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ABSTRACT

We survey the progress in the analysis of gene expression
data for the purposes of disease subtype diagnosis, new sub-
type discovery, and understanding of diseases and treatment
responses. We find existing works fall short on several is-
sues: these works provide little information on the inter-
play between selected genes; the collection of pathways that
can be used, evaluated, and ranked against the observed ex-
pression data is limited; and a comprehensive set of rules
for reasoning about relevant molecular events has not been
compiled and formalized. We thus envision an advanced in-
tegrated framework, and are developing a system based on
it, to provide biologically inspired solutions. It comprises:
(i) automated analysis and extraction of information from
biomedical texts; (ii) targeted construction of known path-
ways; and (iii) direct hypothesis generation based on logical
reasoning on, and tests for, consistencies and inconsistencies
of observed data against known pathways.

1. INTRODUCTION

Classification of patient samples is a crucial aspect of cancer
diagnosis and treatment, as treatment of this type of diseases
is often stratified according to the specific disease subtype
and the likely treatment response of the patient. For exam-
ple, childhood acute lymphoblastic leukaemia (ALL), has as
many as 6 different subtypes with differing treatment out-
come. Under-treatment causes relapse and eventual death.
Over-treatment causes severe long-term side effects. Thus
accurate diagnostic subgroup must be assigned upfront to
ensure correct intensity of therapy [33]. One of us previ-
ously demonstrated a very accurate platform based on gene
expression profiling analysis to risk stratify childhood ALL
patients [41]. We can see from Figure 1 the tremendous
promise of this work—survival rates are increased, side ef-
fects are reduced, and significant cost savings are achieved.
There is thus considerable excitement in the development of
gene expression profiling analysis for the purposes of under-
standing diseases and optimizing treatment.

In this paper, we first provide in Section 2 a succinct but
in-depth review of existing gene expression analysis meth-
ods. Our survey spans techniques for disease subtype di-

agnosis, disease subtype discovery, and treatment response
understanding. In particular, we describe the progress in ap-
proaches to gene selection, paying special attention to more
recent developments such as overlap methods [42; 8], direct
group methods [40; 22], and biological network co-clustering
methods [38; 15; 14; 37; 13; 18; 39; 35].

Then we discuss in Section 3 critical issues remaining in
the effective analysis of gene expression data—viz., these
works provide little information on the interplay between se-
lected genes; the collection of pathways that can be analysed
against the observed gene expression data is limited; and a
comprehensive set of rules for reasoning about relevant mole-
cular events has never been compiled and formalized. We
outline our vision for an advanced integrated system that is
required to directly address these issues.

Finally, we present in Section 4 our preliminary work to
realise the vision. In particular, we are developing an inte-
grated system having the capabilities to: (i) automate analy-
sis and extraction of information from biomedical texts, (ii)
automate targeted construction of known pathways and cir-
cuits, and (iii) reason logically and test for consistencies and
inconsistencies of observed data with respect to known path-
ways and circuits. We hope to enable more biologically in-
spired interpretations of gene expression profiles, so as to
better decipher the underlying causes of a disease, and the
reasons for a drug to be effective or ineffective.

2. ACCOMPLISHMENTS OF THE PAST

We summarize here accomplishments of the past with re-
spect to gene expression analysis for the purposes of diag-
nosing disease subtypes (Subsection 2.1), discovering new
disease subtypes (Subsection 2.2), and understanding the
genetic and molecular causes of a disease (Subsection 2.3).

2.1 Diagnosing Disease Subtypes

Each disease and its various subtypes have their underly-
ing causes, which may have different down-stream effects
that are useful as diagnostic indicators. These down-stream
effects are often manifested as consistent gene expression
profile differences in a large number of target genes over the
different disease subtypes. The recognition of gene expres-
sion profile differences, and their use for diagnosing disease
subtypes, has thus become an intensely researched topic.



Treatment Cost–new cases Cost–relapses Total cost

Low-intensity treatment for everyone $36K * 2000 $150K * 1000 $222M

Intermediate-intensity treatment for
everyone

$60K * 2000 $150K * 200 $150M and 50% of patients
have side effects

High-intensity treatment for everyone $72K * 2000 $0 $144M and 90% of patients
have side effects

Risk-stratified treatment; viz., low in-
tensity to 50%, intermediate intensity
to 40%, high intensity to 10%

$36K * 1000 +
$60K * 800 + $72K
* 200

$0 $98M

Figure 1: Contemporary approaches to the diagnosis of childhood ALL use an extensive range of procedures that require
multi-specialist expertise, generally unavailable in developing countries. Thus, although childhood ALL is a great success story
of modern cancer therapy with survival rates of 75–80% in major advanced hospitals, it is still a fatal disease in developing
countries with dismal survival rates of 5–20%. About 2000 new cases of childhood ALL are diagnosed in ASEAN countries
each year. About 50% of these cases need low-intensity therapy, 40% need intermediate intensity, and 10% need high intensity.
Treatment for childhood ALL over 2 years for intermediate-risk costs USD 60k, good-risk costs USD 36k, and high-risk costs
USD 72k. Treatment for relapse cases costs USD 150k. As the less developed ASEAN countries generally lack the ability to
diagnose the subtypes of their childhood ALL patients, the treatment for intermediate risk case is conventionally applied for
everyone, as it maximizes the expected benefit in such a situation; as shown in the table above. The single-test platform based
on gene expression analysis developed by Yeoh and colleagues [41] has over 96% accuracy in risk stratification of childhood
ALL patients. As shown in the table above, this can result in savings of USD 52M a year yet with better cure rates and much
reduced side effects, as the correct intensity of therapy can be applied upfront.

