 1] range, taking

into account control measurements, and then discretized it with the threshold set at 0.5

(with this choice, 23.5% of the data points were “active”). We used the cell type specific

DBN model learned using the original training data set for the HepG2 cell line (see data

in Figure 5.2). We simulated the DBN under all conditions appearing in the validation
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Figure 5.9: ROC curve of DBN predictions of protein phosphorylation under multiple
combinations of ligands and inhibitors.

data set using the FF algorithm and recovered the state of the DBN corresponding to

the 30 minute time point. The “activation” of a protein on the DBN was interpreted by

requiring that the probability of the protein S taking a low value is smaller than a given

threshold (P (S = 0) ≤ γ, γ ∈ (0, 1)). This provides a binary prediction of activity, with

which it is possible to calculate the true positive/negative and false positive/negative

rates of the predictions with respect to the validation data. We chose a range of different

thresholds between γ = 0.01 and 0.99 for the output of the DBN and drew a receiver

operating characteristic (ROC) curve of the false positive and true positive rates (Figure

5.9). The ROC curve shows that DBN predictions maintain low false positive rates while

reaching a high true positive rate, as the threshold is decreased.

5.5.6 Treatment evaluation

In the previous sections we showed that we can learn cell type specific DBN models

for the 4 cell types of interest, and that these models have the capability to predict

dynamics under treatment conditions not covered by training data.

In this section, we use the learned cell type specific models to evaluate treatment

conditions and find ones that achieve specified dynamics. Our method for treatment

evaluation and optimization introduced in Section 5.4 can be used with any specifications

of interest expressed as PBL formulas. Here we will specify formulas based on the

dynamics of protein phosphorylation in healthy cells (HPH). Our motivation in doing so

is to find combinations of inhibitors, which when applied on the transformed cell lines
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ID Ligand Property Formula

ϕ1 TNFα cJUN stays at a low to medium level ((TNFα, vH) ≥ 1)⇒ G((cJUN, vL) ≥ 0.6)

ϕ2 TGFα cJUN is activated and sustained ((TGFα, vH) ≥ 1) ⇒ F((cJUN, vH) ≥ 0.2
∧FG((cJUN, vL) ≤ 0.5))

ϕ3 IL-1α cJUN is activated and sustained ((IL-1α, vH) ≥ 1) ⇒ F((cJUN, vH) ≥ 0.2
∧FG((cJUN, vL) ≤ 0.5))

ϕ4 TGFα ERK is activated and sustained ((TGFα, vH) ≥ 1) ⇒ F((ERK, vH) ≥ 0.2
∧FG((ERK, vL) ≤ 0.5))

ϕ5 TGFα HSP27 is transiently activated ((TGFα, vH) ≥ 1) ⇒ F((HSP27, vL) ≤ 0.5
∧FG((HSP27, vL) ≥ 0.8))

ϕ6 INS GSK3s stays at a low level ((INS, vH) ≥ 1)⇒ G((GSK3s = vL) ≥ 0.8)

ϕ7 IGF GSK3s stays at a low level ((IGF, vH) ≥ 1)⇒ G((GSK3s = vL) ≥ 0.8)

ϕ8 TGFα GSK3s is transiently activated ((TGFα, vH) ≥ 1) ⇒ F((GSK3s, vM ) ≥ 0.25
∧FG((GSK3s, vL) ≥ 0.8))

ϕ9 TNFα CREB stays at a low level ((TNFα, vH) ≥ 1)⇒ G((CREB = vL) ≥ 0.8)

ϕ10 TGFα CREB is transiently activated ((TGFα, vH) ≥ 1) ⇒ F((CREB, vM ) ≥ 0.25
∧FG((CREB, vL) ≥ 0.8))

ϕ11 IL-1α CREB stays at a low level ((IL-1α, vH) ≥ 1)⇒ G((CREB = vL) ≥ 0.8)

ϕ12 TNFα p38 is transiently activated ((TNFα, vH) ≥ 1) ⇒ F((p38, vM ) ≥ 0.1
∧FG((p38, vL) ≥ 0.8))

ϕ13 IL-1α p38 is transiently activated ((IL-1α, vH) ≥ 1) ⇒ F((p38, vM ) ≥ 0.1
∧FG((p38, vL) ≥ 0.8))

