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Transcript-level quanti¯cation is often measured across two groups of patients to aid the dis-

covery of biomarkers and detection of biological mechanisms involving these biomarkers. Sta-

tistical tests lack power and false discovery rate is high when sample size is small. Yet, many
experiments have very few samples (� 5). This creates the impetus for a method to discover

biomarkers and mechanisms under very small sample sizes. We present a powerful method,

ESSNet, that is able to identify subnetworks consistently across independent datasets of the

same disease phenotypes even under very small sample sizes. The key idea of ESSNet is to
fragment large pathways into smaller subnetworks and compute a statistic that discriminates

the subnetworks in two phenotypes. We do not greedily select genes to be included based on

di®erential expression but rely on gene-expression-level ranking within a phenotype, which is

shown to be stable even under extremely small sample sizes. We test our subnetworks on null
distributions obtained by array rotation; this preserves the gene–gene correlation structure and

is suitable for datasets with small sample size allowing us to consistently predict relevant

subnetworks even when sample size is small. For most other methods, this consistency drops to
less than 10% when we test them on datasets with only two samples from each phenotype,

whereas ESSNet is able to achieve an average consistency of 58% (72% when we consider genes

within the subnetworks) and continues to be superior when sample size is large. We further show

that the subnetworks identi¯ed by ESSNet are highly correlated to many references in the
biological literature. ESSNet and supplementary material are available at: http://compbio.

ddns.comp.nus.edu.sg:8080/essnet.
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1. Introduction

Over the past decade, many methods have been proposed to ¯nd relevant disease-

causing mechanisms. A p-value is often associated to these disease-causing

mechanisms, depicting the level of signi¯cance in which the mechanism is enriched in

a phenotype.

Extremely small sample size (N � 5) limits many of these approaches. For in-

stance, permutation tests cannot reliably compute a p-value in these cases. Scenarios

with extremely small sample size are not uncommon. For example, model organisms

and cultured cell lines often have two main phenotypes with multiple repeated

experiments. Moreover, newer technologies that measure gene expression using

RNA-seq can be costly and fewer samples are considered because of the economics of

driving a large-scale study.

On the other hand, numerous studies have also shown that large sample sizes are

required to maintain high statistical power and low familywise error rate or low false

discovery rate.1–4 For example, one such model requires more than 100 samples to

achieve power at 0.9 and false discovery rate at 0.05.1

To date, no method is able to identify disease mechanisms in extremely small

sample size situations. Even in a moderately large sample size situation, microarray

analysis shows low consistency when applied to independent datasets of the same

disease phenotypes, i.e. the genes and/or subnetworks identi¯ed by these methods

are very di®erent in two independent datasets.5 The rare exceptions are SNet and its

re¯nement PFSNet, which manage to get high agreement across independent

datasets.6,7 However, these works do not study their performance when sample sizes

are small.

This raises the question of whether disease mechanisms can be consistently

identi¯ed under small sample size situations. In this paper, for gene expression

analysis methods like GSEA, ORA, and PFSNet, we show that the agreement

between two independent datasets drops when a small number of samples is used in

the analysis.7–9 We further present a new method, ESSNet (Extremely Small sample

size Subnetworks), which is shown to be consistent across independent datasets, even

when sample size is very small.

2. Background

Many methods are available for detecting signi¯cant di®erential gene expression,

most of which have reported results on datasets with reasonably large sample sizes.

The earliest techniques test individual genes for di®erential expression using fold

change, t-test, SAM, etc.10 However, these techniques are extremely sensitive to
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small sample sizes; see Fig. 1. For example, the gene rankings based on log fold-

change and t-test p-values have large deviations between di®erent samples when

sample size is small. In addition to this, individual gene testing also faces large

amounts of false positives due to multiple hypothesis testing.

In recent years, gene expression analysis is increasingly performed in the context

of pathways or gene sets to circumvent the problem of large false positives in multiple

hypothesis testing of individual genes and to improve interpretability of the results.