The main approach to this problem is that of supervised
learning, as illustrated by the classic paper of Golub and
colleagues [12]. The gene expression profiles of patients are
collected and labeled according to the disease subtype of the
patients. The analysis then proceeds in two main steps. In
the first step, those genes that are most differentially ex-
pressed or most associated to specific disease subtypes are
identified. In the second step, a supervised learning algo-
rithm is applied to the expression profiles of genes short-
listed in the first step to induce a classifier. The resulting
classifier is then used for predicting the disease subtypes of
future patients based on their gene expression profiles.

A wide variety of test statistics have been proposed for the
first step to select relevant genes, which appears to be the
more challenging of the two steps. Initially, classical test sta-
tistics such as t-statistics,1 χ2, and Wilcoxon rank sum test
are used. As the number of genes far exceeds the number
of samples in typical datasets, more elaborate gene selection
test statistics are also developed, such as rank products [5]
and sparse logistic regression [6], as well as techniques for
assessing false discovery rates [34]. Integrated methods [28;
11], typically involving grouping genes with correlated ex-
pression profiles into bins and then selecting representatives

1The t-statistics of a gene g given two sets P and N of gene
expression profiles of patients in two contrasting classes P
and N is defined as:

t(g|P, N) =
|µ(g, P )− µ(g, N)|q

σ2(g,P )
|P | + σ2(g,N)

|N|

where µ(g, P ) and µ(g, N) are the mean expression values
of gene g in P and N respectively, σ2(g, P ) and σ2(g, N)
are the variances of the expression values of gene g in P and
N respectively. Typically those g where t(g|P, N) > α, for
some threshold α, are considered significantly differentially
expressed and are used as feature vectors to train a classifier
to distinguish P and N samples.

from each bin, have also been used. One of the more inter-
esting recent developments in gene selection techniques is
to look for gene pairs with expression values that are highly
correlated [32], instead of considering a single gene at a time.
This is a reasonable technique because genes and their prod-
ucts generally function as a group in a specific pathway, and
thus they expression values should be correlated.

An excellent demonstration of this type of analyses is the
diagnosis of childhood acute lymphoblastic leukemia (ALL)
subtypes [41]. ALL is the most common form of childhood
cancer. It has as many as 6 different subtypes. To avoid
under-treatment, which causes relapse and eventual death,
or over-treatment, which causes severe long-term side ef-
fects, accurate diagnostic subgroup must be assigned up-
front so that the correct intensity of therapy can be deliv-
ered to ensure that the child is accorded the highest chance
for cure [33]. Yeoh et. al. [41] first use χ2 statistics to se-
lect genes that are most associated with each of the ALL
subtypes, and then use a support vector machine to learn a
classifier for the ALL subtypes from the expression profiles
of the selected genes. Their classifier achieves an exceedingly
accurate overall diagnostic accuracy of 96%.

2.2 Discovering Disease Subtypes

New diseases and subtypes may emerge over time. A clini-
cian generally detects the emergence of such cases when he
is unable to assign a known phenotype to a patient using
traditional procedures such as morphology, immunopheno-
typing, cytogenetics, and molecular diagnostics. Such a new
disease subtype may manifest itself at the gene expression
level. The recognition of distinguishing gene expression pro-
files from untyped samples has thus become an important
research topic in bioinformatics.

The main approach to this problem is that of unsupervised
learning, as illustrated by the classic work of Cheng and



Church [7], although it was not initially used for detecting
new disease subtypes. The gene expression profiles of pa-
tients are collected, including both patients of known sub-
types and unknown subtypes. The analysis then proceeds
in two steps. In the first step, those genes whose expres-
sion values do not exhibit sufficient variance are removed.
In the second step, a biclustering algorithm is applied on
the patients and the remaining genes to obtain clusters of
patients that share similar expression profiles on the remain-
ing genes. If a cluster mostly contains untyped patients, it
is inferred as a new subtype of the disease, and the gene
expression profile shared by these patients is proposed as a
distinguishing marker for this new subtype.

A large number of clustering methods have been proposed
for the second step of this problem [30; 7; 10; 29; 26], which
appears to be the more challenging of the two steps. As
gene expression data are typically arranged as a matrix,
with rows as genes and columns as patient samples, the
goal of biclustering is to identify “homogeneous” subma-
trices from such an input matrix. However, there are many
ways to define homogeneity—e.g., biclusters with constant
values, biclusters with coherent values, and so on. Most
of the biclustering methods applied for this problem design
their own measure of homogeneity. As such, they tend to
only find clusters that are interesting according to that mea-
sure. A recent outstanding development [26] is to look for
deficiency of randomness instead of homogeneity. The de-
ficiency of randomness is an insightful generalization as it
is a measure that can detect many more types of homo-
geneous submatrices. This follows because a homogeneous
submatrix—regardless of the definition of homogeneity—is
one that exhibits some interesting regularity, which implies
the lack of randomless.

An excellent demonstration of this type of analysis is again
the work of Yeoh et. al. on ALL [41] mentioned in the pre-
vious subsection. That study contains 327 patient samples,
over 60 of which do not fit into existing ALL subtypes. A
biclustering of the expression profiles of the genes selected
by Yeoh et. al. is shown in Figure 2. The strong associa-
tion of different groups of genes for different ALL subtypes
is obvious. Moreover, 14 of the samples with unknown sub-
types share a novel common distinguishing gene expression
profile, as indicated in Figure 2. This novel subtype may be
linked to lipoma-associated chromosomal translocation [41].

