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Host�pathogen interactions are important for understanding infection mechanism and devel-

oping better treatment and prevention of infectious diseases. Many computational studies on

host�pathogen interactions have been published. Here, we review recent progress and results in

this ¯eld and provide a systematic summary, comparison and discussion of computational studies
on host�pathogen interactions, including prediction and analysis of host�pathogen protein�
protein interactions; basic principles revealed from host�pathogen interactions; and database

and software tools for host�pathogen interaction data collection, integration and analysis.
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1. Introduction

Infectious diseases are among the leading causes of death worldwide. Host�pathogen

interactions are crucial for better understanding of the mechanisms that underline in-

fectious diseases and for developing more e®ective treatment and prevention measures.

While host�pathogen interactions take many forms, in this review, we concentrate on

protein�protein interactions (PPIs) between a pathogen and its host. This review con-

sists of the following parts: (i) host�pathogen PPIs prediction; (ii) basic principles de-

rived from the analysis of known host�pathogenPPIs; (iii) host�pathogenPPIs analysis

and assessment; and (iv) host�pathogen interaction data collection and integration.

Several approaches have been proposed to computationally predict host�
pathogen PPIs. There has also been progress on analyzing and assessing the quality

of the inferred host�pathogen PPIs. This has led to cataloging of PPI data that can

be further analyzed to understand the impact of these interactions (especially on the
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host) and to decipher underlying disease mechanisms. Approaches developed for

predicting host�pathogen PPIs can be broadly categorized into homology-based,1�5

structure-based,6�8 domain�motif interaction-based approaches,9,10 as well as ma-

chine-learning�based approaches.11�13 These approaches can also be combined and

used together in some studies to improve prediction performance. These approaches

are reviewed in Sec. 2.

An analysis of experimentally veri¯ed as well as manually curated host�pathogen

PPIs have led to a number of observations. These observations include the

topological properties of targeted host proteins and structural properties of

host�pathogen PPI interfaces. These observations are discussed in Sec. 3.

Approaches for assessing and analyzing host�pathogen PPIs can be categorized

into assessment based on gold standard PPIs,6,7,10�13 functional information analysis

[Gene Ontology (GO),5�8,10,11 pathways,5,10,14,15 gene expression data,2,5,6 RNA

interference data7,8,10�13], localization information analysis (protein subcellular

localization,1�5 co-localization of host and pathogen proteins7,8), related experi-

mental data analyses8,11,13 and biological case studies and explanations.2�4,6�8,12

Some of these assessment approaches can also be used as ¯ltering strategies for

pruning host�pathogen PPI prediction results. These approaches and the outcome

of the analysis are reviewed in Sec. 4.

Host�pathogen PPIs curated from primary literature are usually facilitated by

text-mining techniques.16,17 With more host�pathogen PPI data available from

literature curation and experiments, there are strong needs for data collection and

integration facilities that can provide comprehensive storage, convenient access and

e®ective analyses of the integrated host�pathogen interaction data. The develop-

ment of software and database tools dedicated to host�pathogen interaction

data collection, integration and analysis are also very prominent. Integration of

host�pathogen interaction data is not con¯ned to PPI data. Other related data ���
like pathogen virulence factors, human-diseases�related genes, sequence and ho-

mology information, pathway information, functional annotations, diseases infor-

mation, literature sources, etc. ��� are also being integrated into several databases.

These databases16�25 and softwares26 are reviewed in Sec. 5.

2. Host{Pathogen PPIs Prediction

Host�pathogen PPIs play an important role between the host and pathogen, which

may be crucial in the outcome of an infection and the establishment of disease.

Unfortunately, experimentally veri¯ed interactions between host and pathogen

proteins are currently rather limited for most host�pathogen systems. This

has motivated a number of pioneering works on computational prediction of

host�pathogen PPIs. These works can be roughly categorized into modeling

approaches based on sequence homology, protein structure, domain and motif and

approaches based on machine learning. These pioneering works are reviewed and

discussed below.
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2.1. Homology-based approach

The homology-based approach is a conventional way for predicting intra-species

PPIs. Many studies have also adopted this strategy for predicting host�pathogen

PPIs, which are inter-species PPIs. The basic hypothesis of the homology-based

approach is that the interaction between a pair of proteins in one species is expected

to be conserved in related species.27 This is a reasonable hypothesis as a pair of

homologous proteins descend from the same ancestral pair of interacting proteins

and is expected to inherit the structure and function and, thus, interactions of the

ancestral proteins. Therefore, the basic procedure of the homology-based approach

for intra-species PPI prediction is (i) starting from a known PPI (the template PPI)

in some source species, (ii) determining in the target species the homologs (x 0; y 0) of
the two proteins (x; y) in the template PPIs, and (iii) predicting that the two

homologs (x 0; y 0) interact in the target species. This approach is generally adapted to

the inter-species scenario of host�pathogen PPI prediction by (i) starting from a

known PPI (the template PPI) in some source species, (ii) determining in the host a

homolog (x 0) and in the pathogen a homolog (y 0), respectively, of the two proteins

(x; y) in the template PPI and (iii) predicting that (x 0; y 0) interact.
The main advantages of the homology-based approach to host�pathogen PPI

prediction are its simplicity and its apparent biological basis. Since the data required

for performing the prediction are only the template PPIs and protein sequences, this

approach is scalable and can be applied to many di®erent host�pathogen systems.

The homology-based approach can be used alone1�4 or in combination with other

methods5 in predicting host�pathogen PPIs. The investigated host�pathogen sys-

tems in past studies include Homo sapiens�Plasmodium falciparum,1,2,5H.

sapiens�Heliobacter pylori,3 phage T4�Escherichia coli,4 phage lambda�E. coli,4 H.

sapiens�E. coli,4 H. sapiens�Salmonella enterica,4 H. sapiens�Yersinia pestis,4 etc.

The template PPIs used in the prediction can also be very di®erent. The commonly

used template PPIs are from DIP,28 iPfam,29 MINT,30 HPRD,31 Reactome,32

IntAct,33 etc.