For example, overlap analysis tests whether the proportion of di®erentially expressed

genes in a pathway is signi¯cantly di®erent from a random gene set.9 Direct-group

methods like GSEA and FCS compute a p-value representing the signi¯cance of the

correlation of an entire pathway to phenotypes.8,12 Network-based methods like

NEA, DEAP, SNet, and PFSNet select smaller components (subnetworks) within a

pathway and test whether these subnetworks have signi¯cant correlation with

phenotypes.6,7,13,14 Model-based methods like SRI and GGEA construct a dynamic

model for a pathway using one phenotype and test whether the model is inconsistent

in the other phenotype.15,16

These approaches do not work well when sample size is small for various reasons:

(1) They involve an intermediate step of computing di®erential expression of genes

within a pathway by fold change, t-test, etc., which are very sensitive to sample sizes.

(2) Model-based methods cannot learn parameters with very few training samples.

(3) Permutation test cannot be reliably computed because of the limited number of

class-label permutations.

Even in a moderately large sample size setting, these methods often return results

that are irreproducible when applied to independent datasets.7
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Fig. 1. E®ects of sample size. P -values, log fold changes and gene-expression-level rankings are computed

using data taken from Ref. 11 and their ranks are recorded, for every sample size (N) considered ranging

from 2 to 10. This process is repeated over 100 times and the standard deviations of the respective ranks are
measured. (a) t-test p-values are very sensitive to sample size variation, e.g. the standard deviation of the

ranks of the p-values of a gene can be as large as 0.35 when N ¼ 2. (b) log fold change is also very sensitive

to sample size, e.g. the maximum standard deviation of the ranks of the log fold changes of a gene is 0.4

when N ¼ 2. (c) gene ranking based on expression level is less sensitive to sample size, the maximum
standard deviation is about 0.1 when N ¼ 2.
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3. Method

The key idea of ESSNet is to fragment large pathways into smaller subnetworks and

compute a statistic that discriminates the subnetworks in two phenotypes that is

stable even when sample size is small. ESSNet comprises two main steps: subnetwork

generation and subnetwork scoring. These steps are described below.

3.1. Subnetwork generation

As biological pathway repositories have very little agreement, the choice of the

pathway database used a®ects the results of gene-set-based microarray analysis. We

use pathways from PathwayAPI, a database that uni¯es popular pathway data-

bases ��� KEGG, Wikipathways, and Ingenuity (www.ingenuity.com) ��� so that the

biological information is as comprehensive as possible.17–19

For each patient in phenotype D, we rank the genes by their expression values in

decreasing order so that the most highly expressed gene is assigned the rank 1, the

second most highly expressed gene the rank 2, and so on. Let rðgi; pjÞ be the rank of

gene i in patient j. We tested and found that gene ranks do not °uctuate as much due

to sample size variation as fold change or p-values from t-test; see Fig. 1. Each gene is

then given a rank based on the average among the patients of phenotype D:

rankDðgiÞ ¼
X

j2D

rðgi; pjÞ
jDj ; ð1Þ

where jDj is the number of samples belonging to the phenotype D.

We obtain a gene list extracted from the top �% of the gene ranks computed in

Eq. (1). We chose � ¼ 10 in our experiments. Genes not in this list are removed from

every pathway, thus fragmenting each pathway into smaller connected components

(i.e., the subnetworks). We only consider subnetworks that are of size at least 5. The

subnetworks for phenotype :D are generated analogously.

3.2. Subnetwork testing

Methods that score subnetworks based on individual samples may not be able to do

so reliably when sample sizes are small. For example, one might use t-statistics to

score a disease subnetwork with a mean value of 15 in phenotype D and 51 in :D.

With two samples in each group: 10, 20 and 50, 52, a simple t-test produces a p-value

of 0.077, whereas with more samples: 9, 10, 20, 21 and 49, 50, 52, 53, the p-value

drops to 0.0008. This demonstrates that many existing methods may produce dra-

matically di®erent outcomes when sample sizes are varied.

Our subnetwork score is based on a novel idea. We postulate that, when a sub-

network is irrelevant to the distinction between phenotypesD and :D, the di®erence

of the expression values of any gene in this subnetwork in any pair of samples of D

and :D should be very small. Suppose there are k genes in a subnetwork, m samples

in phenotype D and n samples in phenotype :D. Then there are m � n possible pairs
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of di®erences for each of the k genes. Let �ðgi; pj; p 0
lÞ ¼ eðgi; pjÞ � eðgi; p 0

lÞ for each pj
inD, p 0

l in :D and gi in subnetwork s, where eða; bÞ represents the expression value of

gene a in patient b. According to the postulate, if the subnetwork is irrelevant, these

M ¼ k �m � n paired di®erences should be distributed around 0. Returning to our

example of using two samples per group, although we have only two samples per

phenotype, we can have up to 4 � k values in �ðgi; pj; p 0
lÞ if k is the size of the

subnetwork.