2.3 Understanding Disease Subtypes

The two subsections above describe the major approaches
to infer differentially expressed genes that are useful for di-
agnosis and discovery of disease subtypes. However, there
are a number of fundamental problems. Firstly, the number
of patient samples is very small compared to the number of
genes. Thus, the statistical significance of the selected genes
and the accuracy of the resulting diagnosis system have a
high degree of uncertainty. Secondly, the transition from
the selected genes to the understanding of the sequences of
causative molecular events is unclear.

Let us illustrate these issues using a set of in vitro gene
expression data on three nasopharyngeal cancer (NPC) cell
lines. A drug CYC202 is tested on the three cell lines, CNE1,
CNE2 and HK1. Six time points are taken from the three
individual cell lines. HK1 responds to CYC202. CNE1 does

Figure 2: Gene expression profiles of childhood ALL. Each
row is a gene. Each column is a patient. The group of
patients labelled “novel” is the newly emerged subtype de-
tected by the biclustering [41].

not respond. CNE2 responds in a limited way. Applying
the unsupervised approach, or the supervised approach to
select genes followed by biclustering on the selected genes,
gives a figure similar to Figure 3. We can see clearly that
three distinct gene expression profiles are associated with
the three cell lines. Even if the selected genes and their
expression profiles are truly reliable distinguishing markers
for the three cell lines, one does not know how to explain
the different ways the cell lines respond to CYC202!

Figure 3: Gene expression profiles of NPC cell lines. Rows
are samples. Columns are genes.

In order to qualitatively improve statistical power of the
methods described earlier and reliability of the results, and
to extend the reach of the predictions, additional dimen-
sions present in the problem have to be brought into con-
sideration. For example, each disease subtype usually has
an underlying cause, and thus there should be a unifying
biological theme for genes that are truly associated with a
disease subtype. Hence the uncertainty in the reliability of
the selected genes can be reduced by considering the mole-
cular functions and the biological processes associated with
the genes. Such a unifying biological theme is also a ba-
sis for inferring the underlying cause of the disease subtype.
There are a number of existing approaches to analyze gene
expression data with respect to biological context. They
can be roughly categorized into three groups [38], viz. the
overlap methods, the direct group analysis methods, and the
biological network co-clustering methods.

The overlap methods determine what are the biological path-



ways that have a statistically significant overlap—typically
the hypergeometric test2 is used—with the list of differen-
tially expressed genes [42; 8]. The significant pathways are
then postulated as basis for inferring the underlying causes
of the disease subtypes studied or treatment responses ob-
served. At the same time, those differentially expressed
genes that overlap with these significant pathways are used
as more reliable markers. An important weakness of these
methods is that the initial list of differentially expressed
genes is generally defined using test statistics such as those
mentioned in Subsection 2.1 with arbitrary thresholds. Dif-
ferent test statistics and different thresholds often result in
a distressingly different list of differentially expressed genes.
Consequently, the outcome of the whole procedure—i.e.,
the biological pathways that are significant—is usually not
stable with respect to variations in the test statistics and
thresholds used in selecting the differentially expressed genes.

The direct group analysis methods [40; 22] determine if a bi-
ological pathway is relevant by comparing the distributions
of expression values of genes on the biological pathway with
the distributions of expression values of all the other genes
measured in the experiment. The methods in this family dif-
fer from each other primarily in the test statistics used for
comparing the two sets of distributions. An outstanding ex-
ample of this family of methods is gene set enrichment analy-
sis, GSEA [40], which uses a weighted Kolmogorov-Smirnov
statistics3 to compare the two sets of distributions and also

2The hypergeometric test value for a set W of genes on
a pathway W given two sets P and N of gene expression
profiles of patients in two contrasting classes P and N is
defined as:

h(W |P, N) =

�
wa
wd

�
∗
�

a−wa
d−wd

�
�

a
d

�

where A is the set of genes on the microarray used, D is
the set of differentially expressed genes with respect to the
contrasting sets P and N , a = |A|, d = |D|, wa = |A∩ W |,
wd = |D ∩ W |. Typically a pathway W such that
h(W |P, N) < α, for some threshold α, is considered sig-
nificant. Those differentially expressed genes belonging to
such pathways can then be analysed further to understand
the underlying causes of P vs N , as well as for use as feature
vectors to train a classifier for distinguishing P and N .
3The weighted Kolmogorov-Smirnov statistics of a set W
of genes on pathway W given two sets P and N of gene
expression profiles of patients in two contrasting classes P
and N is defined as:

KS(W |P, N) = max
i

H(W, i|P, N)−M(W, i|P, N)

where

H(W, i|P, N) =
X

g∈W∩A
r′(g|P,N)≤i

r(g|P, N)q

P
h∈W∩A r(h|P, N)q

M(W, i|P, N) =
X

g∈A−W
r′(g|P,N)≤i

1

|A−W |

Here, A is the set of genes in the microarray used, r(g|P, N)
is a correlation statistics—e.g., t-statistics t(g|P, N) of a
gene g with respect to the contrast sets P and N—and
r′(g|P, N) is the ranking of g according to r(g|P, N) among
all the genes in A, while q is a control parameter. Note that
KS(W |P, N) reduces to the standard Kolmogorov-Smirnov
statistics when q = 0. A pathway W is considered signifi-
cant if the p-value for KS(W |P, N) is significant, where the

uses resampling to estimate false discovery rates. These di-
rect group analysis methods start with a set of genes that are
determined a priori—namely, those that are on the biologi-
cal pathway being considered. They are thus less vulnerable
to the instability discussed earlier of the overlap methods,
which start with a set of genes that are determined a pos-
teriori using various test statistics and thresholds. Further-
more, these direct group analysis methods are able to detect
more subtle changes in gene expression profiles [38]. For ex-
ample, if the majority of genes on the biological pathway
have small expression level changes, probably none of them
can be detected and selected as differentially expressed. The
whole group is then missed in the overlap analysis. On the
other hand, the high correlation of the changes of expression
values in this group of genes can result in high statistical
significance of the biological pathway under a direct group
analysis method like GSEA.