ϕ14 INS AKTs activation is not sustained ((INS, vH) ≥ 1)⇒ FG((AKTs = vL) ≥ 0.9)

ϕ15 IGF AKTs activation is not sustained ((IGF, vH) ≥ 1)⇒ FG((AKTs = vL) ≥ 0.9)

ϕ16 INS p70S6K stays at a low level ((INS, vH) ≥ 1)⇒ G((p70S6K = vL) ≥ 0.9)

ϕ17 IGF p70S6K stays at a low level ((IGF, vH) ≥ 1)⇒ G((p70S6K = vL) ≥ 0.9)

ϕ18 TNFα p70S6K stays at a low level ((TNFα, vH) ≥ 1) ⇒ G((p70S6K = vL) ≥
0.9)

Table 5.4: Formalized properties of protein phosphorylation dynamics on healthy liver
cells.

(HHL5, HepG2, Focus), can modify some aspects of their dynamics to mimic those in

healthy cells. We constructed a set of 18 properties, which each describe the dynamics

of protein activity in HPH cells under some ligand stimulation. The properties we chose

correspond to settings in which the dynamics in HPH cells is significantly different from

other cell types. The list of properties is shown in Table 5.4.

First we verified that the properties ϕ1 to ϕ18 are satisfied on the DBN model of

healthy cells. We then used the models of the remaining 3 cell lines to make predictions.

In this study, the choice in treatments is limited to 5 inhibitors, and each possible

treatment condition is characterized by a subset of these inhibitors, which are applied

on the cells (giving a total of 32 possible conditions). Despite the relatively small number

of combinatorial treatments, experimentally evaluating these combinations with respect

to the 18 properties would require the collection of an additional set of data roughly 3

times the size of the original data set. However, using our DBN models, verifying these
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properties under all possible conditions in all cell lines is tractable (it took, on average,

35 seconds for each cell line). Therefore, in what follows, we present results based on

an exhaustive evaluation of all possible inhibitor combinations.

We were interested in finding the combination of inhibitors with which the most

properties are satisfied, based on the number of inhibitors used. Table 5.5 summarizes

the best inhibitor combinations for each possible number of inhibitors. When no in-

hibitor is used, 3 properties are satisfied on the HHL5 cell line, 1 on HepG2 and 1 on

Focus. When a single inhibitor is used a larger number of properties can be satisfied (8,

4 and 6) for HHL5, HepG2 and Focus, respectively. In each case, adding one more in-

hibitor can significantly increase the effectiveness of the treatment, and in each case the

combination of PI3Ki and AKTi was found to be the best. This combination resulted

in 11, 8 and 10 satisfied properties on HHL5, HepG2 and Focus, respectively.

In some cases we found that multiple different combinations can achieve the same

number of satisfied properties. However, in general they will satisfy a different set of

the properties. This is illustrated in Figure 5.10, where the subset of combinations

corresponding to pairs of inhibitors (10 possible pairs) is shown. For each combination

shaded rectangles indicate that a given property is satisfied. Figures showing the set of

satisfied properties for all inhibitor combinations are given in Appendix C.

The PI3K/AKT/mTOR pathway can reduce apoptosis and promote proliferation,

and is overactive in many cancers [189]. Our results specifically implicate PI3K and

AKT as important targets, since inhibiting these kinases results in better resemblance

to properties of healthy cells. We showed that the inhibition of either PI3K or AKT

alone is less effective than their combined inhibition. Further, inhibiting PI3K and AKT

is more effective than either one combined with mTOR inhibition.

Another important difference between healthy and diseased cells (expressed in prop-

erty ϕ5) is that heat shock protein (HSP27) response is triggered in healthy cells in

response to stimulation by the growth factor TGFα, whereas the same activation is

missing in diseased cell lines. The loss of heat shock response has been implicated as an

important component of disease progression in liver cancer [190]. Our analysis shows

that the transient activation of HSP27 in response to TGFα cannot be recovered through

any combination of the studied kinase inhibitors. This implies that the lack of response

could be due to the loss of an interaction between ERK and HSP27 during disease
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HHL5
Number of inhibitors Best combinations Number of properties satisfied

0 – 3
1 PI3Ki or mTORci or AKTi 8
2 PI3Ki + AKTi 11
3 PI3Ki + AKTi + mTORci 11
4 PI3Ki + MEKi + mTORci + AKTi or 10

