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Abstract Proteins perform biological functions by participating in a large number of interactions, ranging from transient
interactions in signaling pathways to permanent interactions within stable complexes. Studies have shown that the
immediate interaction neighborhood of a protein can be used to infer its functions. While using only such direct
interactions limits prediction coverage, extending the interaction neighborhood to include indirect interaction partners
reduces precision significantly, making functional inference unviable. In a series of studies, we find that the extent
of partner-sharing between two non-interacting proteins makes a good estimator for their co-participation in similar
function. This allows us to include indirect interactions in network-based functional inference with little compromise
in precision. We also extend this idea to the related problems of protein complex prediction and interaction data
cleansing.
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Protein Function Prediction
Using Protein–Protein Interaction Networks

Hon Nian Chua, Guimei Liu, and Limsoon WongAQ1

Abstract Proteins perform biological functions by participating in a large number
of interactions, ranging from transient interactions in signaling pathways to perma-
nent interactions within stable complexes. Studies have shown that the immediate
interaction neighborhood of a protein can be used to infer its functions. While using
only such direct interactions limits prediction coverage, extending the interaction
neighborhood to include indirect interaction partners reduces precision significantly,
making functional inference unviable. In a series of studies, we find that the extent
of partner-sharing between two non-interacting proteins makes a good estimator for
their co-participation in similar function. This allows us to include indirect inter-
actions in network-based functional inference with little compromise in precision.
We also extend this idea to the related problems of protein complex prediction and
interaction data cleansing.

Introduction

Proteins are important building blocks that contribute to key processes withinAQ2

cells. The elucidation of mechanisms underlying protein functionality is an active
and important pursuit in biology, and remains a challenging task. Unlike protein
sequences or protein-protein interactions, there is currently no systematic experi-
mental technique that can characterize the functions of proteins in a high-throughput
fashion. With various sources of biological data being made available at an unprece-
dented rate, efforts intensify for computational methods that can tap into this
growing pool of information for reliable functional characterization of proteins.
In this chapter, we summarize our efforts towards this area of research. We will
describe our work on the use of protein–protein interactions for computational pro-

AQ3

tein function prediction, protein complex discovery, and improving the reliability of
protein–protein interactions.

H.N. Chua (B)
Institute for Infocomm Research, Singapore, Singapore 138632

D. Kihara (ed.), Protein Function Prediction for Omics Era,
DOI 10.1007/978-94-007-0881-5_13, C© Springer Science+Business Media B.V. 2011
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Protein–Protein Interactions

Protein–protein interactions generally refer to associations between protein
molecules, which include direct physical binding and genetic interactions, amongst
other definitions.

Physical Interactions

Physical binding between proteins can be detected in a high-throughput manner
using a variety of assays such as co-immunoprecipitation, tandem affinity purifica-
tion [1, 2], and two-hybrid systems [3–5]. In yeast two-hybrid assays, the GAL4
transcriptional activator is split into two fragments, one containing the binding
domain and the other containing the activating domain. To detect an interaction
(or lack thereof) between two proteins, one protein is fused to the fragment contain-
ing the binding domain (also referred to as the bait) while the other protein is fused
to the other fragment (the prey). An interaction between the bait and prey proteins
indirectly connects the two fragments of the transcription factor, bringing the acti-
vating domain close to the transcription start site, and results in the expression of
the downstream reporter gene. In co-immunoprecipitation experiments, proteins that
are suspected to interact directly or indirectly with a protein of interest are isolated
together with the protein using an antibody, and subsequently identified using west-
ern blot. Tandem affinity purification involves creating fusion proteins with one end
that can be bound to beads coated with a specific antibody. The modified proteins,
along with the unknown proteins that they bind, are isolated over two rounds of
purification and identified. The use of fusion proteins makes this technique suitable
for systematic genome-wide studies [2, 6]. Datasets of large numbers of physical
protein–protein interactions have been experimentally derived using two hybrid sys-
tems for a number of species, particularly for the model organisms Saccharomyces
cerevisiae (budding yeast), Drosophila melanogaster (fruit fly) and Caenorhabditis
elegans (nematode).