We propose using the t-statistic formula, Ts ¼ �

sd=

ffiffiffiffi
M

p , where � and sd are re-

spectively the mean and standard deviation of �ðgi; pj; p 0
lÞ in the subnetwork s, and

M ¼ k �m � n, as a test statistic for evaluating whether the set of pair di®erences

�ðgi; pj; p 0
lÞ in the subnetwork s is distributed around 0. Note that, even though we

use the t-statistic formula, its signi¯cance should not be evaluated based on the

t-distribution of M degrees of freedom in the standard way for two reasons. Firstly,

the null hypothesis (that the subnetwork s is irrelevant) does not imply the null

distribution is a t-distribution. Secondly, the paired di®erences are not completely

mutually independent ��� the actual degrees of freedom is somewhere between

mþ n and k � ðmþ nÞ depending on how tightly genes in the subnetwork s are

co-regulated.

Our conjecture that �ðgi; pj; p 0
lÞ is a distribution around 0 can be tested on a null

distribution generated based on a valid null hypothesis, according to the principles of

exchangeability. There are two common ways for generating null distributions in

gene expression analysis, in which randomized columns or rows of the expression

matrix are used to re-compute the statistic over a number of iterations.

The ¯rst way assumes the null hypothesis that the subnetwork being tested is

irrelevant to distinguishing the two phenotypes. Thus the gene expression pro¯les of

any pair of patients from the two phenotypes are exchangeable for computing points

in the null distribution. In other words, class labels are randomly swapped to create

new data inputs from which the null distribution is formed. This method is used by

GSEA to evaluate the signi¯cance of the Kolmogorov–Smirnov test statistic of a

pathway when sample size is su±ciently large. Naturally, this method preserves the

full gene–gene correlations in each patient. However, when sample size is small there

are limited ways for permuting class labels, resulting in a sparse null distribution.

This greatly a®ects the reliability and the granularity of the p-values.

The second way postulates that any two gene expression values within the same

patient are exchangeable to compute the null distribution. This method creates new

data inputs by randomly re-labeling genes. This method is used by GSEA to evaluate

the signi¯cance of the Kolmogorov–Smirnov test statistic of a pathway when the

dataset has a small sample size, since a sizeable null distribution can be generated

this way. However, this postulate is based on the assumption that the genes' ex-

pression are independent of each other, ignoring the correlation between genes. In

other words, this method actually tests if the genes in the pathway behave no dif-

ferently from a random set of genes. But the genes in any pathway are coordinated by
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nature, whereas a random set of genes is not. Hence this null hypothesis is false. So it

has a tendency of being rejected, producing false positives.

We rely instead on a third way to produce a null distribution for our test. It

postulates that randomized gene expression pro¯les that preserve the gene–gene

correlation structure in the original dataset are exchangeable with it. This postulate

is based on the assumption that genes in any pathway are as coordinated as speci¯ed

by the pathway, and the pathway is functional when the genes behave ��� i.e. have

correlated expression ��� as speci¯ed by the pathway. Due to exchangeability fol-

lowing this postulate, it is sound to use correlation-preserving randomized gene ex-

pression pro¯les to obtain a null distribution of the test statistic. Array rotation is

one of the known techniques for producing a large number of these correlation-

preserving randomized gene expression pro¯les.20 We use this technique to produce

statistically valid p-values for our test statistic. We call this the rotation t-test, to

distinguish it from the standard t-test.

The details about the computation of our test statistic as well as other improve-

ments and variants are discussed in the supplementary material sections S1–S3.

4. Results

For each disease type, we use two independent microarray data sets from previously

published experiments: Leukemia,21,22 Childhood Acute Lymphoblastic Leukemia

(ALL Subtype)23,24 and Duchenne Muscular Dystrophy (DMD).11,25 We use the

notation dataset 1 and dataset 2 to refer to the former and latter datasets,

respectively.

