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Protein complexes are fundamental for understanding principles of cellular organizations.
As the sizes of protein—protein interaction (PPI) networks are increasing, accurate and
fast protein complex prediction from these PPI networks can serve as a guide for biolog-
ical experiments to discover novel protein complexes. However, it is not easy to predict
protein complexes from PPI networks, especially in situations where the PPI network
is noisy and still incomplete. Here, we study the use of indirect interactions between
level-2 neighbors (level-2 interactions) for protein complex prediction. We know from
previous work that proteins which do not interact but share interaction partners (level-2
neighbors) often share biological functions. We have proposed a method in which all
direct and indirect interactions are first weighted using topological weight (FS-Weight),
which estimates the strength of functional association. Interactions with low weight
are removed from the network, while level-2 interactions with high weight are intro-
duced into the interaction network. Existing clustering algorithms can then be applied
to this modified network. We have also proposed a novel algorithm that searches for
cliques in the modified network, and merge cliques to form clusters using a “partial
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clique merging” method. Experiments show that (1) the use of indirect interactions and
topological weight to augment protein—protein interactions can be used to improve the
precision of clusters predicted by various existing clustering algorithms; and (2) our
complex-finding algorithm performs very well on interaction networks modified in this
way. Since no other information except the original PPI network is used, our approach
would be very useful for protein complex prediction, especially for prediction of novel
protein complexes.

Keywords: Protein—protein interaction; protein complex prediction; level-2 interaction;
partial clique merging.

1. Introduction

To understand the organization and dynamics of cell functions, the functional mod-
ules in a protein—protein interaction (PPI) network should be identified. A protein
complex is a group of two or more associated proteins, and is a form of quater-
nary structure. Similar to phosphorylation, complex formation often serves to acti-
vate or inhibit one or more of the associated proteins. PPI networks are rapidly
becoming larger and more complete as research on proteomics and systems biology
proliferates.! As a result, more protein complexes have been identified,? particularly
in the model organism Saccharomyces cerevisiae (baker’s yeast). With a wealth of
PPI datasets that are constantly increasing in size, efficient and accurate intelli-
gent tools for the identification of protein complexes are of great importance. In
this paper, we focus on predicting protein complexes from PPI data.

Currently, there are several approaches to the protein complex prediction
problem? &:

Clique finding. Spirin and Mirny® proposed using clique finding and superparam-
agnetic clustering with Monte Carlo optimization to find clusters of proteins. They
found a significant number of protein complexes that overlap with experimentally
derived ones. While clique finding® imposes stringent search criteria and generally
results in greater precision, recall is limited because (1) protein interaction net-
works are incomplete and (2) protein complexes may not necessarily be complete
subgraphs.

Clustering. Several approaches, such as MCODE,? are cluster-based. MCODE
makes use of local graph density to find a protein complex. PPI networks are trans-
formed to weighted graphs in which vertices are proteins and edges represent protein
interactions. The algorithm operates in three stages: vertex weighting, complex pre-
diction, and optimal postprocessing. Each stage involves several parameters that
can be fine-tuned to get better predictions. The Restricted Neighborhood Search
Clustering (RNSC) algorithm” is another approach based on clustering. Clustering
approaches®?® generally yield better recall, but lower precision. King et al.* showed
that it is possible to isolate high-precision subsets of clusters from those produced
by RNSC using postprocessing based on functional homogeneity, cluster size, and
interaction density. However, recall is drastically reduced as a result. Moreover, the
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Table 1. Main features of protein complex prediction algorithms.

RNSC MCODE MCL
Type Local cost-based  Local neighborhood  Flow simulation
search density search
Multiple assignment of protein No Yes No
Weighted edge No No Yes

approach makes use of functional information, which limits its applicability in less-
studied genomes such as Homo sapiens, Mus musculus, and Arabidopsis thaliana.
Recently, a popular clustering algorithm, Markov clustering algorithm (MCL),” has
also been shown to perform well in an evaluation of algorithms for protein clustering
in PPI networks.® MCL partitions the graph by discriminating strong and weak
flows in the graph, which is shown to be very robust against graph alternations.

In this paper, we will use RNSC,” MCODE,” and MCL? for comparison. These
approaches have been recognized as the state of the art for the task of complex dis-
covery, and have been recently reviewed and compared in Brohée and van Helden.b
Table 1 summarizes the main features of these algorithms.

We know from Chua et al.'® that many proteins that do not interact, but
share common interaction partners, share functions and participate in similar path-
ways. The interactions between these proteins are referred to as “level-2 neigh-
bors”. Chua et al.'® also proposed a topological weight, FS-Weight, for estimating
functional association between direct and indirect interactions, that is shown to
work well.

In this paper, we propose using these indirect interactions with FS-Weight to
modify the existing PPI network as a preprocessing step to complex prediction.
The original PPI network is expanded by including indirect interactions (relation-
ships between pairs of proteins that do not interact, but share common interac-
tion partners). A topological weight, FS-Weight (functional similarity weight), is
then computed for both direct and indirect interactions. Interactions with weights
below a threshold are removed. We also propose a new algorithm that incorpo-
rates F'S-Weight for complex prediction. The algorithm employs clique finding on
a modified PPI network, retaining the benefits of clique-based approaches while
improving recall. The algorithm first searches for cliques in the modified net-
work, and iteratively merges them by “partial clique merging” to form larger
clusters.

In the rest of this paper, we shall refer to predicted protein clusters as clusters,
and known protein complexes as complexes.

2. Indirect Interactions and FS-Weight

A PPI network can be modeled as a graph G = (V, E). Each vertex vy € V
represents a protein, while each edge {v;,v;} € E represents an interaction between
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the proteins v; and v;. For the rest of the paper, we will consider PPI networks
using this representation.

2.1. Indirect interactions

We refer to a physical interaction in the PPI network as a level-1 interaction; and
the relationship between two proteins which do not interact, but share common
interaction interacting partners, as a level-2 or indirect interaction. Members in
a real complex may not have physical interactions with all other members; hence,
conventional methods (clique-based, density-based) may miss the detection of many
members. Chua et al.'® showed that a topological weight, FS-Weight, can be used
to identify both level-1 and level-2 interactions that are likely to share common
functions within the local (level-1 and level-2) PPI interaction neighborhood. By
incorporating interaction weighting and level-2 interactions, better functional pre-
dictions can be made for proteins.