The biological network co-clustering methods [38; 15; 14;
37; 13; 18; 39; 35] integrate gene expression data with infor-
mation on events underlying cellular response—e.g., protein
interaction, promoter-binding, protein modification—to in-
fer the relevant signaling and regulatory cascades that ex-
plain the disease subtypes studied and drug responses ob-
served. Some of them use co-clustering techniques where
the distance between genes depends both on the expres-
sion profile correlation between the genes and the number of
“hops” between the genes in a given biological network [14;
37; 13]. However, the existence of “hubs”—i.e., those pro-
teins or genes with very high connectivity in the biolog-
ical network—can significantly distort such distance mea-
sures. So some methods in this family [39; 35] downplay
connections through hubs. The most interesting recent de-
velopments along this approach are the network enrichment
analysis algorithms [38]. These algorithms actually oper-
ate in a way similar to GSEA, but they do not consider
the genes in a biological pathway as a whole. Instead, for
each regulator in the pathway, all its targets are considered
as a group, which is then evaluated in a GSEA-like man-
ner. Not all genes in the biological pathway are expected to
be differentially expressed due to the complexity of regula-
tory events. This splitting into separate regulatory groups
can pinpoint the transcriptional regulators whose targets ex-
hibit consistent and significant differential expression pat-
tern, leading to sharper hypotheses that explain the disease
subtypes studied or drug responses observed.

3. PLANS FOR THE FUTURE

We now present some of the issues (Subsection 3.1) that
still remain in the effective analysis of gene expression data.
Then we state our vision (Subsection 3.2) for an advanced
system for more sophisticated analysis of gene expression
data for understanding a disease and its treatment response.
Then we discuss the challenges (Subsection 3.3) in realising
the envisioned system.

3.1 Issues

We have seen in Section 2 the tremendous progress already

p-value is estimated by repeatedly swapping the members
of P and N giving P ′ and N ′ and computing the fraction of
KS(W |P ′, N ′) ≥ KS(W |P, N).



made in the analysis of gene expression data. Neverthe-
less, we still fall short—in at least three ways—of deci-
phering and understanding the causative events of disease
subtypes and treatment responses. Firstly, the functional
groups determined by methods such as GSEA are usually
too general, contain little information on the interplay be-
tween their members, and do not tell us if the selected gene
groups have expression values that are consistent or inconsis-
tent with their known underlying pathways. Secondly, the
collection of pathways and other information that can be
analysed against the observed expression data is still lim-
ited. Thirdly, a comprehensive set of rules for reasoning
about signaling cascades, regulatory interactions, and other
molecular events has never been compiled and formalized.

The first issue calls for continued effort in research on select-
ing relevant genes that serve as starting points for analysis
of disease subtypes and treatment responses. The data min-
ing community has already been paying significant attention
to this problem, and we should see continued progress. An
advice that we would like to offer in this aspect is that the
data mining community should direct their effort in this re-
gard towards gene expression analysis methods that consider
gene expression data along with additional information such
as promoter-binding, protein modification, protein interac-
tion, and other bio-molecular events forming the machinery
that underlies cellular response.

The second issue calls for continued effort in the construction
of high quality databases of biomolecular networks. Such
databases [21] have traditionally been developed by dedi-
cated curators in a mostly manual manner. Such develop-
ments should be continued and expanded. We suspect this
may be most effectively carried out by countries or compa-
nies that have access to a large pool of scientifically com-
petent curators at an acceptable cost—e.g., Molecular Con-
nections Pvt Ltd in Bangalore, India.4 More recently, there
is also an increased interest in the text mining and natural
language processing communities in applying their technolo-
gies to extract information on protein modification, protein
interaction, and other bio-molecular events from published
literature [17; 3; 19], which we hope will eventually lead to a
more automated way of constructing and maintaining high
quality databases of biomolecular networks.

The third issue calls for the development of a comprehensive
set of reasoning rules for thinking about signaling, regula-
tion, and other biomolecular events, as well as the devel-
opment of inference systems for supporting the use of such
rules. Although there is considerable effort in the systems
biology arena in developing accurate simulations [16; 25],
the development of systems for reasoning about biomolec-
ular events at the logical level appears to be more limited.
Such an inference system is likely to involve a significant
level of abductive reasoning, as well as some level of deduc-
tive reasoning and perhaps some level of inductive reasoning.

3.2 Vision

For more sophisticated gene expression analysis for under-
standing diseases and optimizing treatments, we envision an
integrated system with the following capabilities:

• Automated analysis and extraction of information from
4http://www.molecularconnections.com

biomedical texts pertinent to the disease being studied
and the drug response being investigated.

• Automated construction of known pathways and cir-
cuits pertinent to the disease being studied and the
drug response being investigated.