4.1. Comparing subnetwork- and gene-level overlap

We randomly partition the two independent datasets into subsets of smaller sample

sizes ranging from 2 to 10 from each phenotype. In order to observe the e®ect of

sample size on various methods, we compare the subnetwork overlap of the corre-

sponding methods with varying sample sizes.

For every sample size (N) considered, we partition the datasets accordingly and

use the subnetwork generation procedure mentioned in Sec. 3.1 to generate the

subnetworks in one dataset. We then test these subnetworks for statistical signi¯-

cance, under a signi¯cance threshold of 5% using the rotation t-test mentioned in

Sec. 3.2 on the two datasets independently. The subnetwork overlap is a Jaccard-like

agreement, de¯ned as follows: Let the two sets of signi¯cant subnetworks identi¯ed

by dataset 1 and dataset 2 using N samples be SNN
1 and SNN

2 , respectively. Then

the subnetwork-level agreement is de¯ned as

jSNN
1 \ SNN

2 j
jSNN

1 [ SNN
2 j

: ð2Þ
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There are many ways to partition a dataset of M samples into subsets of N

samples. For our experiments, we test the procedure many times and report the

average subnetwork-level agreement.

Since ORA and GSEA identi¯es whole pathways instead of subnetworks, in

testing these methods, we measure the pathway-level agreement which is de¯ned

analogously.

We also measure the overlap in genes between the predicted subnetworks, which

is de¯ned analogously below, where GenesNi denotes the set of genes in SNN
i :

jGenesN1 \GenesN2 j
jGenesN1 [GenesN2 j

: ð3Þ

We compare the subnetwork-level agreement of our method, ESSNet-unweighted,

with other gene set methods (ORA-hypergeo, ORA-paired, GSEA, NEA-paired,

DEAP, and PFSNet); see Fig. 2.

ORA-hypergeo is the usual overlap analysis method. It tests whether a pathway is

signi¯cant by intersecting the genes in the pathway with a pre-determined list of

di®erentially expressed genes (here, we use all genes whose t-statistic meets the 5%

ORA hypergeo
ORA paired

NEA paired
GSEA

DEAP
PFSNet

ESSNet unweighted
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Fig. 2. Consistency of subnetworks and their genes in Leukemia (ALL/AML), ALL Subtype (BCR-ABL/
E2A-PBX1) and DMD dataset (DMD/NOR) computed using dataset partitions of smaller sample sizes

ranging from 2 to 10 from each phenotype.
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signi¯cance based on the standard t-test), and checking the signi¯cance of the size of

the intersection using the hypergeometric test. ORA-paired is a modi¯cation of

ORA-hypergeo; it does not use a pre-determined list of di®erentially expressed genes

and the hypergeometric test. Instead, it applies the rotation t-test described in

Sec. 3.2 using all the genes in the pathway. GSEA is a direct-group method based on

the Kolmogorov–Smirnov test statistic as described in Sec. 3.2. As sample size is

small, the gene permutation option is used to evaluate signi¯cance. NEA-paired is a

network-based method where each gene and its immediate neighborhood form a

subnetwork. The subnetworks are subjected to the rotation t-test discussed in

Sec. 3.2. DEAP examines all possible maximal linear paths in the pathway and

chooses the path with maximum absolute di®erential expression score. The score

given for a path is recursively computed based on the catalytic or inhibitory edges

taken as positive and negative summands, respectively.14 PFSNet is a network-based

method as previously mentioned in Sec. 2. ESSNet-unweighted generates subnet-

works based on the method discussed in Sec. 3.1 and tests each subnetwork for

statistical signi¯cance using the rotation t-test from Sec. 3.2.

ORA-hypergeo has very low pathway-level overlap even when sample size is 10;

cf. Fig. 2. There are three weaknesses that contribute to its poor performance.

Firstly, it amounts to testing whether the entire pathway is signi¯cantly di®eren-

tially expressed. If only a branch of a large pathway is relevant to the phenotypes, the

noise from the large irrelevant part of the pathway can mask the signal from that

branch. Secondly, it relies on a pre-determined list of di®erentially expressed genes.