2.2. FS-Weight

The functional similarity weight (FS-Weight) is formulated based on the underlying
hypothesis that proteins share functions as a result of two distinct ways of asso-
ciation: direct functional association through interactions, and indirect functional
association through interactions with common proteins. Direct functional associ-
ation arises from the fact that proteins interact to perform common functions.
Indirect functional association, on the other hand, arises from constraints in the
physical and biochemical properties by which the interaction partners of a protein
may be bound. If two proteins share many common interaction partners, they are
more likely to possess similar properties that allow them to meet the constraints
imposed by these common interaction partners. The FS-Weight is a measure of the
overlap between the interaction partners of two proteins. The higher the overlap
between the interaction partners of two proteins, the higher the likelihood of them
sharing common functions.
The FS-Weight between two proteins v and v is defined as

B 2| Ny N N, | y 2|Ny N Ny |

[Ny = Ny + 2INu NNy + Xuw [Ny — Nu| + 2| Ny NNy 4+ Ay
(1)

where N, refers to the set that contains p and its level-1 neighbors. A, ,, is a pseudo-

count included in the computation to penalize similarity weights between protein
pairs when proteins have very few level-1 neighbors, and is defined as

SFs(U,, U)

Au,p = max(0, navg — (| Ny — Ny| 4+ |Nu N Ny|)), (2)

where n,y is the average number of neighbors per protein in the PPI network.
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The FS-Weight can also be extended to take into account the reliability of each
individual interaction as follows:

SFS (U,’U)
2 > Twwlew
. we(NyNNy)
( Z ru,w + Z ru,w(l - rv,w)) + 2 Z ru,wrv,w + )\u,u
weE(Ny—Ny) weE(N,NNy) we(NyNNy)
2 X Tuwluw
wE(NyNNy)
X )
( Z rv,w + Z Tv,w(l - ru,w)) + 2 Z ru,wrv,w + Av,u
weE(Ny—Ny) we(NyNNy) we(NyNN,)

(3)
where 7, ,, refers to the estimated reliability of the interaction between v and w.
In Chua et al.,'° r, , is estimated based on annotated proteins in the training
set during cross-validation. To avoid possible bias that may be caused by using
additional information (functional annotation), we exclude reliability estimation of
interactions and set all ry, ., to 1.

2.3. Preprocessing the protein—protein interaction network

Proteins within a complex interact to perform some common functions. By intro-
ducing level-2 interactions that are likely to represent strong functional relations
into the interaction network, we may be able to capture members with less physi-
cal involvement in the complex. By using FS-Weight to filter out interactions that
are less reliable and less likely to involve function sharing, we can also reduce the
impact of noise and make more robust predictions.

Using FS-Weight, we modify an existing protein—protein interaction network in
the following manner: level-1 interactions in the network that have low FS-Weights
(weight below a certain threshold, FS-Weight,i,) are removed from the PPI net-
work, while level-2 interactions that have high FS-Weights (above or equal to
FS-Weightin) are added into the PPI network. FS-Weight,,i, is a value that is
determined empirically. The modified PPI network can then be used for protein
complex prediction using existing algorithms.

3. The PCP Algorithm

Here, we also designed a novel algorithm, Protein Complex Prediction (PCP), for
complex prediction using the modified PPI network from the previous section.
This algorithm differs from existing approaches in the following ways: it uses the
FS-Weight information during the merging of cliques (clusters); and merging based
on cliques is a clear and rigid method in graph theory, and is more viable based on
reliable PPI networks. PCP attempts to achieve the high precision of clique-finding
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algorithms whilst providing greater recall and computational tractability, without
using any external information.

The PCP algorithm involves three main steps, which are explained in detail
below.

3.1. Step 1: maximal clique finding

We first find maximal cliques within the modified PPI network. This can be done
using an exhaustive approach or a heuristic approach.

3.1.1. Ezhaustive approach

In this approach, we find all maximal cliques within the modified PPI network. This
is done using the maximal clique-finding algorithm described in Tomita et al.'! This
algorithm has been shown to be very efficient on sparse graphs. All cliques of at
least size 2 are reported. To make sure that there is no overlap among cliques, any
overlap between cliques can only be assigned to one clique. There are many ways
to do this. Since FS-Weight is an estimate for the likelihood of sharing functions, a
cluster with a larger average FS-Weight would more likely represent a subset of a
real complex. We define the average FS-Weight of a subgraph S with edges E; as

Z FS(u,v)

(u,w)EE,
FSan(S) - |Es| . (4)
Ideally, we want to find the best way to remove overlaps so that the total average
FS,vg of all the final nonoverlapping cliques is maximized. However, since this is an
NP-hard problem, we turn to heuristics. All cliques are first sorted by decreasing
FSavg. The clique with the highest F'S,y, is selected and compared with the rest
of the cliques. Whenever an overlap is found with another clique, the overlapping
nodes are assigned to one of the two cliques such that the two cliques have a higher
average FS,,. An example is given in Fig. 1.

FSAvg ({(l, b’ C})+ F‘SAvg,7 ({d}) > FSAvg ({a})+ FSAvg ({b’ C’d})
Merge({a,b,c},{b,c,d}) = {a,b,c},{d}

Fig. 1. Example of overlap resolution between two cliques {a,b,c} and {b,c,d}. Line thickness
depicts the relative FS-Weight scores of edges.
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3.1.2. Heuristic approach

To improve the speed of the maximal clique finding, especially on very large PPI
networks, we also propose a heuristic method for maximal clique finding from PPI
networks. For each node z in a PPI network, sort all of its neighbors by decreasing
degree. Starting x as a clique of size 1, go through each neighbor in the sorted
order and add it to the clique if it interacts with all members of the clique. The
maximum number of cliques we can have is only |V, the number of nodes in PPI
network. In this way, we may miss many cliques. However, since what we want is
to have some strong clusters (i.e. cliques) to start with, we do not need to find all
possible cliques. Moreover, the maximal cliques found will not overlap and hence
no additional work is needed to remove overlaps.

To disambiguate the two clique-finding approaches, we refer to the PCP algo-
rithm based on the heuristic clique-finding approach as PCP*.