Genetic Interactions

Genetic interactions, on the other hand, capture functional dependency between
genes from observations of phenotypes exhibited upon two or more gene deletions.
The departure of observed phenotypes (usually cell viability) of double-deletion
mutants from that expected of the two independent genes (based on the phenotypes
of each single-deletion mutant) is used to identify such interactions. While there
have been attempts to reconcile such observations with biological models such as
parallel or serial pathways, these are insufficient to explain the complex relation-
ships between genes that are reflected in these experiments. Nonetheless, genetic
interactions provide great insight into the functional organization of gene products.
Positive genetic interactions are often associated with proteins within complexes,
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Protein Function Prediction Using Protein–Protein Interaction Networks

while negative genetic interactions often capture redundancy between pathways [7].
Several large-scale genetic interaction experiments have been conducted for yeast
[8–10] using the Synthetic Genetic Array technology [8], which allows systematic,
unbiased screening for genetic relationships of a large number of array genes against
a query gene in a high throughput fashion. Systematic screening for genetic interac-
tions between essential genes is also possible using hypomorphic alleles [10]. The
BioGRID database [11] is one of the largest collections of published protein–protein
interactions, both physical and genetic, making it a valuable resource for researchers
who are interested in studying protein–protein interactions.

Function Prediction Using Protein–Protein Interactions

A protein’s functional behavior is intuitively related to its physical interactions with
other proteins. Genetic interactions, on the other hand, capture functional depen-
dencies between genes (and the proteins they encode for), such as serial genes in
a biosynthesis pathway, or genes in parallel transport pathways. Hence protein–
protein interactions potentially enrich for information about functional relationships
between proteins that may not be obvious or detectable from other genomic data
such as primary or higher level sequence structure.

Many computational approaches have been developed to utilize protein interac-
tions for the functional characterization of proteins. One of the earliest approaches is
the neighbor counting method proposed by [12]. The simple method, which assigns
a protein with the function that is annotated most frequently to its interaction part-
ners, was applied to a large-scale physical interaction dataset generated from yeast
two-hybrid experiments, and performs reasonably well. The approach, however,
did not take into account the background frequency of different function annota-
tions. The mere observation of a very common functional annotation assigned to
the majority of a group of proteins does not necessary suggests enrichment unless
its prior probability is taken into account. Hishigaki and colleagues addressed this
limitation by using the Chi-square statistic to estimate the enrichment of functional
annotations in each protein’s interaction neighborhood [13].

An obvious limitation in both the Neighbor Counting and Chi-square approaches
is the inability to infer functional annotations to a protein that do not interact with
annotated proteins. These approaches will also be biased in making inference when
the majority of the proteins in the interaction neighborhood of a protein are not
annotated. To overcome these limitations, some methods cleverly made assump-
tions along the lines that the “correct” set of functional annotations to unannotated
proteins in an interacting network is the one in which functional association between
adjacent proteins is best upheld. While it is unfeasible to find such a best solution in
the vast space of possible configurations, many stochastic inference techniques can
be used to find a reasonably good solution. Such “global” inference methods also
have the advantage of being more resilient against errors in functional annotations
and in the interaction network.
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One such “global” inference approaches is the Markov Random Field method
described in [14], which proposes that the probability of a set of inferred anno-
tations to proteins in an interaction network is inversely related to the amount of
annotation inconsistencies between interacting proteins. This probability is formally
defined for each functional annotation to be a function of its prior probabilities,
the number of functionally associated interactions, and the number of functionally
unassociated interactions. A Gibbs sampler is then used to find a near optimal set
of annotation assignments that maximizes the probability. A similar approach is
used in [15]. Vazquez et al. also proposed another optimization method based on
Simulated Annealing [16].