This list is sensitive to the choice of threshold that de¯nes which genes are considered

as di®erentially expressed. And, irrespective of the threshold, as shown in Fig. 1, this

list lacks consistency when sample size is small. Thirdly, its use of the hypergeometric

test corresponds to the null hypothesis that genes in a pathway behave no di®erently

from random sets of genes of the same size as the pathway. As genes in a pathway are

coordinated in their behavior to perform the speci¯c function associated with the

pathway, this null hypothesis is false.

ORA-paired circumvents the second weakness of ORA-hypergeo since it does not

need any list of di®erentially expressed genes. It also eliminates the third weakness

of ORA-hypergeo since it uses a biologically much more plausible null hypothesis

that genes in the pathway have similar expression values between the two pheno-

types if the pathway is irrelevant to the di®erence of the two phenotypes. Therefore,

ORA-paired performs much better than ORA-hypergeo. The subnetwork-level

agreement increases to as high as 65% versus 13% in ORA-hypergeo when N ¼ 10

and 34% versus 11% when N ¼ 2; cf. Fig. 2. This suggests that the rotation t-test on

paired di®erences is a strategy that works extremely well in a small sample size

situation.

A disease could be the result of the dysfunction of a small part of a large pathway.

In this situation, most of the genes in this large pathway may not be di®erentially

expressed. Even though ORA-paired has improved on ORA-hypergeo, it is still

unlikely to ¯nd this large pathway signi¯cant. That is, ORA-paired retains the ¯rst

K. Lim et al.
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weakness of ORA-hypergeo. Thus, it makes sense to extract subnetworks from

pathways and test these subnetworks individually for signi¯cance.

We apply the NEA idea to generate candidate subnetworks from a pathway.13

The idea is to take every gene and its immediate neighbors in the pathway to be a

subnetwork. After this, we apply ORA-paired to determine the signi¯cance ones.

This NEA-paired approach circumvents all three weaknesses of ORA-hypergeo.

Hence it performs even better than ORA-paired. As shown in Fig. 2, the subnetwork-

level agreement increases to as high as 85% when N ¼ 10 and 43% when N ¼ 2. This

suggests that the subnetwork generation procedure increases the sensitivity of NEA-

paired. We believe this is because paired di®erences around the neighborhood of

selected genes enable the test to correctly reject subnetworks that have no di®er-

entially expressed genes within them.

GSEA also su®ers less from the second weakness of ORA-hypergeo because it does

not need any list of pre-determined di®erentially expressed genes. Nevertheless,

GSEA does not completely escape from this weakness because its Kolmogorov–

Smirnov test statistic is based on the rank of the t-statistic values of genes; these

ranks are unstable when sample size is small, cf. Fig. 1. Moreover, GSEA still retains

the ¯rst weakness of ORA-hypergeo. And, when the gene permutation option is used

to determine the signi¯cance of the Kolmogorov–Smirnov test statistic, as in this

paper, it also retains the third weakness of ORA-hypergeo. Therefore, while it out-

performs ORA-hypergeo, it is inferior to ORA-paired and NEA-paired. GSEA

achieves a maximum pathway level overlap of 45% when N is 10 and 27% when

N ¼ 3, cf. Fig. 1. We are unable to evaluate GSEA when N ¼ 2 because it requires

sample size of at least 3.

DEAP partially eliminates the ¯rst weakness of ORA-hypergeo because it breaks

the pathway into maximal linear paths. However, only the best scoring maximal

linear path within a pathway is reported; this considerably reduces its reproducibility

because a di®erent maximal linear path may be chosen in another dataset. This

problem is further compounded as DEAP scores the paths based on di®erential gene

expression, which we have shown in Fig. 1 to be unstable in small-sample-size

situations. Consequently, DEAP has very poor performance at the subnetwork level.

Thus, we evalute DEAP at the pathway level, where a pathway is considered to be

reported by DEAP if any path within the pathway is reported. Unfortunately, de-

spite this, DEAP still does poorly. As shown in Fig. 2, DEAP achieves a maximum

pathway-level overlap of 28% when N is 10 and 6% when N is 2.