3.2. Step 2: computing intercluster density

A protein complex is likely to consist of proteins forming a dense network of interac-
tions, but may not necessarily form a complete clique. Due to the stringent definition
of a clique, the resulting maximal cliques from the clique-finding step are relatively
small and are likely to be partial representations of real complexes. To reconcile
these smaller protein clusters into larger clusters that form a fuller representation
of real complexes, we need to merge them appropriately.

We have tried to merge overlapping clusters based on the amount of overlap-
ping vertices between them. However, the corresponding prediction results are not
good, since each merge considers only overlapping vertices between two clusters, but
overlooks the density of interactions between them. Hence, we define intercluster
density (ICD), which is a measure of interconnectedness between two subgraphs,
as a criterion for merging clusters.

The ICD essentially computes the FS-Weight density of intercluster interactions
between the nonoverlapping proteins of two clusters. Since each cluster is already
densely connected within itself, members that are common to both clusters also form
a cluster that is densely connected. These overlapping members could be a network
module that can be a subset of multiple complexes. If we consider overlapping mem-
bers in the computation of ICD, we may end up merging two distinct complexes that
share a common network module. Conversely, considering only nonoverlapping mem-
bers ensures that the nodes in merged cliques are more uniformly interconnected. In
practice, there will not be any overlap between cliques when computing ICD, since
overlaps between cliques are removed during clique finding (Fig. 1). A high ICD indi-
cates that the two clusters are highly connected. Using ICD to impose criteria for
merging ensures that merged clusters retain a certain degree of interconnectedness
between its members. The ICD between subgraphs S, and Sy is defined as
_ 2 Ses(ij)li€ Va=Wo)j€Vo—Va),(i,4) €E

1CD(S4,51) Va = Vol - [V = Vil 7

()
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ICD(S., Sb) =(0.8+0.5+0.7+0.6+0.9+0.8)/(3*4)=0.36

Fig. 2. Example of ICD computation. There are two clusters, and solid lines are used for ICD
calculation.

where V, is the set of vertices of subgraph S,. An example of ICD computation is
given in Fig. 2.

3.3. Step 3: partial clique merging

To merge cliques found in the PPI network, we define the term “partial cliques” as
strongly connected subgraphs formed from the amalgamation of one or more cliques.
Trivially, all cliques in the PPI network G are partial cliques. We begin with an
initial graph Gg in which each vertex represents a partial clique, and add an edge
(u,v) between any pair of partial cliques v and v in Gg if ICD(u,v) > ICDhres-
From G?N we can again find maximal cliques among the vertices. Each clique in Gg is
therefore a cluster of partial cliques from G, where all pairs of partial cliques in the
cluster fulfill a minimum level of interconnectedness defined by ICD. In other words,
the vertices in each clique from Gg can be merged to form a larger partial clique.

This process is then repeated to form bigger partial cliques. In each iteration i, a
graph Gé is formed from PC?~!, the partial cliques from the previous iteration, i.e.
Gl = (PC {(u,v)[ICD(u,v) > ICDihres, u, v € PC*'}). From G, we can again
find maximal cliques among the vertices (partial cliques in szl) and merge the
proteins in these cliques to form bigger partial cliques. This is done until no further
merge can be made. In order for the more connected partial cliques to merge first, we
first perform the merge using ICD+pes = 1. The merging process is then repeatedly
reinitiated while reducing ICD¢pres by 0.1 until ICD¢pyes < ICD iy ICD iy is a
threshold to be determined empirically. A smaller ICD ,;, will yield bigger clusters
and vice versa. We refer to this merging method as “partial clique merging”.

4. Experiment Settings and Datasets
4.1. Implementation

We implemented the preprocessing step using Perl, and the PCP (and PCP*) algo-
rithm using C++. The implementation of the RNSC” algorithm was obtained from
one of its authors, Igor Jurisca; while the implementation for the MCODE® and
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MCL? algorithms was obtained from the main author of Ref. 6, Sylvian Brohée. The
experiments were performed on a computer with a Pentium 4 central processing
unit (CPU) (clock speed, 3.0 GHz), 1.0 GB of RAM, and running a Linux operating
system.

4.2. PPI datasets

Two high-throughput PPI datasets are used in this paper. The first is obtained
from the GRID database.!? This dataset contains six protein interaction networks
from the Saccharomyces cerevisiae (baker’s yeast) genome. These include interac-
tions characterized by the mass spectrometry technique from Ho et al.,'* Gavin
et al.,'* Gavin et al.,'® and Krogan et al.,'® as well as two-hybrid interactions from
Uetz et al.,' and Ito et al.'™ We refer to the combination of these six networks as
PPI[Combined].

The second dataset is taken from a current release of the BioGRID database.!
We only consider interactions derived from mass spectrometry and two-hybrid

8

experiments, since these represent physical interactions. We shall refer to this
dataset as PPI[BioGRID]. Table 3 presents the features of these datasets, as well
as some characteristics of the clusters predicted by different algorithms.

4.3. Protein complex datasets

As a yardstick for prediction performance, we use protein complex data from
the MIPS database.? These protein complexes are treated as a gold standard for
analysis.

To examine whether false positives in predictions may turn out to be undiscov-
ered annotations, we use two releases of the MIPS complex datasets — a dataset
released on March 30, 2004; and a newer dataset released on May 18, 2006. We refer
to two protein complex datasets as PCogps and PCoggg, respectively. During vali-
dation, proteins that cannot be found in the input interaction network are removed
from the complex data.

4.4. Cluster scoring

The density of a graph G = (V, E) is defined as Dg = |E|/|E|max, where for a
graph with loops, |E|max = |V|(|V]+1)/2; and for a graph with no loops, |E|max =
[VI(|[V| —1)/2. So, D¢ is a real number ranging from 0.0 to 1.0. Resulting clusters
S = (V,E) from the algorithm are scored and ranked by cluster score, which is
defined as the product of the density and the number of vertices in S, (D¢ x |V]).
This ranks larger and denser clusters higher in the results.

4.5. Validation criteria

4.5.1. Matching criteria

In order to study the relative performance of the PCP algorithm against exist-
ing algorithms, we need to define the criterion that determines whether a predicted
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protein cluster matches a true protein complex. Bader and Hogue® defined a match-
ing criterion using the overlap between a protein cluster S and a true protein
complex C:

Vs N Vol
Overlap(S,C) = Vel Vel (6)
where Vg are the vertices of the subgraph defined by S, and V¢ are the vertices of
the subgraph defined by C.