• Reliable tests for consistencies and inconsistencies of
the observed gene expression data and other test data
with respect to these pathways and circuits based on
statistics and heuristics.

• Logical inference of the chain of causative events, pos-
sible breakages and rewiring of these pathways and
circuits, leading to the disease being studied and the
drug response being investigated.

3.3 Challenges

Many established repositories—e.g., GOPubMed5—focus on
data integration and aggregation, where they collect and
aggregate the latest abstracts, papers, and findings. Sem-
Rep [9; 36; 2] is a step closer to our vision. Nevertheless, it
is still basically a repository collection of biological informa-
tion, extracted from abstracts and papers using natural lan-
guage processing techniques. In contrast to SemRep, rather
than building a grand biological repository, our vision calls
for an integration of (i) knowledge from known biological
data repositories, (ii) microarray experiment gene expres-
sion data being studied, and (iii) domain-specific inference.
Such an integration has to be performed in order to support
discovery of consistencies and contradictions with known in-
formation. After discovering the consistencies and contra-
dictions, we can then generate more informative hypothesis
on the causative sequence of events underlying the disease
subtypes and treatment responses being studied.

The least explored component of the envisioned system—at
least within the bioinformatics community—is the develop-
ment of the domain-specific inference system in the con-
text of gene expression analysis for understanding disease
subtypes and treatment responses. Such an inference sys-
tem should contain (i) a logical framework for representing
biomolecular interactions and events, (ii) a set of domain-
specific reasoning rules or heuristics, and (iii) support for
abductive, deductive, as well as inductive reasoning. In
addition, there should preferably be some support for ex-
tracting relevant information from biomedical literature and
converting them into the logical framework for representing
biomolecular interactions and events. We outline here the
challenges to realise our envisioned system.

Challenge 1

As mentioned earlier, current data silos are generally pure
repositories of data. Their task is to make data publicly
available. However, such databases are more suited towards
document retrieval, making knowledge extraction and inte-
gration difficult and complicated. As most of the informa-
tion stored is in text format, to effectively extract knowledge
from such databases, we will need text mining and natural
language processing techniques to extract the required infor-
mation. Although the concept of applying text mining and

5http://www.gopubmed.org



natural language processing to biological text is not novel,
such techniques have been limited to establishing biomolec-
ular interactions through co-occurrence or shallow parsing,
and not detailed relationships between the genes and pro-
teins or conditions underlying the interactions [17]. For in-
stance, consider the geneRIF [31] entry below:

• Chk2 phosphorylates and activates E2F1 in response
to DNA damage, resulting in apoptosis.

Conventional natural language processing techniques are able
to tag both the entities Chk2 and E2F1 as proteins and in-
terpret them as a protein-protein interaction pair due to
their co-occurrence in the text. However, we wish to go
more in-depth and obtain the following relationships:

• activated(Chk2) causes activated(E2F1)
provided DNA-damage

• activated(E2F1) causes apoptosis

Challenge 2

As one of the objectives is understanding treatment response,
specialized metrics, heuristics, and rules are needed to deter-
mine and differentiate responses between responsive patients
and non-responsive patients. Such metrics, heuristics, and
rules have to:

• locate similarities and differences in the expression val-
ues of genes across responsive and non-responsive pa-
tients;

• locate similarities and differences in gene relationships
across responsive and non-responsive patients;

• locate similarities and differences in the expression val-
ues of genes within responsive and non-responsive pa-
tients;

• locate similarities and differences in gene relationships
within responsive and non-responsive patients; and

• use the information above to pinpoint known individ-
ual gene regulatory relationships that are observed and
those that are contradicted by the gene expression data
studied.

Challenge 3

Knowing which individual gene regulatory relationships ex-
pected in normal pathways are observed in or contradicted
by the gene expression data studied may still not be suf-
ficient for one to identify the sequence of causative events
underlying a disease or a drug response. We therefore need
a logical reasoning framework to allow us to chain together
the individual observed gene regulatory relationships so that
the relevant activated or rewired signaling cascades can be
traced, hypothesized, and constructed.

In addition, a significant portion of the known molecular
circuits is at the protein level. In contrast, gene expres-
sion data primarily reflect actions at the RNA level and
at the transcription factor-DNA interface. Unfortunately,
much less information is known at the RNA level and at the

transcription factor-DNA interface. Hence we also need a
logical reasoning framework that allows us to make infer-
ences across all three levels, and especially to make cross
inference between the known protein-level circuits and the
observed gene expression data.

Such a logical reasoning framework should contain a knowl-
edge base of known biological phenomena at all the three
levels of molecular circuitries mentioned above. It should
satisfy the following criteria:

• Biologically sound—no matter how strong a model is
theoretically, it is difficult for strong relevant conclu-
sions to be drawn unless the model is biologically rel-
evant.

• Flexible—to allow the framework’s knowledge base to
be built from different and diverse sources. Regard-
less of the original format of the biological literature
and whatever the microarray gene expression analy-
sis techniques used, they must be representable in the
framework.

• Rules discrimination—to choose between different, pos-
sibly conflicting, set of logical rules and observations.
For instance, we might have two sets of rules which
are biologically mutually exclusive. Yet they give us
the same conclusion. The framework should be able
recommend which set of rules best described the ex-
periment given the conclusion.

4. EXPERIMENTS OF THE PRESENT

We describe in Subsection 4.1 our preliminary explorations
toward an advanced integrated system for the analysis of
gene expression profiles for understanding disease subtypes
and treatment responses. Then we discuss in Subsection 4.2
our thoughts on the less explored area of developing a logical
model and reasoning system for biomolecular events.