There is an inherent weakness in the homology-based approach. Basically, in a

real biological process, such as infection, the two proteins in a predicted PPI may

actually have little opportunity to be present together. Consequently, host�pathogen

PPIs predicted solely on the homology basis, without considering other biological

properties of the proteins involved, may not be very reliable. Additional information

should be used to increase the accuracy of the prediction. For example, extracellular

localization and transmembrane regions are used in pruning4 or constraining

the predictions.3 Also, a pathogen (e.g. P. falciparum) may infect di®erent organs

at di®erent stages of the pathogen's life cycle. Thus, ¯ltering by tissue-speci¯c gene

expression data may also improve prediction reliability.2 Indeed, recognizing this

weakness in the homology-based approach, Wuchty5 has proposed ¯ltering

PPIs predicted by the homology-based approach using a random-forest classi¯er

trained on sequence compositional characteristics of known PPIs, as well as by gene
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expression and molecular characteristics. This results in a signi¯cantly smaller set of

putative host�pathogen PPIs, which are claimed to be of higher quality than the

original set of predicted PPIs.

2.2. Structure-based approach

When a pair of proteins have structures that are similar to a known interacting pair

of proteins, it is reasonable to believe that the former are likely interacting in a way

that is structurally similar to the latter. In accordance to this hypothesis, several

works have used structural information to identify the similarity between query

proteins (i.e. proteins in the pathogen and host) and template PPIs (i.e. known

interacting protein pairs) and infer that those host�pathogen protein pairs that

match some template PPIs are interacting.

2.2.1. Comparative modeling

Prediction by comparative modeling is a representative structure-based approach.

For example, in Davis et al.,6 an automated pipeline for large-scale comparative

protein structure modeling, MODPIPE, is applied to model the structure of host

and pathogen proteins based on their sequences and corresponding template struc-

tures. Given the computed model of a protein, the SCOP34 superfamilies that the

protein belongs to are identi¯ed. A database of protein structural interfaces,

PIBASE, is then scanned. If a SCOP superfamily of a host protein and a SCOP

superfamily of a pathogen protein are both involved in the same PIBASE35 protein

structural interface, then the host protein and the pathogen protein are predicted as

a putative PPI.

Query proteins that lack structural templates cannot be modeled in the above

process. In this case, template interactions in alternative databases (e.g. IntAct) are

considered by Davis et al.6 Speci¯cally, a pair of host and pathogen proteins are

predicted to interact if at least 50% of each of the two protein sequences are similar to

some member proteins of a template complex in IntAct and the joint sequence

identity (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sequence Identity1 � Sequence Identity2

p
) is at least 80%. These pre-

dictions, which are conducted without structural information, form a very small

portion of the total number of putative PPIs, because of the stringent joint

threshold. Each prediction is further followed by a series of assessments and

¯ltering (biological and network ¯lters), which results in a signi¯cant reduction of

potential host�pathogen PPIs by several order of magnitudes.

2.2.2. Structural similarity

Structural similarity can also be analyzed using the Dali database.36 This strategy

has been adopted to predict H. sapiens�HIV PPIs,8 H. sapiens�DENV PPIs7 and

A. aegypti�DENV PPIs.7 Dali calculates structural similarity score by comparing

the 3D structural coordinates of two PDB entries.7 To predict the H. sapiens�HIV

and H. sapiens�DENV PPIs, structurally similar pathogen (HIV, DENV) and host
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(H. sapiens) proteins are ¯rst determined using Dali. Then, under the assumption

that pathogen proteins having similar structure to host proteins are likely to par-

ticipate in the similar set of PPIs (H. sapiens PPI dataset from HPRD31) that those

matched host proteins participate in, the pathogen proteins are directly mapped to

their high-similarity matches within the host intra-species PPI network to predict

the host�pathogen PPIs.7,8 The same structural similarity prediction method has

been applied to identify orthologs between Drosophila melanogaster and Aedes

aegypti and map D. melanogaster�DENV PPIs to predict A. aegypti�DENV

PPIs7 ��� the host�pathogen PPIs between DENV and its real insect host. The

accuracy of this prediction method depends on the performance of Dali in deter-

mining structurally similar pathogen and host proteins. The availability of pathogen

and host protein structures and the quality of host intra-species PPI data also have a

signi¯cant in°uence on prediction results.

2.3. Domain and motif interaction-based approach

Domains are basic building blocks determining the structure and function of proteins

and they play specialized role in mediating the interaction of proteins with other

molecules.37 Some studies have proposed predicting host�pathogen PPI based on

domain�domain interaction (DDI)9 and motif�domain interaction.10

2.3.1. Domain�domain interaction-based approach

Dyer et al.9 predict host�pathogen PPIs in the H. sapiens�P. falciparum system by

integrating known intra-species PPIs with domain pro¯les based on an association

method (sequence-signature algorithm) proposed by Sprinzak and Margalit.38

Speci¯cally, domains are ¯rst identi¯ed by InterProScan39 in each interacting

protein in the intra-species PPIs. Then, the probability P ðd; eÞ that two proteins

containing a speci¯c pair of domains ðd; eÞ would interact is estimated for each

pair of domains in the Bayesian manner. Finally, given a pair of host�pathogen

proteins, their probability of interaction is estimated by a naive combination

(¼ 1�Q
i

Q
jð1� P ðdi; ejÞÞ) of the probabilities from each pair of domains (di; ej)

contained in the pair of proteins.9

At around the same time, Kim et al.40 predict H. sapiens�H. pylori PPIs using

the PreDIN41 and PreSPI42 algorithms, which are also based on domain information.

The domain annotation used in this work is done by InterProScan as well. However,

in contrast to Dyer et al.,9 which is based on estimating the probability of an indi-

vidual pair of domains being associated with protein interactions and naively com-

bining these probabilities, PreDIN and PreSPI directly estimate the probability of

domain combination pairs being associated protein interactions.

2.3.2. Motif�domain interaction-based approach

Some protein interactions are mediated not by interactions between domains but by

interactions between a domain in one protein and a short linear motif (SLiM) in the

Progress in Computational Studies of Host�Pathogen Interactions
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other protein.43,44 As viral pathogens typically have a compact genome, they have

few domains. It is reasonable to postulate that their interaction with host proteins

are likely to be mediated by Domain�SLiM interactions. For example, since HIV-1

proteins have few domains, Evans et al.10 predicted H. sapiens�HIV-1 PPIs based on

the interactions between short eukaryotic linear motifs (ELMs) and human protein

counter domains (CDs).

Evans et al. use the ELM resource45 to determine ELMs contained in human and

HIV-1 proteins and PROSITE46 to determine domains in human proteins. Then

starting from a template human PPI (x; y) where protein x contains a ELM (E) and

protein y a counter domain (CD), proteins in HIV-1 that contain the ELM (E) are

predicted to form host�pathogen PPIs with the human protein y. Notably, Evans

et al. point out that the human protein x is expected to compete with these HIV-1

proteins for interacting with y, and that this competition should be considered as

another form of host�pathogen interaction.