In Bader and Hogue,® an overlap threshold of 0.2 is used to determine a match.
King et al.* used a modified version of the overlap that is more stringent, but
involves many empirically derived parameters which may not be applicable across
different datasets. To simplify comparison, we used an overlap threshold of 0.25
to determine a match for all experiments in this work. Predicted protein clusters
that match one or more true protein complexes with an overlap score above this
threshold are identified as “matched predicted complexes”, and the corresponding
complexes are identified as “matched known complexes”. Note that the number
of “matched clusters”, matchedcysters, may differ from the number of “matched
complexes”, matchedsomplexes, because one known complex can match one or more
predicted clusters.

4.5.2. Preciston-recall analysis

Unlike conventional prediction problems, predicted clusters rarely match real com-
plexes perfectly. Multiple clusters may match the same complex and vice versa.
While it may be possible to consider only cluster matches to plot the receiver oper-
ating characteristics (ROC) graph of each algorithm, the resulting comparison may
not be meaningful since the true-positive rate does not reflect the number of correct
complexes found. Hence, we choose to visualize prediction performance using preci-
sion based on cluster matches and recall based on complex matches. This provides
a more realistic reflection of the usefulness of each method in a practical sense.

To measure the accuracies of prediction, the analysis on the precision and recall
of different algorithms is computed. Precision and recall are defined as

matched clusters
Precision = ————~—clusters -
predZCtedclusters
Recall = matched complexes

: (8)

where predictedciusters and knowncomplexes are the number of predicted clusters and
the number of known (real) complexes, respectively.

The recall measure in our validation is determined by matched complexes
instead of predicted clusters, and hence is not prone to bias. Moreover, the precision
measure uses the number of predicted clusters as a denominator; thus, there should
not be any significant bias in these validation measures. We only consider clusters
and complexes of size 4 and above, since matches between clusters and complexes of

knowncomplexes
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smaller sizes have relatively high probabilities of occurring by chance.* Note that,
unlike the validation measures used in Brohée and van Helden,® we do not seek
to evaluate the clustering properties of each algorithm. Rather, we are concerned
about the actual usefulness of the algorithms in detecting clusters that match real
complexes reasonably well.

4.5.3. Precision-recall analysis based on protein membership assignment

To avoid bias that may arise from large variations in the size of predicted com-
plexes, we also introduce another precision-recall analysis based on protein mem-
bership assignment on some analysis. For this analysis, we defined two terms:
protein—cluster pair (PCIl) and protein—complex pair (PCo). Each PCI represents
a unique protein—cluster relationship. For example, given two predicted clusters
Cl(A) = {Py, Po} and CI(B) = {Py, P3}, we have four PCls, namely (CI(A), Py),
(Cl(A), Py), (CI(B), P1), and (CI(B), P3). Similarly, each PCo represents a unique
protein—complex relationship.

A PClis considered to be matched if its protein belongs to some complex that
matches its cluster. The definition of a match between a predicted cluster and a
complex was described earlier in this section. Precisionpotein is defined as

|matched pcy)

9)

A PCo is considered to be matched if its protein belongs to some cluster that
matches its complex. Recallprotein is defined as

Precision,otein = ——————.
P |predicted pe|

|matched pco|

Recallprotein = (10)

[knownpco|

5. Results
5.1. Parameter determination

The optimal parameters for RNSC, MCODE, and MCL algorithms are given by
Brohée and van Helden® (Table 2).

There are two tunable parameters in our experiments: FS-Weight,,;, and
ICD pin. FS-Weight i, determines the FS-Weight threshold for filtering out level-1
and level-2 interactions. ICD i, determines the intercluster density threshold, for
which two clusters are allowed to merge during clustering for the PCP algorithm.
Based on PPI[Combined] and PCsygp4, we use level-1 interactions (without any fil-
tering) to determine the ICD threshold. The FS-Weight threshold is determined on
the same dataset using the PCP algorithm.

5.1.1. ICD threshold

We first vary ICDyin, the intercluster density threshold for merging clusters,
between 0.1 and 0.5, and perform the predictions. The corresponding precision
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Table 2. Optimal parameters for RNSC, MCODE, and
MCL algorithms.

Algorithm Parameter Optimal value
RNSC No. of experiments 3
Tabu length 50
Scaled stopping tolerance 15
MCODE Depth 100
Node score % 0
Haircut True
Fluff False
% of complex fluffing 0.2
MCL Inflation 1.8

and recall of the predictions are shown in Fig. 3(a). A lower ICDy,;, results in more
clusters being merged and vice versa. We find that ICD;, = 0.1 yields the best
precision against recall and use this for the rest of our experiments.

5.1.2. FS-Weight threshold

Chua et al.'® showed that filtering level-1 and level-2 interactions with an FS-
Weight threshold of 0.2 resulted in interactions that have a significantly higher
likelihood of sharing functions. Here, we perform protein complex prediction using
the PCP algorithm with a range of FS-Weight,;, values to determine which value
can yield the best prediction performance. The ICD;, is set to 0.1. The corre-
sponding precision and recall of the predictions are shown in Fig. 3(b). We find
that FS-Weight,,;, = 0.4 yields the best precision against recall, and use this for
the rest of our experiments.

5.2. Introduction of indirect neighbors

The introduction of indirect neighbors is the key part of our analysis in this paper.
To evaluate the performance of this process, we transform the original PPI network
in different ways: (1) all level-1 interactions; (2) all level-1 and level-2 interactions;
(3) all level-1 interactions, and level-2 interactions with FS-Weight > FS-Weight yin;
and (4) level-1 and level-2 interactions with FS-Weight > FS-Weight,,i,. For (2),
due to the large number of level-2 interactions, results can only be obtained for MCL
and RNSC. For example, on PPI[Combined], there are 20,461 level-1 interactions.
With the introduction of level-2 interactions, the number of interactions increases
to 404,511. After filtering level-2 interactions based on FS-Weight, we have 23,356
interactions. Finally, upon filtering both level-1 and level-2 interactions, we are left
with only 7,303 interactions.