PI3Ki + MEKi + p38i + AKTi or
PI3Ki + mTORci + p38i + AKTi or

5 All 10

HepG2
Number of inhibitors Best combinations Number of properties satisfied

0 – 1
1 MEKi or PI3Ki 4
2 PI3Ki + AKTi 8
3 PI3Ki + MEKi + mTORci or 10

PI3Ki + mTORci + p38i or
MEKi + mTORci + AKTi

4 PI3Ki + MEKi + mTORci + p38i or 10
PI3Ki + MEKi + mTORci + AKTi or
PI3Ki + mTORci + p38i + AKTi or
MEKi + mTORci + p38i + AKTi

5 All 10

Focus
Number of inhibitors Best combinations Number of properties satisfied

0 – 1
1 PI3Ki 6
2 PI3Ki + AKTi 10
3 PI3Ki + AKTi + mTORci 11
4 PI3Ki + AKTi + mTORci + p38i 11
5 All 10

Table 5.5: The best combinations of kinase inhibitors, shown by the number of inhibitors
used, for each of 3 transformed liver cell lines.

progression, and inhibiting upstream kinases is unlikely to recover this interaction.

5.6 Summary

In this chapter we proposed a method for learning DBN models of pathway dynamics.

Our method relies on solving a series of constrained optimization problems using linear

programming to obtain the conditional probability parameters of the DBN. This way of

learning parameters is scalable since the size of each LP problem only depends on the

number of parents of a node, and not on the overall size of the model.

Next we showed that once the parameters of the DBN have been learned one can use

inference algorithms to predict dynamics under various previously unseen conditions.

This allows us to specify biologically relevant dynamical properties in a probabilistic

temporal logic and find treatment conditions under which the properties are satisfied.

We applied our method to learn the dynamics of protein phosphorylation in signaling

pathways of liver cancer cell lines. Validation experiments showed that we could reliably
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predict dynamics under previously unseen combinations of ligand stimulation and kinase

inhibition. We learned a DBN model for 4 cell lines ranging from healthy cells to late

stage cancer cells. Then we specified 18 characteristic dynamical properties of dynamics

in healthy cells and reported combinations of kinase inhibitors with which the diseased

cell lines could match most of these properties.

An assumption we have made is that a prior knowledge network (PKN) is given,

from which the DBN structure can be derived. Inferring model structure from limited

experimental data is highly challenging and is likely to produce ambiguous results with-

out strong prior constraints. A more realistic goal is to refine the structure derived from

the PKN by removing unnecessary edges (edges whose existence does not contribute to

explaining data). It turns out that our linear programming approach can be extended

in a straightforward manner to solve this problem. Namely, one can introduce binary

edge indicator variables, which are used to constrain parameters to be consistent with

the existence or non-existence of an edge. Introducing a penalty for the overall number

of parents of a node, a mixed integer linear programming (MILP) problem can be posed.

Preliminary results show that using this approach the structure can be simplified signif-

icantly, while retaining predictive capability. The set of edges kept or removed in each

cell type specific model can also reveal important differences between disease stages. We

plan to further explore this line of work to gain insights about liver cancer progression.

Finally, we have considered treatment conditions as a subset of inputs that are held

at a constant high level during the course of the experiment. In a sense we have explored

here only static treatments. This is reasonable in our case study on liver cancer since the

transient signaling response to stimuli is measured in a relatively short time frame (up

to 360 minutes). For longer time scales, a more sophisticated dynamic treatment regime

could be explored. Building models from experimental data representing signaling on

longer time scales, and considering dynamical treatment conditions could open up many

interesting possibilities. For instance, it would be possible to model the sequential

application of cancer drugs, at potentially varying doses. The appropriate framework to

find such treatments is likely to be control theory, and works including [191] and [192]

could serve as useful pointers in this line of work.
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Figure 5.10: Effects of inhibitor combinations on 3 liver cancer cell lines with respect
to characteristic dynamical properties of healthy cells (see Table 5.4). Shaded boxes
indicate a satisfied property, and numbers on the right edge indicate the total number
of satisfied properties for the given combination.
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Chapter 6

Conclusion

The focus of this thesis was on modeling the dynamics of biological pathways. Our

understanding of complex cellular processes including the cell cycle, programmed cell

death, and the response to environmental stimuli can benefit greatly from quantitative

computational models. However building such models based on prior domain knowledge

and experimental data is challenging. This is partly due to many sources of uncertainty

in the modeled biological system, the experimental data, and the modeling process. In

the work presented here we used probabilistic approaches to deal with this uncertainty.