2.4. Machine-learning�based approach

Both supervised11,12 and semi-supervised13 learning frameworks have also been used

in predicting host�pathogen PPIs. A considerable amount of interacting and non-

interacting pairs are usually needed by these machine learning algorithms to produce

good classi¯ers. For example, Tastan et al.11 and Qi et al.13 obtain curated

H. sapiens�HIV PPIs from the \HIV-1, human protein interaction database",19

while Dyer et al.12 compile H. sapiens�HIV PPIs from other sources including

BIND,47 DIP,28 IntAct33 and Reactome.32 Supervised learning framework has ¯rst

been attempted using a Random Forest (RF)11 classi¯er with 35 selected features,

including GO similarity, graph properties of the human interactome, ELM-ligand,

gene expression, tissue feature, sequence similarity, post-translational modi¯cation

similarity to neighbor, HIV-1 protein type, etc. In another work,12 a Support Vector

Machine (SVM) is used with linear kernel and features such as domain pro¯les,

protein sequence k-mers and properties of human proteins in the human interactome.

The performance of supervised learning algorithms is limited by the availability of

truly interacting proteins. However, there are a lot of protein pairs that have a

known association between themselves which may not be a con¯rmed direct inter-

action.13 In order to exploit the availability of these data, Qi et al.13 try a semi-

supervised learning approach.

The semi-supervised approach of Qi et al.13 uses the same training data (collected

by Fu et al.19) as the supervised approach of Tastan et al.,11 who use only physical

PPIs with keywords \interact," \bind," etc. for training. However, Qi et al.13 use

only a subset of the physical PPIs used by Tastan et al.11 This subset consists of 158

expert-annotated H. sapiens�HIV PPIs and is labeled as positive training data. The

remaining PPIs from Fu et al.19 are used as \partial positive" training data. This is

because Qi et al. ¯nd that many of the PPIs ��� even those with keywords \interact,"

\bind," etc. ��� are not well agreed by experts.13 Moreover, only 18 of the 35
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attributes used by Tastan et al. are used by Qi et al. Despite using fewer attributes,

the separation of the PPI training data into de¯nite known positive interactions and

partial positives helps Qi et al. achieve a higher performance than Tastan et al.

An important weakness of these approaches based on machine learning is that the

features used by them ��� e.g. the domain pro¯le feature12 and the HIV-1 protein

type feature11 ��� are not easy to understand, especially with respect to their bio-

logical basis. Another weakness is the limitation of training data. For example, the

use of machine learning approaches in the context of host�pathogen PPI prediction

has so far been applied in the H. sapiens�HIV system because known host�pathogen

PPIs are not available in other host�pathogen systems on a su±ciently large scale.

3. Basic Principles of Host{Pathogen Interaction

Some basic principles derived from the analysis of experimentally veri¯ed or man-

ually curated host�pathogen PPIs are discussed in this section. These principles

either have been reported and con¯rmed by several works or have high potential to

be applied in future works on host�pathogen interactions.

3.1. Topological properties of targeted host proteins

Calderwood et al.48 have generated 44 intra-species Epstein-Barr virus (EBV) PPIs

and 173 inter-species H. sapiens�EBV PPIs using a stringent and systematic two-

hybrid system. They observe that the degree (in the human interactome) of human

proteins involved in H. sapiens�EBV PPIs are signi¯cantly higher than randomly

selected human proteins. Thus, these targeted human proteins are enriched with

hubs (i.e. proteins with high degree in the human interactome).

Moreover, Calderwood et al.48 also report that the minimum number of steps (in

terms of PPI edges) between a targeted human protein and a reachable protein in the

network is, on average, smaller than that of randomly picked human proteins. Thus

the EBV-targeted human proteins have relatively shorter paths to other proteins in

the human interactome.48

Dyer et al.49 have also analyzed the topological properties of pathogen-targeted

host proteins using much larger datasets. The inter-species host�pathogen PPI and

intra-species human PPI datasets studied are integrated from primary literature48

and 7 databases.28,30�33,47,50 This integrated host�pathogen PPI dataset contains

10,477 experimentally detected and manually curated host�pathogen PPIs, covering

190 pathogens (most of which are viruses), while the integrated human PPI dataset

contains 75,457 experimentally veri¯ed PPIs.49 The result reveals that proteins

interacting with viral and bacterial pathogen groups tend to have higher degrees

(hubs), which con¯rms one of the observations of Calderwood et al.,48 and higher

betweenness centrality (bottlenecks).

Dyer et al. also analyze the physical interaction network between human and

three bacterial pathogens (Bacillus anthracis, Francisella tularensis and Y. pestis)

generated from a modi¯ed two-hybrid assay (liquid-format mating).51 The analyses
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show again that pathogens preferentially interact with hubs and bottlenecks in the

human interactome.51 Zhao et al.15 have similarly con¯rmed that hubs are more

likely to be targeted by viruses in studying human�virus PPIs and human signal

transduction pathways.

3.2. Structural properties of host�pathogen PPIs

Franzosa and Xia52 report a signi¯cant overlap between exogenous (i.e. host�
pathogen) and endogenous (i.e. within-host) interfaces of PPIs, suggesting interface

mimicry as a possible pathogen strategy to evade immune system detection and to

hijack host cellular machinery. The exogenous interactions represent clear cases of

horizontal gene transfer between the virus and host.52 The acquisition of viral

protein sequences from hosts are also observed and discussed by Rappoport and

Linial.53

Comparing with endogenous interfaces, exogenous interfaces tend to be smaller,

indicating that the viral genome is under intense selection to reduce its size compared

to the host genome.52 There is a similar observation in another work53 that viral

proteins are noticeably shorter than their corresponding host counterparts, which

may result from acquiring only host gene fragment, eliminating internal domain and

shortening domain linkers.

Interestingly, Franzosa et al.52 ¯nd that virus-targeted interfaces tend to be

\date"-like. That is, they are transiently used by di®erent endogenous binding

partners at di®erent times and, on average, they utilize more human binding part-

ners than generic endogenous interfaces. This ¯nding is supported by functional

enrichment among the mimicked endogenous binding partners for the GO term

\Regulation of Biological Process",52 since proteins involved in biological regulation

usually have transient binding with other proteins. This may also partially explain

the topological property that targeted host proteins tend to be hubs in the host

interactome,48 because the proteins having date-like interfaces tend to interact with

many proteins and appear as hubs in intra-species PPI networks.