4.1 A Statistics/Heuristics-Based Framework

To address the issues discussed earlier, we are experimenting
with an integrated system having the following capabilities:
(i) automated analysis and extraction of information from
biomedical texts, (ii) targeted construction of known path-
ways and circuits, and (iii) tests for consistencies and incon-
sistencies of observed data with respect to these pathways
and circuits based on statistics and heuristics. Figure 4 sum-
marizes the integrated system we are developing. Its four
major components are represented by the red boxes on the
left of the figure—viz., information gathering, processing en-
gine, biological knowledge, and correlation combination. We
describe them below:

Information Gathering

We currently grab data from one main source, NCBI,6 pulling
out the required geneRIFs [31] and paper titles. We concen-
trate on just using geneRIFs for the time being. As the
data in NCBI is well structured, gathering of such infor-
mation is not difficult. Scripts were written to query di-
rectly the NCBI database. The scripts consist mainly of two

6http://www.ncbi.nlm.nih.gov



Figure 4: An integrated framework for analysis of molec-
ular and genetic causative events in disease subtypes and
treatment responses.

posts to the database. The first post7 queries NCBI with
the gene name, allowing us to obtain the NCBI GeneID for
that particular gene. Another query will then be posted8

to NCBI, querying it with the GeneID obtained earlier on.
After which we use a series of regular expressions to obtain
all the geneRIFs for further processing.

Processing Engine

We then process the geneRIFs by identifying the genes and
their protein products. It is not difficult to map to the
genes mentioned in the geneRIFs using the gene list from
the microarray experiment being analysed. After we have
successfully identified the genes and protein products in the
geneRIFs, we use the snowball [1] algorithm—for now—to
extract individual relationships between the genes and their
protein products.

We constraint every relationship between two genes to take
the form depicted in Figure 5. Specifically, a gene or its pro-
tein product can fall into the following four main groups in
any reaction: “regulator”, “co-regulator”, “regulatee”, and
“co-regulatee”; and a gene or its protein product can partici-
pate in four main types of reactions: “activates”, “inhibits”,
“non-activates”, and “non-inhibits”.

We used the snowball algorithm here because it has been
shown to be effective in determining relationships between
object pairs within sentences, and has been reported to
reach an accuracy of 88% [1]. However the snowball algo-
rithm ignores many semantics aspects of natural language,
and thus may miss out on many gene relationships that are
within the text. In particular, the algorithm can fail poorly
when there are multiple genes within the same geneRIF.
Wrong associations and relationships can be developed con-
sequently. Hence, we plan to require that the text be processed
using certain natural language processing themes, and we

7The post is of the form http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=gene&cmd=search&term=X, where
X is the gene name.
8The post is of the form http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=
full report&list uids=Y , where Y is the GeneID.

are currently experimenting with the Stanford Parser.9

Figure 5: Relationships between genes and proteins to be
extracted from geneRIFs.

Biological Knowledge

The individual relationships extracted earlier are fused into
a form of Boolean gene regulatory network (GRN). We have
thus created a small repository of biological information
from available biological knowledge.

Correlation Combination

With this repository of information, we next process the
microarray data. For example, to understand patients’ re-
sponsiveness to a drug, we first group the gene expression
data according to patients’ responsiveness to the drug. With
the repository of reaction pairs between a regulator gi and
a regulatee gj in the GRN, we calculate three correlation
metrics between gi and gj :

• The correlative relationship between gi and gj across
the two groups of patients. In particular, we capture
the situation where the expression values of gi and gj

are correlated in the first group of patients but not in
the second group; or the situation where the expression
values of gi and gj are correlated in the second group
but not in the first group.

• The correlative relationship in gi (gj) across the two
groups of patients. In particular, we capture the situ-
ation where the expression values of gi (gj) in the first
group are not correlated with the expression values of
gi (gj) in the second group.

• The correlative relationship in gi (gj) within each group.
In particular, we want to capture the situation where
the expression values of gi (gj) are correlated to each
other within each of the two group.

These three metrics allow us to find relationships between
gi and gj that are distinctly different only across the two
contrasting groups and show similarity in behaviour within
groups.

Finally, we combine these three metrics with a Bayesian
mixture model to yield a single score on gi and gj . A high
score suggests that there may be a regulatory relationship
between gi and gj that has undergone a change in the two
contrasting groups of patients. By comparison with biolog-
ical information captured earlier in our repository, we will
uncover relationships that are consistent or contradictory to
our repository of biological knowledge. For example, if “gi

9http://nlp.stanford.edu/downloads/lex-parser.
shtml. See also Klein and Manning [23; 24].



inhibits gj” is in our repository, and a high score is given to
the pair gi and gj by the Bayesian mixture model, then it is
likely that “gi inhibits gj” is observed in one of the patient
groups but is not observed in the other patient groups.

This proposed analysis procedure is similar in strategy to
network enrichment analysis [38], where one starts with a
known regulator and its regulatees as a group. However,
network enrichment analysis methods generally test if the
whole group share a common gene expression change pat-
tern. In our case, we test if a regulatory pattern between a
regulator and a regulatee is broken or changed. Hence our
test can directly detect if a pathway is behaving normally
and directly hypothesize possible breakages in a pathway.
Such a test is useful for diseases such as cancers, because
cancer cells can hijack normal pathways and rewire them
around various checkpoints.