If two proteins in an interaction belong to some common known complex, we
define the interaction as an intracomplex interaction. To justify our intuition for
using level-2 interactions and FS-Weight for complex prediction, we compute the
fraction of interactions in the four transformed networks that are intracomplex
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Precision vs Recall for different ICD Thresholds
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Fig. 3. Effect of (a) ICD threshold and (b) FS-Weight threshold on precision and recall values for
the PPI[Combined] dataset.

interactions. Since proteins are clustered based on interactions, a higher fraction of
intracomplex interactions will naturally yield more accurately predicted clusters. In
Fig. 4, we present the corresponding fractions for two PPI networks, PPI[Combined]
and PPI[BioGRID], using the known protein complexes in PCapps. We observe
that the fraction of intracomplex interactions does not change significantly after
adding filtered level-2 interactions into the network. However, if both level-1 and
level-2 interactions are filtered, the fraction of intracomplex interactions becomes
significantly higher. Without any filtering, level-2 interactions will contain too many
false positives to be useful, as reflected by the very small fraction of intracomplex
interactions. This is consistent with the findings for function similarity in Chua
et al.'® From the observations, we believe that using a PPI network with filtered
level-1 and level-2 interactions would yield the best results for protein complex
prediction.

5.3. Comparison with existing approaches

We compared clusters predicted using four clustering algorithms — MCL, RNSC,
MCODE, and PCP — on the datasets including the six PPI datasets as well as
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Fraction of Intracomplex Interactions
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Fig. 4. Fraction of intracomplex interactions with nodes sharing some complex membership for
different PPI networks.

PPI[Combined] and PPI[BioGRID]. PCspp4 was used to represent a real protein
complex against which the results from these algorithms were validated.

Table 3 summarizes some general characteristics of clusters predicted by the four
clustering algorithms. Looking at the number of complexes in the six PPI networks
from GRID, as well as that of PPI[Combined|, we observe that most of the com-
plexes in these six networks are overlapping. Using only level-1 interactions, clusters
predicted by MCODE are larger than those predicted by other algorithms. Looking
at the PPI[BioGRID] and PPI[Combined| datasets, we can see that the number of
edges in the network increases drastically when we introduce level-2 interactions.
However, after filtering both level-1 and level-2 interactions using FS-Weight, the
number of edges reduces substantially to become even lower than the number of
original level-1 interactions. We also observed that with the introduction of filtered
level-2 interactions, the number of predicted clusters generally decreases while aver-
age cluster sizes increase. This is due to greater connectivity in the graph, since
more edges are added among the same number of nodes. We also observe that the
average cluster sizes of clusters predicted by the MCODE and MCL algorithms are
larger than those predicted by the RNSC and PCP algorithms. After filtering both
level-1 and level-2 interactions using FS-Weight, all algorithms produce less clus-
ters. With the exception of MCODE, the average cluster sizes of clusters predicted
by the various algorithms are also larger.

We have also studied the average density of the clusters predicted by the four
different algorithms using the different networks. Generally, all algorithms predict
clusters with the highest density using only level-1 interactions, followed by using
level-1 and filtered level-2 interactions. Using filtered level-1 and level-2 interactions
results in clusters of lower density. When level-1 and level-2 interactions without
filtering are used, the clusters found have the lowest density. RNSC yields clus-
ters with the highest density, followed by MCODE, PCP, and MCL. Interestingly,
we found that the average density of real protein complexes is quite low, around
0.55, which suggests that the density of predicted clusters does not correlate with
prediction accuracy.
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Figure 5 presents the precision-recall analysis of the predictions made by the
four algorithms. By varying a threshold on cluster score, we can obtain a range of
recall and precision values for the predictions from each algorithm.

From Fig. 5(a) on the PPI[Combined] dataset, we observed that RNSC per-
forms the best in precision and recall on the original network (level-1 interactions).
When level-1 interactions are filtered [Fig. 5(c)], the precision and recall of both
PCP and MCL algorithms increase, and are better than those of the RNSC algo-
rithm. With the introduction of level-2 interactions [Fig. 5(b)], the precision and
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1 1
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Fig. 5. The precisions and recalls of RNSC, MCODE, MCL, and PCP algorithms on
PPI[Combined] with (a) original level-1 interactions, (b) level-1 and level-2 interactions, (c) filtered
level-1 interactions, (d) filtered level-2 interactions, (e) original level-1 and filtered level-2 inter-
actions, and (f) filtered level-1 and level-2 interactions; and on PPI[BioGRID] with (g) original
level-1 interactions, (h) level-1 and level-2 interactions, (i) filtered level-1 interactions, (j) filtered
level-2 interactions, (k) original level-1 and filtered level-2 interactions, and (1) filtered level-1 and
level-2 interactions. Results are based on comparison with the PCo0p4 protein complex dataset.
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Fig. 5. (Continued)

recall decrease. When these level-2 interactions are filtered [Fig. 5(e)], precision and
recall are improved in MCODE and RNSC, while PCP and MCL remain almost
unchanged. When only filtered level-2 interactions alone are used [Fig. 5(d)], the
precision and recall of the four algorithms are already relatively high. When fil-
tered level-1 and level-2 interactions are used together [Fig. 5(f)], all algorithms
show a significant improvement in precision, except RNSC. In all of the combina-
tions, PCP with filtered level-1 and level-2 interactions performs the best [Fig. 5(f)].
A similar trend is observed in the bigger PPI[BioGRID] dataset [Figs. 5(g)-5(1)].
Precision is improved in most algorithms with the introduction of filtered level-2
neighbors, and further improvement is achieved when level-1 interactions are also
filtered based on FS-Weight. In particular, the performance of MCODE and MCL
improved substantially with the introduction of level-2 interactions and FS-Weight
filtering. Again, PCP with filtered level-1 and level-2 interactions performs the best
[Fig. 5(1)].

Furthermore, to illustrate the contribution of PCP to complex prediction, we
compare predictions made by each algorithm natively (i.e. RNSC, MCODE, and
MCL on original level-1 interactions against PCP on filtered level-1 and level-2
interactions) in Fig. 6. We observe that PCP outperforms the other algorithms
significantly [Figs. 6(a) and 6(b)]. We arrived at similar conclusions using precision-
recall analysis based on protein membership assignment [Figs. 6(c) and 6(d)].