Lastly, an analysis of residues involved in exogenous and endogenous interfaces

shows that exogenous interfaces are likely to be less conserved then endogenous

interfaces.48

4. Analysis and Assessment of Host{Pathogen PPIs

Analysis of host�pathogen PPI datasets is essential both for developing better

prediction approaches and applying the host�pathogen PPI datasets in the subse-

quent studies. Assessment and analysis of host�pathogen PPI datasets can be

conducted directly using (i) gold standard host�pathogen PPIs or indirectly using

(ii) functional information, (iii) localization information, (iv) related experimental

data, (v) biological explanation of selected examples, etc.
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4.1. Assessment based on gold standard

Known truly interacting host�pathogen PPI data (gold standard) are available for a

few pathogens. The \HIV-1, Human Protein Interaction database"19 contains a con-

siderable number of H. sapiens�HIV PPIs. A substantial number of host�pathogen

PPIs (mainly H. sapiens�HIV PPIs) can also be found in other databases including

BIND,47 DIP,28 IntAct33 and Reactome.32 Therefore, in the case of H. sapiens�HIV

PPIs, a fairly large gold standard dataset is available. For example, the \HIV-1,

Human Protein Interaction database"19 has been used in assessing predictions based

onmotif�domain interaction.10 On the other hand,Davis et al.6 have onlymanaged to

collect 33 host�pathogen PPIs from the literature to validate their predictions for 10

pathogen species. As another example, Doolittle and Gomez7 have only managed to

collect 3 PPIs from a public database49 and 20 PPIs from the literature, and only 19

among these collected PPIs are speci¯c to the H. sapiens�DENV-2 system that

Doolittle andGomez7 have made predictions for. Although 9 of these 19 gold standard

PPIs are present in the prediction results of Doolittle and Gomez,7 the assessment has

been badly hampered by the small size of the gold standard dataset.

4.2. Analyses and assessments based on functional information

4.2.1. Gene Ontology

Gene Ontology (GO) terms that are signi¯cantly enriched in the host proteins

predicted to be targeted by pathogens can be used to evaluate the functional rele-

vance of the predicted host�pathogen PPIs.6 GO terms speci¯c for human proteins

involved in the immune system and for pathogen proteins involved in host�pathogen

interactions can also be used to ¯lter putative host�pathogen PPIs.6

Several tools can analyze GO term enrichment, including GOstat54 used by

Wuchty,5 GO::TermFinder55 used by Davis et al.,6 Ontologizer56 used by Tanstan

et al.11 and DAVID57 used in many other studies.7,8,10 Speci¯cally, Wuchty5 analyzes

the GO term enrichment of host proteins in predicted H. sapiens�P. falciparum

PPIs and derives the 100 most enriched GO terms (in the Biological Process cate-

gory) of host proteins. He ¯nds that the pathogen may in°uence important signaling

and regulation processes of the host through host�pathogen PPIs.5 Tastan et al.11

analyze the GO term enrichment of host proteins in predicted host�pathogen PPIs;

they ¯nd that 31 GO terms in the Molecular Function category (e.g. transcription

regulator, ligand-dependent nuclear receptor, MHC class I receptor and protein ki-

nase C activities), 19 GO terms in the Biological Process category (e.g. immune

system process and response to stimulus) and 14 GO terms in the Cellular Compo-

nent category (e.g. membrane-enclosed lumen and plasma membrane) are signi¯-

cantly enriched. Enriched GO terms are identi¯ed similarly in several studies7,8

and, results show consistency with viral infection. Similarly, enriched GO terms

have also been analyzed for pathogen groups49 and Conserved Protein Interaction

Modules (CPIM)51 among H. sapiens�B. anthracis, H. sapiens�F. tularensis and

H. sapiens�Y. pestis protein interaction networks.
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4.2.2. Pathway data

An analysis of host�pathogen PPIs in the context of biological pathways provides

a functional overview of the targeted host proteins, illuminates the mechanisms

of a pathogen's obstruction on host pathways and serves as an important as-

sessment of predicted host�pathogen PPIs. We ¯rst discuss some results derived

from an analysis of the known host�pathogen PPIs using pathway data. Then we

introduce some assessment strategies of predicted host�pathogen PPIs using

pathways.

Balakrishnan et al.58 analyze the PPI dataset from the \HIV-1, Human Protein

Interaction database"19 in the context of human signal transduction in the Pathway

Interaction Database (PID)59 and Reactome.32 They discover that a majority

of human pathways can potentially be targeted by H. sapiens�HIV-1 PPIs. How-

ever, many alternative paths (starting and ending at the same proteins yet

circumventing HIV-1 disrupted intermediate steps) to the HIV-1 targeted paths

exist due to human network redundancy; and degradation and downregulation

pathways are among the most highly targeted pathways. Singh et al.14 and Zhao

et al.15 have also obtained similar results from analyzing the same pathway data:

human signal transduction pathways derived from Pathway Interaction Database

(PID)59 and Reactome32 and virus�host PPI data from VirusMINT.16 They ¯nd

that 355 out of 671 pathways are targeted by at least one viral protein. Moreover, the

majority of the pathways (268 out of 355) are targeted by more than one viral

protein. In these 355 pathways, 413 proteins are targeted by 28 di®erent viruses.

Also, 95 of these 413 targeted host proteins are known drug targets.14,15 However,

proteins targeted by di®erent viruses in each pathways are not necessarily the same.

Zhao et al.15 further report that centrally located proteins in merged networks of

statistically signi¯cant pathways are hub proteins and are more frequently targeted

by viruses.