4.2 A Logic-Based Framework

The analysis technique described in Subsection 4.1 can pin-
point individual gene regulatory relationships that are ob-
served and those that are contradicted by the gene expres-
sion data studied. However, it still leaves the researcher to
chain together these individual relationships to trace, hy-
pothesize, and construct the pertinent activated or rewired
signal cascades and other causative events. We outline here
a reasoning framework for making inferences across interac-
tions between proteins, RNAs, and genes.

Our reasoning framework has the following components: ob-
servables, events, rules, and reasoning. These components
are explained below.

Observables

We need to represent several types of “observables”. An ob-
servable is some state or property that a researcher measures
or determines at a system-wide level or individual molecule
level. For example, apoptosis is an observable that can be
determined by TUNEL assays, the expression level of a gene
can be determined by a microarray, and so on.

The observables at a system-wide level—such as DNA dam-
age, apoptosis, etc.—are represented as a formula of the
form state(system, X), where X is what is observed. For
brevity, we write X to mean state(system, X). For exam-
ple:

• DNA-damage

• apoptosis

The observables on the protein complex, protein, RNA, and
DNA levels are represented as a formula of the form state(X,
S), where X is a protein complex, protein, RNA, or DNA;
and S is the observed state or property of the molecule,
such as activated, inhibited, upregulated, downregulated,
abundant, degraded, short half life, etc. For brevity, we
write S(X) to mean state(X, S). For example:

• activated(Chk2)

• short-half-life(Claspin)

Events

We need to represent “events” at various levels of molecular
circuits. An event is basically a direct or indirect interac-
tion that causes the system or a protein complex, a protein,
a RNA, or a DNA to adopt or enter a specific observable
state. Thus events capture our knowledge of biology at the
molecular level.

We consider two levels of events. A first-order event is rep-
resented as a formula of the form E causes F , meaning if
E was observed then F would be observed. A second-order
event is represented as a formula of the form E causes F
provided G, meaning if G was observed then the first-order
event E causes F would be observed. For example,

• activated(E2F1) causes apoptosis

• activated(Chk2) causes activated(E2F1)
provided DNA-damage

We also permit multi-molecule version of these events. For
example, the binding of cyclinA and cdk2 to form a complex:

• activated(cyclinA), activated(cdk2)
causes activated(cyclinA-cdk2)

We deliberately use the term “causes” as we do not require
the event to represent a direct interaction between mole-
cules. In other words, if E1 triggers E2, and E2 triggers
E3, it is acceptable to model the indirect triggering of E3

by E1 as E1 causes E3, and omit mentioning E2 altogether.
The granularity is left at the discretion of the modeler. This
allowance for indirectness is necessary because the current
state of knowledge of biology at the molecular level is incom-
plete. For example, the inhibition of polymerase II can lead
to apoptosis, but we do not really know the precise step-by-
step chain of interactions underlying it. This representation
of events permits us the flexibility of modeling those events
that we know in great detail in a more fine-grain way, and
those that we do not know in detail in a more coarse-grain
way.

Rules

The static knowledge that we capture as events are generally
rich in actions at the protein complex and protein levels,
but are usually poor in actions at the RNA and DNA levels.
In contrast, the observables that we capture from our gene
expression data are at the RNA level. So we also need some
“rules” to capture some domain-specific reasoning that a
biologist may use to make cross inference between the known
protein-level circuits and the observed gene expression data.
We consider two types of rules: those expressing normal
expected behavior and those expressing normally mutually
exclusive events.

A rule expressing normal expected behavior is represented
in the same way as events—viz., E causes F and E causes F
provided G—however, the events may contain variables or
place holders for the actual molecules involved. For example,

• upregulated(X) causes abundant(X),

capturing the general rule that upregulating the ex-
pression of gene X leads to abundance of the corre-
sponding protein X.



• downregulated(X) causes degraded(X)
provided short-half-life(X),

capturing the general rule that downregulating the ex-
pression of gene X leads to the disappearance of the
corresponding protein X if it has a short half life.

A rule expressing observables that are normally mutually
exclusive of each other is represented as a formula of the
form E conflicts F , meaning that E and F are normally not
observed together. For example,

• abundant(X) conflicts degraded(X)

• activated(X) conflicts degraded(X)

• upregulated(X) conflicts downregulated(X)

Reasoning

We are now ready to describe the desired “reasoning” to be
done in our framework. At the core of the framework is a
classical proof system, D,R ` σ, depicted in Figure 6. Here,
σ is a ground formula to be proved; R is a set of domain-
specific rules; and D is a set of observables and events.

Let us use the CYC202 responses of our three NPC cell
lines from Subsection 2.3 to outline how we intend to use
the system for reasoning. Recall that the HK1 cell line is
the cell line that responds to CYC202. Suppose we have
done a TUNEL assay and show that apoptosis is observed
in HK1 after treatment by CYC202, and we desire to know
if CYC202 is the cause of apoptosis. Let R∗ be the set of all
domain-specific rules, andD∗ be the set of all observables ac-
tually observed in our gene expression profiling experiments
and other experiments on the HK1 cell line. It is easy to
see that CYC202 is probably the cause of apoptosis if there
is a target inhibited by CYC202—e.g., cdk2—such that we
can find R as small as possible, R′ as large as possible, D
as small as possible, and D′ as large as possible, satisfying
the conditions below:

(1) R′ ⊆ R∗;

(2) R′ ⊆ R;

(3) D′ ⊆ D∗;

(4) D′ ⊆ D;

(5) D,R 6` apoptosis;

(6) D ∪ {inhibited(cdk2)},R ` apoptosis; and

(7) D ∪ {inhibited(cdk2)},R 6` E conflicts F , for all E
and F .