For more detailed analysis, we also present the precision and recall graphs for
the four algorithms on the six datasets: Gavin et al.,'* Gavin et al.,'®> Ho et al.,'®
Ito et al.,'” Krogan et al.,'® and Uetz et al.! (Fig. 7 on original level-1 interactions,
and Fig. 8 on filtered level-1 and level-2 interactions).

From Figs. 7 and 8, we find that precision and recall results are better using
filtered level-1 and level-2 interactions compared to using level-1 interactions. This
is especially true for the PCP and RNSC algorithms. On the original level-1
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Fig. 6. Precision-recall analysis of RNSC, MCODE, MCL, and PCP algorithms on
(a) PPI[Combined] and (b) PPI[BioGRID] using native settings (RNSC, MCODE, and MCL on
original level-1 interactions; and PCP on filtered level-1 and level-2 interactions). Precision-recall
analysis is based on protein membership assignment on the same predictions on (¢) PPI[Combined]
and (d) PPI[BioGRID]. Results are based on comparison with the PC2004 protein complex dataset.

interactions, the MCL algorithm performs the best on the Gavin et al.,'* Gavin
et al.,'> and Ho et al.,'> networks; but on the Krogan et al.,'® network, the RNSC
algorithm performs the best.

We also observed that, while the PCP algorithm outperforms the others on
PPI[Combined] using filtered level-1 and level-2 interactions (Fig. 5), it only per-
forms comparably to the MCL algorithm on the six individual datasets. This is
likely to be a result of MCL’s tendency to create bigger clusters. When given smaller
interaction networks, it is able to predict correct clusters; but when using the larger
combined network, it may have clustered more than one complex together, hence
becoming less precise.
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original level-1 interactions. Results are based on comparison with the PCggpo4 protein complex

dataset.



Using Indirect Protein—Protein Interactions for Protein Complex Prediction

Precision vs Recall
(Gavin et al.,"4 Filtered L1&L2 / PC2004)
1 4

Recall

(e)

455

Precision vs Recall
(Gavin et al.,'5 Filtered L1&L2 / PC2004)
1 -

0.9 0.9 1
0.8 - 0.8 |
0.7 4 0.7 1
S 06 5 061
205 8 05 1
S04 & 04+
034 —&— ML 03| —e—McL
: —= RNSC : —m— RNSC
0.2 1| —Aa— MCODE 0.2 {| —A— MCODE
014 —+— PCP 014 —+ PCP
0 ! . 0 . .
0 0.1 0.2 0 0.1 0.2
Recall Recall
(a) (b)
Precision vs Recall Precision vs Recall
(Ho et al.,"3 Filtered L1&L2 / PC2004) (Ito et al.,'7 Filtered L1&L2 / PC2004)
14 1
0.9 4 0.9 - —e— MCL
0.8 4§ 08 - —a— RNSC
: : —a— MCODE
0.7 - 0.7 - —+—PCP
S 06 1 S 06 1
2051 5 05 -
(0] (5]
& 0.4+ NCL & 0.4+
0.3 4 -' RNSC 0.3 4§
0.2 4| —A— MCODE 0.2 -
0.1 4 PCcP 0.1 4
0 ‘ : 0 ‘ :
0 0.1 0.2 0 0.1 0.2
Recall Recall
(c) (d)
Precision vs Recall Precision vs Recall
(Krogan et al., ¢ Filtered L1&L2 / PC2004) (Uetz et al.," Filtered L1&L2 / PC2004)
1 1
0.9 4 0.9 - —e— MCL
0.8 1 08 | —8—RNSC
. . —a— MCODE
0.7 - 0.7 —+—PCP
§ 06 1 S 06 1
§ 0.5 § 0.5 1
& 044 & 0.4+
0.3 4 _’_MIEI:IS_C 0.3 4§
I —
0.2 A MCODE 0.2 {m
01| ——PCP 0.1 -
0 : . 0 . .
0 0.1 0.2 0 0.1 0.2

Recall

()

Fig. 8. The precisions and recalls of RNSC, MCODE, MCL, and PCP algorithms on 6 datasets
with filtered level-1 and level-2 interactions. Results are based on comparison with the PCgpo4
protein complex dataset.
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5.3.1. Examples of predicted complezes

We have proposed two new concepts in this paper: the introduction of indirect
interactions as a preprocessing step, and the PCP clustering algorithm. To illus-
trate how these concepts can help to predict protein clusters that better match
real complexes, we examine some examples of protein clusters predicted by the
PCP algorithm based on the modified network, as well as by the RNSC and MCL
algorithms based on the original network, and how they correspond to real pro-
tein complexes in the PCyp04 dataset. Figure 9 shows two examples where PCP
can predict protein clusters from PPI[Combined] that match a real complex more
precisely than other algorithms. In the first example [Fig. 9(a)], PCP predicted
a cluster that matches a four-member protein complex completely, while RNSC’s
three-member cluster has only one member (YDR121W) that matches the same
complex. This is probably due to the fact that members in RNSC’s cluster are well
connected by level-1 interactions; but by including level-2 interactions and filtering
unreliable interactions, their connections are shown not to be strong enough to be
in one cluster. Therefore, PCP is able to identify the correct complex. Similarly,
the cluster predicted by MCL only overlaps with two members of the complex,
while the other six members of the cluster do not belong to the real complex. The
second example [Fig. 9(b)] shows a five-member protein cluster predicted by PCP
that is a subset of an eight-member protein complex. The best match with the
same complex from RNSC is a seven-member cluster, in which only two belong
to a subset of the real complex. Although PCP’s predicted cluster matched five
proteins and MCL also matched five proteins, the latter predicted six proteins that
are not in the complex. A closer look will reveal that PCP’s cluster members do
not have any interactions among them, and this subset of the real protein complex
can only be identified by level-2 interactions with the rest of the complex members.
PCP is unable to discover the rest of the complex, as their connectivity with the
other members is very weak or unknown. The protein YLLO11W is missed by PCP
because its local topology resulted in a low FS-Weight score; this may be because
“hub proteins” like YLLO11W are automatically penalized by the FS-Weight
score.