PFSNet does not need any list of pre-determined di®erentially expressed genes,

eliminating the second weakness of ORA-hypergeo. It generates subnetworks, using a

technique di®erent from NEA, and so eliminates the ¯rst weakness of ORA-hyper-

geo. For each subnetwork and each patient, it computes a pair of scores for that

patient based on phenotype D data and phenotype :D data, respectively. It pos-

tulates very reasonably that, if the subnetwork is irrelevant to the di®erence between

D and :D, these pairs of scores should be distributed around 0. It then uses class-

label permutations to evaluate this null hypothesis. Thus PFSNet also eliminates the

Quantum leap in reproducibility, precision, and sensitivity of gene expression pro¯le analysis
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third weakness of ORA-hypergeo. However, when sample size is small, the null

distribution cannot be properly produced using class-label permutations. Thus

PFSNet has good performance when N is reasonably high but inferior performance

when N is small. As shown in Fig. 2, PFSNet has an overlap of 65% when N ¼ 10

and 21% when N ¼ 2.

Finally, we apply the same sets of tests to ESSNet-unweighted, which selects

subnetworks as described in Sec. 3.1 and tests these subnetworks for signi¯cance

using the rotation t-test in Sec. 3.2. Clearly, ESSNet-unweighted also eliminates all

three weaknesses of ORA-hypergeo in a manner analogous to NEA-paired. It has

excellent performance, superior to all other methods studied here. We get generally

higher subnetwork overlap of up to 99% when N ¼ 10 and 58% when N ¼ 2; cf.

Fig. 2. In addition, ESSNet continues to be superior even when a large dataset is

used; see supplementary material section S4. We believe ESSNet-unweighted per-

forms better than other methods because of the following additional reasons.

Even though NEA-paired performs quite well, its subnetwork is based on a seed

gene and its immediate neighboring genes in that pathway, regardless of whether

those neighboring genes are themselves di®erentially or highly expressed. This can

potentially cause a loss in signal, especially when the seed gene has a large number of

immediate neighbors. Moreover, such a subnetwork cannot capture a long causal

chain of genes. These two issues are recti¯ed in ESSNet-unweighted which forms a

subnetwork in a pathway based on a connected component comprising entirely of

highly expressed genes and, as shown earlier in Fig. 1, relying on gene ranking based

on expression level (rather than di®erential expression level) is more robust to

sample-size variation.

4.2. Precision and recall

As ESSNet-unweighted attains very high subnetwork overlap when the sample size is

large, it is possible to de¯ne a set of gold-standard subnetworks as follows, to esti-

mate the false-positive and false-negative subnetworks induced by small samples:

G ¼ SNall
1 \ SNall

2 ; ð4Þ
where SNall

i is the set of signi¯cant subnetworks produced by ESSNet-unweighted

based on the entire dataset i.

The precision and recall are de¯ned respectively as:

precision ¼ jSNN \Gj
jSNN j ; recall ¼ jSNN \Gj

jGj ; ð5Þ

where SNN is the set of signi¯cant subnetworks produced by ESSNet-unweighted

using an N-sample subset of one entire dataset.

It is surprising that precision does not drop much even when smaller sample sizes

are considered. For example, we get a precision of about 90%, 85%, and 88% even

when N ¼ 2. On the other hand, the maximum recall when N ¼ 2 is about 50%; cf.

K. Lim et al.
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Table 1. Thus, more bona ¯de subnetworks are missed from the predictions when N

is very small, while few false positives are produced. This is reasonable as a small

sample may not have captured all the causes underlying a phenotype.

4.3. Comparing the number of predicted subnetworks using negative

control data

It is also possible to test whether ESSNet is robust to false positives. We conduct in-

silico testing by randomly generating matrices of gene expression data; for each gene

we sample from a random normal distribution, using the same mean and standard

deviation in both phenotypes. The purpose of the test is to see if ESSNet detects any

subnetworks as signi¯cant when it should not. On these random input matrices,

ESSNet reports very small number of false subnetworks (typically about 3), well

within that expected from the p-value threshold and much fewer than other methods;

cf. Fig. 3.

4.4. Informative subnetworks

While biological pathways provide a wealth of information to explain disease phe-

notype, large pathways o®er little biological insight. On the other hand, subnetworks

may narrow down the biological cause of a disease but very small subnetworks are

trivial and non-informative. In order to assess how informative our signi¯cant sub-

networks are, we compare the size of the signi¯cant subnetworks identi¯ed by

ESSNet with those subnetworks induced from individual genes declared signi¯cant

by t-test.