Specifically, Chapters 3 and 4 addressed the problem of parameter uncertainty, which

induces uncertainty in model predictions. Here a probabilistic approach allowed us to

explicitly model and quantify the accuracy of predictions, taking into account prior

knowledge and experimental data. In Chapter 5 dynamic Bayesian networks enabled

us to model probabilistic relationships between species that do not physically interact

with each other. This accounts for the uncertainty induced by unmodeled intermediate

species and the stochasticity of dynamics. We now briefly review the main contributions

of each chapter and discuss directions for future work.

In Chapter 3 we proposed kernel-enhanced particle filters to perform parameter

inference on pathway models. Particle filters used before in this context suffer from

particle collapse resulting in inaccurate predictions under parameter uncertainty. We

showed that the basic particle filter extended with kernel steps can recover from particle

collapse and give much more accurate predictions with a lower sample size. Making

Bayesian computations more tractable could lead to the wider adoption of such tech-

niques on realistic pathway models. The rich set of probabilistic analysis techniques in
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a Bayesian framework will allow a faithful characterization of the uncertainty of models

and the predictions made with them.

Next, we proposed a method for verifying properties of pathway models under

Bayesian parameter uncertainty. This is important since certain dynamical proper-

ties can be robustly preserved even if parameter values are unconstrained, while other

properties may not hold due to uncertainty. In a Bayesian probabilistic framework the

posterior characterizes the distribution of possible model parameters according to their

support from prior knowledge and experimental data. Sampling independently from

the posterior is generally not possible, hence we proposed a Markov chain Monte Carlo

scheme to collect a sequence of dependent samples. These samples can be used to de-

cide with statistical guarantees whether the model meets a given temporal logic property

with at least a certain probability.

A common point in Chapters 3 and 4 is the characterization of pathway models

under Bayesian parameter uncertainty. It is increasingly recognized that predictions

made using pathway models are subject to large variability depending on the amount

and quality of experimental data [8, 118]. This uncertainty should be reflected in the

way pathway models are published and deposited in databases. One solution would be

to publish all experimental data with the model. However, this would still require sub-

sequent users to perform computationally intensive parameter inference. It is therefore

better to store and publish a representation of the parameter posterior distribution along

with the model. The technical challenges involved, including how the high-dimensional

posterior should be encoded efficiently and in a standardized format, are interesting

questions for future research.

It would be useful to attach to a model a list of key properties that it possesses. These

properties should be verifiable at all stages of model construction and dissemination

[193]. For example, in a model of extrinsically triggered apoptosis, a property of interest

could be “according to this model, cells die within 6 hours after treatment with 50ng/ml

TRAIL”. Temporal logics and model checking, as argued in Chapters 4 and 5, provide

a useful framework for formalizing such statements and verifying them in a biological

context. Attaching a set of such properties that hold with high probability, to models

with Bayesian uncertainty, would enable their reliable dissemination and reuse. The

framework presented in Chapter 4 could be the basis for such a solution, and this could
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bring a new paradigm in the way pathway models are shared and updated.

The goal of Chapter 5 was to learn the dynamics of signaling pathways using dynamic

Bayesian networks. We developed a framework on the DBN to find treatment conditions

under which the pathway shows specified, desirable dynamics. This is especially useful

when searching for combinatorial treatments, which is very expensive experimentally.

We applied our DBN learning method to model signaling in 4 cell types representing a

range of stages in the progression towards liver cancer. We were able to find promising

combinations of kinase inhibitors, using which some aspects of the dynamics of diseased

cells can be driven to mimic those of healthy cells.

The experimental data we used consists of joint measurements of the phosphorylation

of multiple proteins under a range of ligand stimuli and perturbations. Similar data sets

have recently been collected for several melanoma [194] and breast cancer [195] cell

lines. However, dynamical models that could predict the response of different cell lines

to treatments have not been built. It will be interesting to apply our DBN learning

method to these and other similar data sets. More generally, our method is a step in

the direction from descriptive towards dynamic and predictive models of disease specific

signaling behavior.