The logic behind the conditions above is as follows. Condi-
tions (1) and (3) allow us to omit some rules, events, and
observations that lead to contradictions, corresponding to
breakages in the expected normal pathways. Conditions (2)
and (4) allow us to insert some new rules and events, as well
as hypothesized observations to be subsequently tested, cor-
responding to rewiring of pathways. Condition (5) shows
that the breakages and rewirings do not by themselves lead

to apoptosis. Condition (6) shows that once CYC202 inhib-
ited its target, cdk2, the system goes into apoptosis. Con-
dition (7) shows that the resulting model contains no incon-
sistency. As apoptosis is only provable when the CYC202
target cdk2 is inhibited, this suggests CYC202 has acted
through inhibiting cdk2 in HK1 cell lines. The exact cas-
cade of signaling events can be reconstructed by tracing the
proof tree of D ∪ {inhibited(cdk2)},R ` apoptosis.

Recall also that the CNE1 cell line does not respond to
CYC202 treatment, and we desire to know how this cell line
escapes the fate of apoptosis after CYC202 treatment. Let
R∗ be the set of all domain-specific rules, and D∗ be the set
of all observables actually observed in our gene expression
profiling experiments and other experiments on the CNE1
cell line. Suppose cdk2, cdk7, and cdk9 are the only known
targets of CYC202. Then the CNE1 cell line probably es-
capes apoptosis if we can find R as small as possible, R′ as
large as possible, D as small as possible, and D′ as large as
possible, satisfying the conditions below:

(1) R′ ⊆ R∗;

(2) R′ ⊆ R;

(3) D′ ⊆ D∗;

(4) D′ ⊆ D;

(5) D∪{inhibited(cdk2), inhibited(cdk7), inhibited(cdk9)},
R 6` apoptosis; and

(6) D∪{inhibited(cdk2), inhibited(cdk7), inhibited(cdk9)},
R 6` E conflicts F , for all E and F .

The logic for Conditions (1)–(4), and (6) is as before. Con-
dition (5) says that even after CYC202 has inhibited all its
known target, apoptosis is not observed. Thus the breakages
and rewirings in Conditions (1)–(4) allow CNE1 to escape
the effects of CYC202.

The two hypothetical theoretical scenarios above suggest we
know how to search for which parts of which pathways to
break, which parts of which pathways to rewire, and which
CYC202 target to check. In practice, the search must be
guided. This is where the integrated system presented ear-
lier in Subsection 4.1 comes in. Specifically, the last com-
ponent of the integrated system is designed to identify can-
didate regulatory relationships of normal pathways that are
observed to be consistent or changed in the gene expression
data.

5. CONCLUDING REMARKS

Personalized drugs are widely promised to revolutionize the
face of medicine. Yet it is important to note that during its
infancy now, it begins with simple stratification policies in
drug prescription, albeit at a highly sophisticated and pre-
cise level. This approach of prescribing personalized drugs
for patients is known collectively by the term pharmaco-
genetics. As defined by [27], we refer to the term phar-
macogenetics as different individuals having differences in
drug responses as a consequence of having different genetic
makeup, hence the term “genetics”. The term pharmacoge-
nomics however, refers to the study of the effects of drug re-
sponses on the entire genome. Hence the term “genomics”.



E ∈ D
D,R ` E

E causes F ∈ D
D,R ` E causes F

E causes F provided G ∈ D
D,R ` E causes F provided G

D,R ` E D,R ` E causes F
D,R ` F

D,R ` G D,R ` E causes F provided G
D,R ` E causes F

D,R ` Eθ E causes F ∈ R
D,R ` Fθ

D,R ` Gθ E causes F provided G ∈ R
D,R ` Eθ causes Fθ

D,R ` Eθ D,R ` Fθ E conflicts F ∈ R
D,R ` Eθ conflicts Fθ

Figure 6: A classical proof system at the core of the reasoning component of the logical framework. Here θ stands for some
grounding substitution as usual.

The primary distinction is their intended use. One serves to
study the differences of a single compound with a number of
individuals, while the other serves to study the differences
of a number of drugs with a single individual.

Gene expression analysis is a key tool for pharmacogenomics
and pharmacogenetics [20]. The most common example
cited in this category is that of the breast cancer treatment
drug trastuzamab [4]. This is a specific antibody against
breast cancer and happens to be ineffective against two
thirds of the patients who do not over-express the drug’s
target, whereas it significantly improves the survival in the
remaining one third where the target is over-expressed.

In this paper, we have provided a succinct but in-depth
survey of progress in the analysis of gene expression data
for the purposes of (i) disease subtype diagnosis, (ii) new
subtype discovery, and (iii) understanding of disease sub-
types and treatment responses. We have discussed the is-
sues where existing works still fall short on. We have fur-
ther envisioned, and are developing, an integrated system—
comprising (i) automated analysis and extraction of infor-
mation from biomedical texts, (ii) targeted construction of
known pathways, and (iii) direct hypothesis generation based
on logical reasoning on and tests for consistencies and incon-
sistencies of observed data with known pathways—to ad-
dress the issues. Thus the system can provide a researcher
possible biologically inspired interpretations and solutions
to his questions, enabling him to better decipher what are
the reasons that cause a drug to be effective or ineffective.
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