When subnetworks are induced using signi¯cant individual genes from t-test, the

genes are scattered over the pathways and have very few edges with other signi¯cant

genes in the pathway. This results in very-small-sized subnetworks that contains

little useful biological information. In contrast, the subnetworks detected by ESSNet

are bigger and thus more informative; cf. Fig. 4.

Table 1. Precision and recall of ESSNet-unweighted.

Precision Recall

DMD ALL BCR DMD ALL BCR

D :D D :D D :D D :D D :D D :D
Sample size (N) 2 0.96 0.88 0.87 0.95 0.93 0.91 0.45 0.31 0.34 0.25 0.19 0.17

3 0.93 0.86 0.99 0.89 0.90 0.87 0.56 0.45 0.56 0.41 0.21 0.16
4 0.88 0.88 0.97 0.92 0.91 0.87 0.67 0.50 0.51 0.53 0.35 0.48

5 0.89 0.88 0.94 0.90 0.89 0.90 0.73 0.52 0.74 0.55 0.36 0.38

6 0.82 0.88 0.93 0.92 0.89 0.91 0.78 0.62 0.74 0.62 0.44 0.44

7 0.85 0.86 0.95 0.93 0.90 0.87 0.75 0.59 0.66 0.64 0.55 0.53
8 0.84 0.89 0.97 0.94 0.90 0.92 0.81 0.69 0.74 0.66 0.61 0.66

9 0.88 0.90 0.94 0.92 0.89 0.89 0.90 0.67 0.76 0.74 0.65 0.67

10 0.88 0.93 0.97 0.92 0.90 0.90 0.86 0.84 0.89 0.74 0.66 0.73

Quantum leap in reproducibility, precision, and sensitivity of gene expression pro¯le analysis
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Another way to determine how informative our predicted subnetworks are, is to

see if they overlap with results produced by other methods. We select signi¯cant

subnetworks predicted by ESS and test them using GSEA. While GSEA often does

not declare a pathway to be signi¯cant when the entire pathway is supplied as input,

it often declares the subnetworks identi¯ed by ESSNet in that pathway to be sig-

ni¯cant. Speci¯cally, GSEA is able to recover 100%, 51%, and 54% of the subnet-

works in the DMD, Leukemia and ALL Subtype dataset, respectively. When PFSNet

is included in the analysis, the percentages increased to 100%, 90%, and 91%, re-

spectively. This demonstrates subnetworks predicted by ESSNet can be recovered by

other methods (provided these methods are supplied the subnetworks as input, and
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Fig. 4. The distribution of subnetwork sizes. The gray bars correspond to subnetworks induced by the

signi¯cant genes using t-test, the black bars correspond to subnetworks from ESSNet-unweighted.
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Fig. 3. Comparing various methods on random negative control data (gene expression sampled from the

same random normal distributions from both phenotypes). ESSNet predicts fewer false subnetworks than

other methods.

K. Lim et al.

1550018-12



not the entire pathways they come from), and also suggests the plausibility that they

are useful and pertinent.

4.5. Biologically signi¯cant subnetworks

The subnetworks predicted by ESSNet have very strong biological relevance even

when a small sample size is used. We consider sample sizes of 2, 2, and 4 for the DMD,

Leukemia, and ALL Subtype datasets respectively as these sample sizes give roughly

the same subnetwork agreement; cf. Fig. 2. As there are many di®erent predictions

since there are many ways to partition the data into subsets of smaller sample sizes

from the entire dataset, we report the subnetworks that are detected most frequently

in Table 2. Examples of these subnetworks are found in the supplementary material

section S5, Figs. F3–F6.

For DMD, striated muscle contraction and actin cytoskeleton signaling are the

main cause of the disease.26,27 ESSNet is not only able to detect these two subnet-

works but also other biologically signi¯cant signaling pathways that might be the

trigger for these main pathways. For example, PTEN signaling contributes to PI3K/