Wuchty5 analyzes both predicted and external (experimentally determined and

structurally inferred) H. sapiens�P. falciparum PPIs using 184 manually curated

pathways from PID.59 He reports that both separate and combined sets of predicted

and external PPIs target proteins which have a higher degree and which appear in

more pathways.5 For each pathogen protein, Wuchty5 identi¯es pathways enriched

with host proteins that are targeted by this pathogen protein using Fisher's exact

test. He then constructs a bipartite matrix between pathogen proteins and their

corresponding enriched host signaling pathways. Observation of the matrix reveals

that the pathogen has many interactions with proteins in the TNF- and NF-kappa B

pathways, which indicate the pathogen's obstruction of in°ammatory response.5 To

evaluate host�pathogen PPIs predicted by the domain�motif interaction-based

approach, KEGG pathway enrichment for HIV-1 proteins (ENV, NEF and TAT)

targeted host proteins in the (experimentally veri¯ed and computationally pre-

dicted) inter-species host�pathogen PPIs are analyzed.10 The enriched pathways

include (i) immune system pathways such as T-cell and B-cell receptor signaling
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pathways, apoptosis, focal adhesion and toll-like receptor signaling pathways;

(ii) disease pathways such as the colorectal cancer, leukemia and lung cancer path-

ways; and (iii) signal transduction processes.10

4.2.3. Gene expression data

Gene expression data are another important functional information source which

have been widely used in the ¯ltering, assessment and veri¯cation of host�pathogen

PPIs. Tissue-speci¯c and infection-related gene expression data are frequently used

in host�pathogen studies. A pathogen like P. falciparum infects di®erent human

organs at di®erent stages of its life cycle. So the expression data of di®erent stages of

its life cycle and H. sapiens tissue-speci¯c gene expression data can be used simul-

taneously for pruning putative H. sapiens�P. falciparum PPIs.2,5 For example,

P. falciparum invades H. sapiens liver tissue during the sporozoite stage. The pre-

dicted host�pathogen PPIs are thus more likely to be real, if the corresponding

human proteins are known to express in liver tissue and the corresponding pathogen

proteins are known to express in the sporozoite stage. This ¯ltering strategy has been

adopted by several studies.2,5 For the H. sapiens�M. tuberculosis system, human

proteins expressed in lung tissue or bronchial epithelial cells and pathogen proteins

upregulated in granuloma, pericavity or distal infection sites can be used for ¯ltering

purposes.6 Moreover, pathogen genes involved in M. tuberculosis infections60,61 and

human genes involved in M. tuberculosis, L. major and T. gondii infections62 can be

compared with the pathogen and host proteins in predicted H. sapiens�M. tubercu-

losis PPIs as a useful assessment.6

4.2.4. RNA interference data

RNA interference (RNAi) is a natural process to speci¯cally and selectively inhibit a

targeted gene expression. Small interfering RNA (siRNA), short hairpin RNA

(shRNA) and bi-functional shRNA are often used to mediate the RNAi e®ect. Some

human proteins, when being silenced by genome-wide RNAi experiments, are found

to be nonlethal to human cells but are essential for HIV replication. These human

proteins may have high likelihood of interacting with HIV. Therefore, comparing the

set of host proteins in predicted host�pathogen PPIs and the set of host proteins

identi¯ed by RNAi experiments can be used as an assessment. We brie°y list some

examples below.

Several studies show that knocking down some host proteins by siRNA63�65 or

shRNAs66 can impair HIV-1 infection or replication. Thus, those host proteins are

essential for HIV-1 infection or replication. Therefore, they have higher possibility to

interact HIV-1 proteins. This has been used as a ¯ltering criterion8 and assessment

data10�13 in several studies.

Three works11�13 based on the machine learning approach for predicting

H. sapiens�HIV PPIs use an siRNA dataset64 to assess their prediction results. The

assessment is conducted by examining the overlap between the human proteins
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targeted by the predicted PPIs and the proteins in the siRNA dataset.64 Besides, Qi

et al.13 also combined four RNAi datasets63�66 and conducted additional assessment

in a similar way.

A ¯ve-way comparison has been conducted by Evans et al.10 on ¯ve HIV-1 tar-

geted human protein datasets ��� viz., (i) the human protein dataset targeted by

PPIs predicted using the motif�domain interaction-based approach10; (ii) human

protein dataset targeted by gold standard PPIs from the \HIV-1, Human Protein

Interaction database"19; and (iii) human protein datasets from three genome-wide

RNAi experiments.63�65 Results show that genome-wide RNAi experiments match

each other better than the interaction studies.10 The matches between protein

dataset (i) and the other four protein sets are signi¯cant but discrepancies are still

observed.10

For the H. sapiens�DENV system, host protein datasets from two siRNA

experiments in DENV infection67,68 are available. They have also been used to re¯ne

H. sapiens�DENV PPI prediction result.7

4.3. Pruning based on localization information

Localization information of pathogen and host proteins may relate to the possi-

bility of their interactions. For extracellular pathogens, their extracellular or se-

cretion proteins may have higher chance of interacting with host surface proteins

rather than host nuclear proteins. For intracellular pathogens like viruses, co-

localization of host and pathogen proteins may be one of the prerequisites for

protein interactions. Several studies use this information to ¯lter prediction

results.

4.3.1. Subcellular localization of host and pathogen proteins

Since pathogen extracellular and secretion proteins, and proteins with transloca-

tional signals are more likely to interact with host extracellular or membrane pro-

teins, such subcellular localization information are often used in pruning of predicted

host�pathogen PPIs.1�5 In connection with this, several tools are used in homology-

based approaches2�4 to predict protein subcellular localization.

4.3.2. Co-localization of host and pathogen proteins

As obligate intracellular pathogens, viruses do not have cellular structure or their

own metabolism and are solely dependent on the host cell. Therefore, a viral pro-

tein and its host protein interaction targets are more likely to be co-localized.

Several studies use this basic assumption to assess or ¯lter predicted

H. sapiens�HIV PPIs8 and H. sapiens-DENV PPIs.7 Similar information is also

used as one of the selected features for classi¯ers in approaches based on machine

learning for predicting H. sapiens�HIV PPIs.11,13 The co-localization information

of two proteins can be revealed through their shared GO terms in the Cellular

Compartment category.
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4.4. Biological explanation of selected examples

An analysis of a speci¯c PPI by explaining the underlining biological functions is not

an e®ective assessment of predicted host�pathogen PPIs because such an analysis

can cover only a small number of PPIs. However, it may facilitate a better under-

standing of that putative PPI and therefore promote subsequent experimental ver-

i¯cation of that prediction. Explanation of the biological basis of some example PPIs

from the whole dataset can be found in many studies.2�4,6�8,12 Some of the speci¯c

examples may have literature or experimental supports, some lack direct literature

support but have some indirect supports including structural information, homology

to template PPIs, evidence from related experiments (gene expression and RNAi

experiment data), etc. Explanation and identi¯cation of validated predictions also

enhance the impact of the prediction methods; and this approach has been used in

many studies.4,6,12 For example, Dyer et al. discuss in detail the predicted

H. sapiens�HIV PPIs12 involving the HIV Dependency Factors64 that have support

in the literature.12 To some extent, explanation of indirect evidence and clues

enhances validity of the selected parts of the prediction results.3,4,6�8 Predicted PPIs

both with and without experimental veri¯cations and PPIs involving hypothetical

proteins are discussed and explained in Krishnadev and Srinivasan.4 In another

work, Tyagi et al.3 also explain some examples of predicted H. sapiens�H. pylori

PPIs through the structural point of view and discuss examples of PPIs involving

membrane proteins, secreted proteins and hypothetical proteins.