5.4. Validation on newer protein complex data

A comparison of prediction performance validated against an old protein complex
dataset and a newer, more updated standard protein complex dataset can reveal
the parameter-independent identification power of the different algorithms. We have
previously assessed the RNSC, MCODE, MCL, and PCP algorithms with PCsgq4.
Here, we validate the predicted clusters of PCP and other algorithms against a more
recent and more updated protein complex dataset, PCsypg6. We have used modi-
fied PPI networks (PPI[Combined] and PPI[BioGRID]) with filtered level-1 and
level-2 interactions, which were shown earlier (Fig. 5) to yield the best performance
for most algorithms studied. The corresponding precision-versus-recall graphs are
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Fig. 9. Example of predicted and matched complexes. Complexes in PCag04 as well as the predicted
clusters by MCL, RNSC, and PCP are shown in different boxes. (a) For a complex in PCggp4 of
size 4, PCP’s cluster matched it perfectly, while MCL’s and RNSC’s clusters matched 1 and 2
of the proteins in the complex, respectively. (b) In this complex in PCggos of size 8, RNSC’s
predicted cluster matched only 2 proteins, while PCP’s predicted cluster matched 5 proteins;

MCL also matched 5 proteins, but predicted 6 proteins that are not in the complex.

shown in Fig. 10. Comparing Fig. 5 against Fig. 10, we find that, against the same
recall range, the precision of all algorithms studied increases substantially when
validating against PCayppg for both PPI network datasets. A significant number
of clusters which are predicted by PCP, but have been treated as false positives
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Fig. 10. The precisions and recalls of different algorithms on (a) PPI[Combined] and (b) PPI
[BioGRID] with filtered level-1 and level-2 interactions. Results are based on comparison with the
PC2006 protein complex dataset.

because they cannot be matched against any known complex in PCsgyo4, are now
found to match against known complexes in PCsp06. This indicates that PCP has
a good potential for finding novel protein complexes.

We also present two illustrative examples in Fig. 11 which show that the PCP
algorithm predicted novel members to some complexes, which are later verified
in the newer complex dataset. In the first example [Fig. 11(a)], PCP predicted a
cluster of four proteins. The cluster is found to match well with a real four-member
complex from PCgpg4 that contains all but one of the proteins in the predicted
cluster. A comparison with PCsygog, however, reveals that the predicted cluster
matched a real complex in the dataset that contains all four proteins. The protein
YFLOO8W in PCsg¢ has level-1 interactions with the other three proteins, but since
the FS-Weight of these interactions are low, PCP did not predict it to be in the same
cluster. It is also interesting that in Fig. 11(b), PCP has predicted YHR033W to
be in the same cluster as the other five proteins; this is consistent with PCgggg, but
not PCsgp4. However, the other five proteins in the new complex are not predicted
by PCP, since they do not have any level-1 interaction with other proteins. We
think that a more accurate prediction of this protein complex may be achieved by
incorporating additional information such as function annotations. Moreover, while
the YJRO72C protein is predicted by PCP, it is not in the new protein complex.
Since the interactions of this protein with YDR212W and YJR064W are present
in quite a few other protein complexes,® we believe that even though this protein
is not in the same complex with other proteins, it should be in the same “function
unit”? with these proteins. Discriminating “function unit” with protein complex
may need additional information such as function annotations.
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PCanngs complex
PCP cluster
————— PCanns complex

YDL188C

Fig. 11. Examples of predicted and matched complexes based on old and new PPI networks.
Complexes in PCa0p4 and PCappe and the predicted PCP clusters are shown in different boxes for
comparison. (a) The complex in PCago4 is of size 4; while in PCagos, its size is 5. PCP predicted
4 proteins in this complex correctly. (b) This complex is of size 5 in PCagps4, for which PCP
predicted all 5 proteins correctly. In PCaqg, its size is 11, while the PCP algorithm predicted 6
of them correctly.

5.5. Examples of novel complexes predicted by PCP

Table 4 lists some clusters predicted by the PCP algorithm that match some com-
plexes in PCsgps. These complexes are not present in PCsgp4, and the matching
clusters do not have any matching complexes in PCypp4. The Gene Ontology term
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Table 4. Selected clusters identified by the PCP algorithm. Proteins with suffix (1) are those that
have the GO annotation specified, and proteins with suffix (0) are those that do not have the
specified GO annotation. Cluster members in bold are also members of the matching complex.

Complex Cluster GO annotation Notes
YDR138W, YHR167W, YCLO011C(1), YDL0O84W(1), GO0:0051028 5 overlaps
YML062C, YNL139C, YDR138W (1), YHR167W (1), (mRNA Complex Size: 5
YNL253W YJL006C(0), YML062C(1), transport) Cluster Size: 11

YML112W(0), YNLO0O4W/(1),
YNL139C(1), YNL253W(1),
YOR191W(0)

YCR052W, YDR303C, YCRO020W-B(1), YCRO052W (1), GO:0006139 13 overlaps
YER025W, YFR037C, YDR303C(1), YFR037C(1), (nucleobase, Complex Size: 14
YGR275W, YIL126W, YGRO0O56W(1), YGR275W(0), nucleoside, Cluster Size: 16
YKRO0OSW, YLRO33W,  YHRO56C(1), YIL126W/(1), nucleotide, and
YLR321C, YLR357TW, YKRO08W (1), YLRO33W (1), nucleic acid
YML127W, YMRO033W, YLR321C(1), YLR357W(1), metabolic
YMRO091C, YPR034W YML127W (1), YMRO033W (1), process)

YMRO091C(0), YPRO34W (1)

YDR211W, YER025W, YDR211W(1), YER025W (1), GO:0044249 5 overlaps

YFL039C, YGRO083C, YGRO083C(1), YJRO0TW(1), (cellular Complex Size: 9
YGR159C, YLR291C, YKRO026C(1), YNL265C(1), biosynthetic Cluster Size: 8
YOR260W, YOR361C, YOR260W (1), YPL237W(1) process)

YPL237TW

(biological process) that is annotated to the most number of proteins within each
predicted cluster is also shown in the table. These examples illustrate the ability of
the algorithm to predict novel complexes.

5.6. Robustness against noise in interaction data

To assess the robustness of the PCP algorithm, we compute the precision and
recall of clusters predicted by PCP when different types and amounts of noise are
randomly introduced into the PPI[Combined] dataset.

In robustness experiments, noises are usually introduced by swapping edges or
randomizing the node labels. However, these methods, which are used in estimating
p-values and the uniqueness of PPI motifs, are not a good model for our purpose.
We are considering errors produced by high-throughput PPI experiments. In this
type of experiment, the errors should be closer to missing (not detected) edges
or sticky proteins, which are modeled by random noises. Hence, to simulate such
noise, we randomly add, delete, and reroute (delete and add) 10% to 50% of pseudo-
interactions in the network. The precision and recall of the predicted clusters on
the various perturbed datasets are shown in Fig. 12.