Akt signaling which in turn a®ects the DMD gene found in striated muscle con-

traction.28,29 ECM receptor interaction has also been implicated in DMD.30

For Leukemia, numerous works have reported the involvement of ERK/MAPK

signaling, Toll-like receptor signaling and JAK/STAT signaling in interfering with

apoptosis.31–33 Other subnetworks like antigen processing and metabolism of xeno-

biotics by cytochrome P450 have also been linked to Leukemia.34,35

Similarly, for ALL Subtype, the various subnetworks identi¯ed also have bio-

logical support, including antigen processing, IFNG signaling, Wnt signaling, IL-4

signaling, JAK/STAT signaling, and T-Cell receptor signaling.36–40

5. Conclusion

In this paper, we discuss how extremely small sample size (N � 5) can a®ect gene

expression analysis. We have demonstrated that many existing methods perform

poorly when sample size is small. An ideal method should be able to pick out all

relevant factors underlying the phenotypes that are present in a given sample set and

should not report any irrelevant factors. It follows from this ideal that we can expect

a good method to satisfy these three hallmarks: (i) The selected subnetworks are

Table 2. Biologically relevant subnetworks predicted by ESSNet.

DMD (N ¼ 2) Leukemia (N ¼ 2) ALL Subtype (N ¼ 4)

PI3K/Akt signaling ERK/MAPK signaling Antigen processing

PTEN signaling Toll-like receptor signaling IFNG signaling

ECM receptor Apotosis signaling Wnt signaling
Actin cytoskeleton signaling JAK/STAT signaling IL-4 signaling

Striated muscle contraction Antigen processing JAK/STAT signaling

Integrin signaling Metab. of xenobiotics by P450 T-Cell receptor

Quantum leap in reproducibility, precision, and sensitivity of gene expression pro¯le analysis
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reproduced when applied to new batches of data that are su±ciently representative

of the phenotypes. (ii) The selected subnetworks from a large dataset should be a

superset of those chosen from a subset of the dataset. (iii) The relevant subnetworks

can be identi¯ed using as small a dataset as possible.

We are able to reproduce similar subnetworks in independent batches of data, this

is evident in the high subnetwork-level agreement; cf. Fig. 2. ESSNet also demon-

strates very good precision, when compared against a set of gold-standard subnet-

works derived from the full datasets; cf. Table 1 and supplementary material,

Table T1. This suggests that most of the subnetworks predicted using a small sample

size are also detected in the large dataset and further implies that it does not produce

a lot of false positives even when sample size is small. On the other hand, ESSNet

misses out on some gold-standard subnetworks because the small number of samples

are unable to capture all the underlying phenotypic di®erences. However, ESSNet is

also superior to other methods for large sample sizes; see supplementary material

section S4.

Our method, ESSNet, is unlike other previously discussed methods because we do

not greedily select genes to be included based on di®erential expression but rely on

gene-expression-level ranking within a phenotype, which is shown to be stable even

under extremely small sample sizes. In addition, our conjecture that �ðgi; pj; p 0
lÞ is a

distribution around 0, is tested on a null distribution obtained by array rotation; this

preserves the gene–gene correlation structure and is suitable for datasets with small

sample size. This allows us to consistently predict relevant subnetworks even when

sample size is small. We have also provided various other options in our ESSNet

software, which can be downloaded at http://compbio.ddns.comp.nus.edu.sg:8080/

essnet/to allow ESSNet to change the type of test statistic and to be more robust to

the threshold used; these are described in the supplementary material sections S2–S3.

The subnetworks that we discover using ESSNet are supported by relevant bio-

logical literature and have the potential to allow biologist further insights to the

mechanism behind the diseases. Examples of these subnetworks are illustrated in the

supplementary material section S5.

One possible shortcoming of ESSNet, and also of PFSNet7 and SNet,6 is that these

methods are designed for relatively homogeneous phenotypes. If the phenotype D is

actually composed of multiple subtypes D1, D2; . . . ; one should apply these methods

to analyze each Dh versus :D separately, for h ¼ 1; 2; . . . : There are two reasons for

this shortcoming. The ¯rst is that, if a subnetwork only behaves di®erently between a

Dh and :D, and not between other Dk 6¼h and :D, the genes in this subnetwork may

only be highly expressed in Dh but not in other Dk 6¼h. These genes may have lower

average rank computed over the entire D, when the subtypes are not analyzed

separately, and thus the subnetwork may not be generated. The second is that, even

when the subnetwork is generated, as this subnetwork is not di®erentially expressed

between Dk 6¼h and :D, many of the �ðgi; pj; p 0
lÞ where pj 2 Dk 6¼h and p 0

l 2 :D, may

be close to zero, thus diluting the test statistic. We plan to address this shortcoming

in our future work.
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