4.5. Assessment through related experimental data

Some related experimental data turn out to be useful for assessing the targeted host

proteins in host�pathogen PPIs. For example, during budding, host proteins may be

incorporated into the virion.69 Although some host proteins may be taken up by a

budding virus accidentally, others are known to play crucial roles in viral life cycle

and host�pathogen interaction. A dataset69 on human protein presents in virion has

also been used to ¯lter predicted H. sapiens�HIV-1 PPIs.8

Qi et al.13 and Tanstan et al.11 use a human protein set hijacked by HIV-1 into its

virion70 to assess their predicted H. sapiens�HIV-1 PPIs. Speci¯cally they examine

the overlap between targeted human proteins in the predicted PPIs and the 314

human proteins in virion.70 A large overlap suggests a satisfactory performance of the

prediction approach.11,13

5. Host{Pathogen Interaction Data Collection and Integration

The rapid progress on the host�pathogen interaction studies is supported by

many collection, dissemination, integration, analysis and visualization tools.

Host�pathogen interaction databases, can be divided into two categories: (i) col-

lection and curation databases and (ii) integration and analysis databases. There is
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no clear dividing line for the two categories. This categorization is mostly for

convenience of discussion.

5.1. Host�pathogen interaction data collection techniques

Text mining is frequently used for extracting PPI data from literature. This is very

useful in facilitating the manual curation of host�pathogen interaction data from

publications. For example, VirusMINT16 relies on a simple text mining approach

based on a context-free grammar that identi¯es sentences containing interaction

information to select relevant articles. VirHostNet17 also uses a text mining approach

to prioritize papers for manual curation, where the text mining pipeline is applied to

extract keywords related to both virus and experimental procedures.

Moreover, text mining techniques have been applied to speci¯cally extract

host�pathogen PPIs from biomedical literature with considerable accuracy.71 Fea-

ture-based and language-based approaches are introduced and compared by Thieu

et al.71 Both methods can automatically detect host�pathogen interaction data and

extract information about organisms and proteins involved in the interactions.71 The

feature-based method uses SVM trained on features derived from the individual

sentences, including names of the organisms and corresponding proteins or genes,

keywords describing host�pathogen interaction-speci¯c information, general PPI

information, experimental methods and other statistical information.71 The lan-

guage-based method uses a link grammar parser combined with semantic patterns

derived from training examples.71

5.2. Host�pathogen interaction collection and curation databases

Host�pathogen interaction collection and curation databases are those dedicated to

collect and curate host�pathogen interaction from literature or from experimental

data. These databases may have imported some parts of data from other databases

but at least contain some data derived from their own collection or curation. Col-

lection and curation databases serve primarily as \data source," and generally pro-

vide only simple tools for searching, visualization or analysis. They are often used as

the data source for host�pathogen interaction studies or are imported by integration

and analysis databases (to be discussed in the next section). In this section we list

some representative databases of this category.

PHI-base is a database created to catalog experimentally veri¯ed pathogenicity,

virulence and e®ector genes of fungal and Oomycete pathogens.72 After its update,

the PHI-base also covers bacterial pathogens. The pathogens covered by PHI-base

infect a wide range of hosts.18

The \HIV-1, Human Protein Interaction database" at NCBI aims at cataloging

all interactions between HIV-1 and human proteins published in the peer-reviewed

literature.19 Basic search and visualization tools are also provided. It is very popular

among the AIDS research community and is well known for its intensive long-term

curation e®ort. The H. sapiens�HIV-1 interaction data included in this database
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cover both direct and indirect interactions; brief description and PubMed IDs are

also provided for each entry. Its H. sapiens�HIV-1 PPI data have been used in

several studies10,11,13 and imported as source data by some databases.16

The VirusMINT database aims at collecting all interactions between viral and

human proteins reported in the literature.16 It covers more than 110 di®erent viral

strains.16 The curation e®ort has focused mainly on viruses known to be associated

with infectious diseases and oncogenesis in humans.16 VirusMINT derives its

host�virus PPI data from two sources. The ¯rst source is from databases of litera-

ture-curated PPIs like IntAct,33 MINT30 and \HIV-1, Human Protein Interaction

database".19 Host-virus PPI data are uploaded from IntAct and MINT directly

without further curation. Only a subset of \HIV-1, Human Protein Interaction

database" is imported, which pertains to enzymatic reactions, physical associations

and co-localization. The second source is manually curated PPIs from literature; the

PPIs are ¯rst uploaded to MINT and then re-imported into VirusMINT.16 The

literature curation is facilitated by simple text ming techniques in selecting relevant

articles. MINT30 and VirusMINT are both curated by MINT curators and uploaded

¯rst to MINT then to VirusMINT. Much of the PPI data in VirusMINT are the same

as in MINT. VirusMINT also provides searching and visualization functions.

VirHostNet (Virus�Host Network) is a management and analysis database of

integrated virus�virus, virus�host and host�host interaction networks and their

functional annotations.17 The interaction data are reconstructed from public data-

bases and, for virus�virus and virus�host interactions, are also supplemented by

original literature-curated dataset.

A simple text mining strategy has been adopted for prioritizing articles for lit-

erature curation. Virus�virus and virus�host interactions data from public data-

bases are also carefully inspected before importing into VirHostNet.17 Search and

visualization functions are supported in this database.

The databases mentioned below are mostly well known for their intra-species PPI

datasets. However, their curation and collection have also been extended to

inter-species host�pathogen PPIs. IntAct is an open-source, open-data molecular

interaction database.73 Both intra- and inter-species PPI data are collected in this

database either from the literature or from direct data depositions. For each PPI

entry, a brief description, experimental method and literature citation are included.

Several integration databases16,21,23 import host�pathogen PPI data from IntAct. It

is well known for its intensive curation and quality control process. BioGRID (Bi-

ological General Repository for Interaction Datasets) archives and disseminates

genetic and protein interaction data.74 BioGRID interaction data are curated from

both high-throughput experiments and individual focused studies. Most of the in-

teraction data are intra-species PPIs, but some host�pathogen PPIs are included.