We can see from Fig. 12(a) that the precision against recall of the clusters pre-
dicted by PCP remains fairly consistent, even with random additions of interactions
up to 50% of the original interactions in PPI[Combined]. This is a clear indication
that the PCP algorithm is robust against spurious interactions. The filtering of the
PPI network based on FS-Weight removes most of these random additions, and
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Fig. 12. The precision and recall of predictions made by the PCP algorithm when different types
and amounts of noise are introduced into the reliable PPI network. Three ways of perturbing
the network are studied: (a) random addition, (b) random deletion, and (c¢) random deletion and

addition (reroute).
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retains only confident interactions for clustering. Random deletion of interactions
has a greater impact on clustering performance, as can be seen in Fig. 12(b). This
is analogous to a lack of information, leading to a reduction in recall. As FS-Weight
is a local topology measure, it becomes less effective when the interaction network
becomes very sparse, since there will be insufficient interactions in the local neigh-
borhood to give a confident score. The formulation of the measure will assign low
weights in these cases, which will cause many interactions to be filtered. Nonetheless,
precision remains high for clusters that can be discovered. A combination of random
addition and deletions results in a simultaneous reduction in precision and recall.

5.7. Improvement of efficiency by heuristic clique finding

As clique finding is a computationally expensive operation, the introduction of
heuristics can help to make the PCP algorithm more scalable to larger interaction
networks. Here, we compare the relative performance and efficiency between using
PCP (based on exhaustive clique finding) and PCP* (based on heuristic clique
finding) on PPI[Combined] and PPI[BioGRID] datasets.

Figure 13 shows the precision versus recall graphs for the predictions made
by PCP and PCP*. Both algorithms achieved similar precision and recall perfor-
mance on the datasets examined [Figs. 13(a) and 13(b)]. Similar conclusions can
be derived using precision-recall analysis based on protein membership assignment
[Figs. 13(c) and 13(d)]. The use of the heuristic clique-finding approach in place of
the exhaustive clique-finding approach did not result in any noticeable difference
in the performance of the PCP algorithm.

However, PCP and PCP* do have significant differences in their computational
efficiency. Table 5 shows the amount of CPU time taken by PCP and PCP* to
make predictions on different datasets. On the six small PPI networks, PCP* is
only 0.1 ~ 25 seconds faster than PCP on original level-1 interactions, and even
slightly slower than PCP on some PPI networks with filtered level-1 and level-
2 interactions in some cases. However, for the much larger PPI[Combined] and
PPI[BioGRID] datasets, PCP* is at least two times faster than PCP on original
level-1 interactions, and at least 1.5 times faster than PCP on filtered level-1 and
level-2 interactions. The relative speedup achieved using PCP* will tend to increase
with the size of the interaction network.

Based on these results, we can conclude that for the datasets examined, the
use of the heuristic clique-finding method (PCP* algorithm) can effectively speed
up the process of protein complex prediction without significant compromise in
precision and recall. This is especially useful for very large PPI networks.

6. Discussion and Conclusion

Protein complexes play an important role in cells, and protein complex discovery
from PPI networks remains an interesting and challenging problem in systems
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Fig. 13. Precision-recall analysis of PCP and PCP* algorithms on (a) PPI[Combined]
and (b) PPIBioGRID] using filtered level-1 and level-2 interactions; precision-recall analysis
based on protein membership assignment on the same predictions on (c¢) PPI[Combined] and
(d) PPI[BioGRID]. Results are based on comparison with the PCagos4 protein complex dataset.

biology. Challenges to this task include (1) a rapid increase in the size of PPI
data, (2) incomplete PPI data, and (3) the fact that PPI data can contain many
€errors.

In this paper, we proposed a preprocessing step on PPI networks before complex
prediction: (1) introduce level-2 interactions; (2) weigh level-1 and level-2 interac-
tions using FS-Weight; and (3) remove interactions with weight lower than a certain
threshold. This way, we can alleviate the problem of incompleteness and noise in
current PPI networks. From our experiments, we have shown that existing clustering
algorithms are able to produce clusters that match protein complexes with signif-
icantly higher precision and recall using PPI networks processed in this way.
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Table 5. CPU time taken by PCP and PCP* algorithms for different datasets.

CPU time (s)

PCP PCP*

Datasets Nodes Edges L1 Filtered L1&L2 L1 Filtered L1&L2
Gavin et al.'* 1352 3210 21.41 7.09 15.9 5.6
Cavin et al.'® 1430 6531 43.2 36.59 25.24 19.31

Ho et al.'3 1564 3599 47.3 6.44 23.09 5.78
Krogan et al.16 2934 3959 44.44 12.55 34.15 5.71

Ito et al.l” 2675 7084  61.48 6.34 38.1 11.43
Uetz et al.l 909 822 2.95 0.56 2.84 0.58
PPI[Combined] 4672 20461  395.83 24.89 175.45 16.85
PPI[BioGRID)] 5036 27560  831.1 54.45 273.04 29.77

Based on the modified PPI network, we have also proposed the PCP clustering
algorithm in which cliques are identified in the network and merged progressively
using the “partial clique merging” method. We have compared the PCP algorithm
with RNSC, MCODE, and MCL algorithms, and showed that PCP has superior
precision and recall in complex prediction. By validating against newer MIPS com-
plex data, we found that PCP can discover novel complex members as well as novel
complexes which are only found in the newer complex dataset. Through compre-
hensive noise analysis, we have further shown that PCP maintains high precision
even when used on significantly noisier datasets. We have also proposed a heuristic
clique-finding method for the PCP algorithm. Experiments show that this method
can effectively speed up the PCP algorithm, without affecting its precision and
recall.

There is still one limitation that plagues previous approaches and our current
approach: complexes which have subsets of proteins that are not tightly connected
to the rest of the complex members cannot be identified, as illustrated in Fig. 11(b).
This is inevitable, since clustering methods are highly dependent on interaction den-
sity. We are currently studying the possibility of using other biological information
to represent a more reliable and complete network of relationships between proteins
for complex prediction.
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