The concept of learning cell type specific models, as we have done using our DBNs,

opens up interesting possibilities in personalized treatments. If predictive models are

learned for several sub-types of a disease, one will be able to make model based predic-

tions of what treatment (or combination of treatments) is most likely to yield a desired

outcome in a specific setting. Quantitative dynamical models which can make reliable

predictions despite uncertainty will be elemental in reaching these goals.
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Appendix A

Supplementary information for

Chapter 3

A.1 Enzyme-substrate model
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Figure A.1: Particles projected on the plane of k1 against k3 at each step of the filter for
the enzyme-substrate model. PF-BASIC cannot converge to the high-probability region
of parameter space, but PF-KGAUSS efficiently moves there by using kernel steps.
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A.2 JAK-STAT model

Figure A.2: Fit to experimental data with 1000 particles with different particle filter
methods on the JAK-STAT pathway.
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Appendix B

Supplementary information for

Chapter 4

B.1 Spectral gap of the Markov chain

In Section 4.5.1 we described how the spectral gap of the Markov chain can be estimated

in practice. Our Markov chains are defined on a general state space, and their transition

kernel is described by a linear operator. Here we give a more precise definition of the

spectral gap in this setting.

We call a Markov chain X1, X2, . . . on state space Ω with transition kernel P (x, dy)

reversible if there exists a probability measure π on Ω satisfying the detailed balance

condition,

π(dx)P (x, dy) = π(dy)P (y, dx) for every x, y ∈ Ω. (B.1)

Define L2(π) as the Hilbert space of complex valued measurable functions that are square

integrable with respect to π, endowed with the inner product (f, g) =
∫
fg∗ dπ. P can

be then viewed as a linear operator on L2(π), denoted by P , defined as

(P f)(x) := EP (x,·)(f),

and reversibility is equivalent to the self-adjointness of P . The operator P acts on

measures to the left, i.e. for every measurable subset A of Ω,

(µP )(A) :=

∫
x∈Ω

P (x,A)µ(dx).
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For a Markov chain with stationary distribution π, we define the chain’s spectrum as

S2 := {λ ∈ C \ 0 : (λI − P )−1 does not exist as a bounded linear operator on L2(π)}.

For reversible chains, S2 lies on the real line. We now define the spectral gap as follows.

Definition B.1. The spectral gap for reversible chains is defined as

γ := 1− sup{λ : λ ∈ S2, λ 6= 1} if eigenvalue 1 has multiplicity 1,

γ := 0 otherwise.

In the case of non-reversible chains, [196] defines the pseudo-spectral gap, and shows

that it has similar properties as the spectral gap has for reversible chains.

B.2 EARM1.3 model

Here we show the dynamics of species appearing in the specified temporal logic properties

in Section 4.6.2. The plots show the simulated trajectories with respect to the parameter

posterior. The shaded area shows the 90 percentile of all trajectories (the quantiles are

calculated at each time point) simulated with each parameter collected by the MCMC

procedure. The dashed lines show the 50 percentile (median) of all trajectories.
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Figure B.1: Simulated trajectories (shaded area between 5 and 95 percentile) with
respect to the parameter posterior when using only EC-RP data (top), and both EC-
RP and IC-RP data (bottom).
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Appendix C

Supplementary information for

Chapter 5

C.1 DBN model of signaling in liver cancer
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Figure C.1: Predictions by the DBN on additional experiments for the HepG2 cell line.
Measurements indicate activity 30 minutes after ligand addition.
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Figure C.3: Effects of all inhibitor combinations on HHL5 cells with respect to charac-
teristic dynamical properties of healthy cells (see Table 5.4). Shaded boxes indicate a
satisfied property, and numbers on the right edge indicate the total number of satisfied
properties for the given combination.
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Figure C.4: Effects of all inhibitor combinations on HepG2 cells with respect to charac-
teristic dynamical properties of healthy cells (see Table 5.4). Shaded boxes indicate a
satisfied property, and numbers on the right edge indicate the total number of satisfied
properties for the given combination.
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Figure C.5: Effects of all inhibitor combinations on Focus cells with respect to charac-
teristic dynamical properties of healthy cells (see Table 5.4). Shaded boxes indicate a
satisfied property, and numbers on the right edge indicate the total number of satisfied
properties for the given combination.
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