DIP (Database of Interacting Proteins) aims to integrate the diverse experimental

evidences on PPIs into the database.28 It is another well-known intra-species PPI

integration database. It also collects host�pathogen PPI data. Reactome is a

curated, peer-reviewed knowledgebase of biological pathways.32 It curates both
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intra- and inter-species data. Curated host�pathogen PPI data are also available in

Reactome.32 BIND (Biomolecular interaction network database) archives biomo-

lecular interaction, complex and pathway information, and is a major source of

curated biomolecular interactions.47 It has not been maintained for the last few

years, until a recent update and conversion of the BIND data to a standard format

(Proteomics Standard Initiative-Molecular Interaction 2.5).75 Its main interaction

data are intra-species PPIs, but also contains some host�pathogen PPI data.

5.3. Host�pathogen interaction integration and analysis databases

Host�pathogen interaction integration and analysis databases mainly integrate

host�pathogen interaction data from other source databases. While they usually do

not have their own intensive curation process, some of them provide powerful

analysis and visualization functions. The integrated data can be more than just

host�pathogen PPI data, like gene expression data related to infection, disease

outbreak information, pathogen proteomics data, protein functional data, protein

complex data, etc. In this section, representative integration and analysis databases

are brie°y introduced.

APID (Agile Protein Interaction Data Analyzer) provides an open-access

framework where all known experimentally validated PPIs (BIND, BioGRID, DIP,

HPRD, IntAct and MINT) are uni¯ed in it.76 iRefIndex77 provides an index of PPIs

from BIND, BioGrid, DIP, HPRD, IntAct, MINT, MPact,78 MIPS50 and OPHID.79

iRefWeb80 provides a searchable web interface to the iRefIndex. Both APID and

iRefIndex (iRefWeb) are general PPI integration databases, unlike the following

databases which are dedicated to host�pathogen interaction data integration and

analysis. They include host�pathogen PPIs just because their source databases

contain some host�pathogen PPI data.

PHIDIAS (Pathogen�Host Interaction Data Integration and Analysis System)

includes six components (PGBrowser, Pacodom, BLAST searches, Phinfo, Phigen

and Phinet) for searching, comparing and analyzing integrated genome sequences,

conserved domains, host�pathogen interaction data and gene expression data

related to host�pathogen interactions.20

HPIDB is a host�pathogen PPI database which integrates experimental

PPIs from several public databases (BIND, REACTOME, MINT, IntAct, PIG).21

Some of the HPIDB sources may have content overlap with each other, since PIG23

also integrates data from BIND, REACTOME and MINT. Di®erent from PIG ���
which only considers one host, H. sapiens ��� HPIDB also takes other hosts into

account.

GPS-Prot is an integration and visualization database that currently focuses on

H. sapiens�HIV interactions.22 It allows for integration of di®erent HIV interaction

data types.22 Human PPI data are imported from the following six databases, MINT,

IntAct, DIP, MIPS, BioGRID and HPRD. H. sapiens�HIV PPI data are import

from VirusMINT.16 The GPS-Prot can group proteins into functional modules or
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protein complexes, generating intuitive network representations. It allows for the

uploading of user-generated data.22

RCBPR (Resource Center for Biodefense Proteomics Research) is a bioinfor-

matics framework employing a protein-centric approach to integrate and the collect

large and heterogeneous data.81 It is no longer functional and the collected data have

been transferred to the Pathogen Portal (http://www.pathogenportal.org).

PIG (Pathogen Interaction Gateway)23 is created by integrating host�pathogen

PPI data from a number of public resources, including BIND, REACTOME, MINT,

MIPS, HPRD, DIP and MvirDB.82 Now PIG has become part of the PATRIC25

database but only the bacterial pathogen data in PIG have been merged into

PATRIC (which primarily focuses on bacterial pathogens) and can still be accessed

at http://www.patricbrc.org/portal/portal/patric/HPITool.

Disease View is a host�pathogen data integration and visualization resource that

enables access, analysis and integration of diverse data sources, including host,

pathogen, host�pathogen interactions and disease outbreak. It provides a mecha-

nism for infectious-disease�centric data analysis and visualization. The infectious

diseases covered by Disease View come with related information like the corre-

sponding pathogen that causes the infectious diseases, the associated pathogen vir-

ulence genes and the genetic and chemical evidences for the human genes that are

associated with the diseases.24 It is implemented as a component of PATRIC.25

PATRIC (the Pathosystems Resource Integration Center) is a comprehensive

genomics-centric relational database for infectious-disease research.25 Comprehen-

sive bacterial genomics data, associated data relevant to genomic analysis and

analysis tools and platforms have been provided in this database. Its resources can be

divided into two categories, (i) organisms, genomes and comparative genomics and

(ii) recurrent integration of community-derived associated data.

5.4. Host�pathogen interaction integration and analysis software

Not only databases but also standalone software tools are available for

host�pathogen interaction studies.

Conventional complex network analysis and visualization software platforms like

Cytoscape83 continue to be very popular in host�pathogen interaction studies.

Cytoscape has been used for visualization of host�pathogen PPI networks in several

works.9,49 Software that are speci¯cally designed for host�pathogen interaction

studies have also been developed. For example, BiologicalNetworks is a system that

enables the integration of multiscale data for host�pathogen studies.26 It can inte-

grate diverse experimental data types, including molecular interactions, phylogenetic

classi¯cations, genomic sequences, protein structure information, gene expression,

pathway and virulence data for host�pathogen studies.26 It provides several useful

functions, including analyzing subnetworks, building host�pathogen interaction

networks, studying individual genes, identifying potential drug targets, adding

phylogeography, integrating user data, etc.26 This system is available through a
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standalone Java application (BiologicalNetworks), which provides complex data

analysis capabilities, and a web interface (http://°u.sdsc.edu) for quick search of

phylogenetic relations among sequenced strains.

6. Discussion

6.1. Contributions and limitations of current host�pathogen interaction

study approaches

The current host�pathogen interaction studies described in this work are indis-

pensable stepping stones for the future progress in this ¯eld. Nevertheless, several

limitations are also noticeable.

6.1.1. Contributions of current host�pathogen interaction studies

Usually host�pathogen PPIs prediction followed by analyses and assessment would

produce enriched datasets which are useful for the experimental testing and veri¯-

cation. This could save a lot of wet lab experimental e®ort. The prediction and

veri¯cation approaches discussed in these pioneering works pave the way for future

development of host�pathogen interaction studies as they provide insights for

improvements and basis for comparison.

6.1.2. Limitations of current host�pathogen interaction prediction approaches

It is not uncommon that di®erent prediction approaches yield very di®erent pre-

diction results, even in the same host�pathogen system, as revealed by the com-

parison among di®erent H. sapiens�HIV PPI datasets generated from di®erent

prediction approaches.8

It has not escaped our notice that some publications repeatedly report almost the

same prediction method whose performance and predicted results have not been

rigorously assessed. Sometimes even the source data (like template PPI data) are the

same, yet only applied to di®erent host�pathogen systems.2�4 Therefore the con-

tribution of these publications may be relatively limited.

Limited by the current understanding of host�pathogen protein interaction, the

prediction approaches may not resemble the real biological scenario. For example,

although the approach based on motif�domain interaction10 has achieved good per-

formance, Evans et al. have also mentioned the mismatches between predicted result

and gold standard may be caused by the fact that real mechanisms of host�pathogen

PPIs are more complicated than the assumption (that host�pathogen PPIs are

mediated by ELMs-CDs interactions) in this study.

6.1.3. Limitations of current host�pathogen interaction veri¯cation approaches

Due to the limitation of current known gold-standard host�pathogen PPI data and

limited understanding of the host�pathogen interactions, most current assessments

are rather \indirect" approaches.
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Some veri¯cations may not have a strong logical or biological basis. For ex-

ample, Dyer et al.9 assessed predicted H. sapiens�P. falciparum PPIs by exam-

ining whether the pairs of human proteins predicted to interact with the same

pathogen proteins are close to each other in the human PPI network. This as-

sessment through distance in triplets may not have biological or experimental

basis. However, based on the observed topological properties discussed in the

Sec. 3, calculating whether the human proteins targeted by predicted PPIs have

shorter paths to other reachable proteins in the human interactome, would serve

as a possible assessment. Dyer et al.9 also analyze the gene expression pro¯le of

pathogen protein pairs interacting with the same host proteins; they report that

those pathogen protein pairs exhibit correlated gene expression pro¯le, and also

the same for host protein pairs interacting with same pathogen proteins. While

gene expression pro¯le can be reasonably used in assessing M. tuberculosis H37Rv

intra-species PPI datasets as done by Zhou and Wong,84 it may lack biological

basis in assessing inter-species host�pathogen PPI dataset through gene expres-

sion in the form of triplets as conducted by Dyer et al.9

Explanation on selected examples of predicted results re°ects neither the quality

of the whole predicted results nor the performance of prediction approaches. For

example, biological explanation for selected examples should not be used as the only

assessment of a few predicted results, as what we observed in several studies1�4 ���
the qualities of those prediction results are still largely in doubt.

6.2. Contributions and limitations of current host�pathogen

interaction databases

Current host�pathogen interaction databases contribute a lot to host�pathogen

interaction studies in the form of collecting and integrating valuable host�pathogen

interactions and providing powerful analysis tools. Yet some possible limitations also

exist.

The host�pathogen interaction databases greatly facilitate host�pathogen in-

teraction studies in collecting and integrating valuable interaction and related ge-

nomic and experimental data scattered in primary literature. Without these

databases, many of the studies described in this review would be impossible or at

least would take much longer time and more e®ort in collecting the source data.

Moreover, these databases provide the platforms for accessing and sharing of

host�pathogen interaction data, which in turn facilitate research in this ¯eld. Many

databases not only enable convenient data access and integration of related host and

pathogen data but also provide powerful analysis tools which signi¯cantly increase

the e±ciency of host�pathogen interactions analysis.

Some databases lack long-term support and are no longer in function, like

RCBPR.81,85 And there are some information loss in the merging of the one database

into another, like PIG,23 where only its bacterial pathogen data have been moved
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into PATRIC. Some databases, although still in operation, lack necessary updates,

like ViursMINT16 and HPIDB.21

6.3. Literature-curated host�pathogen interaction data

The literature-curated interaction data from the databases discussed above are often

used as gold standard in studies on host�pathogen interactions. However, a study86

on intra-species PPI datasets shows that literature-curated PPI data may not be as

accurate as people usually have assumed. Therefore, those manually curated

host�pathogen PPI data should be used with caution. For example, the \HIV-1,

Human Protein Interaction database" at NCBI19 has been divided into \positively

labeled" and \partially labeled" data in Qi et al.,13 and VirusMINT only imports a

portion of the PPI data from it.

6.4. Future development of host�pathogen interaction studies

Fundamental progress in host�pathogen interaction studies will be achieved in the

future, due to better source data and improved investigation approaches and tools,

and these will lead to deeper understanding of host�pathogen interaction.

It is reasonable to expect that high-quality source data will become increasingly

available. More genomic and proteomic data will come out. As a result, more ac-

curate orthologs can be identi¯ed between less-known pathogens and well-studied

organisms. This will enable the application of homology-based approach to many

understudied host�pathogen systems. Better annotation of known motifs and

counter domains will result in enhanced performance of domain�motif interaction-

based prediction approaches.10 With more protein structures being resolved, the

structure-based approach will have higher-quality structural template and with

much larger coverage. With more high-resolution Structural Interaction Network

(SIN) being provided to analysis, more fundamental interaction mechanisms will

come to light. Abundant and accurate functional information ��� including GO

annotation, gene expression, RNA interference and pathway data ��� will largely

improve the performance of current analysis approaches. More reliable PPI data

(both intra- and inter-species) will provide su±cient high-quality templates for ho-

mology-based approaches and also larger as well as more accurate training and

testing data for machine-learning�based approaches. The lack of gold-standard

host�pathogen PPI data will also be alleviated in the future. As a result more direct

and e®ective veri¯cation approaches will be available for many host�pathogen

systems. With better source data from a variety of aspects, the prediction approaches

that can integrate di®erent types of data (e.g. machine learning-based approach) into

their prediction will have good potential.

More e®ective host�pathogen interaction prediction algorithms will be proposed

in the future. For example, the core algorithm used by Dyer et al. is an association

method proposed in 2001. However, several other algorithms with enhanced per-

formance are available now, including the association numerical method (ASNM)87
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in 2004 and the association probabilistic method (APM)88 in 2006. Using ASNM or

APM in predicting host�pathogen PPIs may improve prediction performance. Re-

cently, Itzhaki et al.37 propose the concept of \preferential use of protein domain

pairs as interaction mediators" may also introduce new idea to DDI-based prediction

algorithms. More accurate prediction and more e®ective veri¯cation approaches on a

better understanding of host�pathogen interactions will come out.

All these will help the community to achieve the ultimate goal of better preven-

tion and treatment of infectious diseases.
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