Indirect Association of Protein Function

Functional Association Between Indirect Neighbors

In 2006, we proposed the hypothesis of indirect association of protein function [17].
The motivation behind the hypothesis is the observation that many proteins do not
share similar function with any of their interaction partners. In the study, we investi-
gated the functional relationships between interacting proteins in the Saccharomyces
cerevisiae (bakers’ yeast) genome using physical and genetic interactions deposited
in the BioGRID [11], as well as FunCat functional annotations from MIPS [18].
We observed that there are proteins that do not share any functional annotation with
their immediate interaction partners (i.e., level-1 neighbours) and yet share some
function similarity with the interaction partners of their immediate partners (i.e.,
level-2 neighbours). Two examples of such proteins are shown in Fig. 1. Among
4162 annotated yeast proteins in the dataset studied, only 48.0% share some func-
tion with its level-1 neighbours. 22.7% of the annotated proteins shared functional
annotations with their level-2 neighbours but not their level-1 neighbours. Less
than 2% of the annotated proteins share functions with level-1 neighbours without
sharing functions with their level-2 neighbours. This suggested that many existing
approaches to functional inference based on protein–protein interaction, whether in
a local or global fashion, may be somewhat limited by making only assumptions
of functional linkage between directly interacting proteins. Local inference meth-
ods will not be able annotate a protein with a function that is not observed in its
direct neighbors. Global inference methods may erroneously propagate function in
an indiscriminative way.

The observation left us pondering if it is possible to make predictions for
more proteins by explicitly taking into account the functional annotations of the
level-2 neighbors of proteins. Hishigaki et al. [13] studied the use of larger inter-
action neighborhoods (which they termed n-neighbouring proteins, analogous to
our definition of n-level neighbors) by using their Chi-square based method on the
functional classification used in the Yeast Proteome Database (YPD), and concluded
that the value of n for the best prediction performance is small (1 for cellular role
and subcellular localization, and 2 for biochemical function). Such observation is
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YBR055C 
|11.4.3.1 

YDR158W 
|1.1.6.5 
|1.1.9 

YJR091C 
|1.3.16.1 
|16.3.3 

YMR101C 
|42.1 

YPL149W 
|14.4 
|20.9.13 
|42.25 
|14.7.11 

YPL088W 
|2.16 
|1.1.9 

YMR300C 
|1.3.1 

YBL072C 
|12.1.1 

YOR312C 
|12.1.1 

YBL061C 
|1.5.4 
|10.3.3 
|18.2.1.1 
|32.1.3 
|42.1 
|43.1.3.5 
|1.5.1.3.2 

YBR023C 
|10.3.3 
|32.1.3 
|34.11.3.7 
|42.1 
|43.1.3.5 
|43.1.3.9 
|1.5.1.3.2 

YKL006W 
|12.1.1 
|16.3.3 YPL193W 

|12.1.1 

YAL012W 
|1.1.6.5 
|1.1.9 

YBR293W 
|16.19.3 
|42.25 
|1.1.3 
|1.1.9 

YLR330W 
|1.5.4 
|34.11.3.7 
|41.1.1 
|43.1.3.5 
|43.1.3.9 

YLR140W 

YDL081C 
|12.1.1 

YDR091C 
|1.4.1 
|12.1.1 
|12.4.1 
|16.19.3 

YPL013C 
|12.1.1 
|42.16 

YMR047C 
|11.4.2 
|14.4 
|16.7 
|20.1.10 
|20.1.21 
|20.9.1 

Fig. 1 Two examples of proteins that do not share functional annotations with their direct inter-
action neighbor, but share functional annotations with their indirect (level-2) neighbors (indirect
neighbors that share no annotation are not shown). Figure from [17]

expected as we expect functional relationship to diminish with the interaction dis-
tance. The number of neighboring proteins also often increases quickly with the size
of the neighborhood, and the predictive powers of the closer (and more functionally
related) neighbors tend to be diminished as a result. Moreover, errors in the lower
level interaction neighborhood will spill over and propagate to the higher levels,
resulting in more errors introduced in each level. Hence the number of function-
ally irrelevant interactions is expected to be higher when more levels of interactions
are used.

Estimating Function Similarity Between Interacting Proteins

To be able make use of the indirect neighbors for increasing prediction coverage
without severely affecting precision, some form of filtering has to be employed
to avoid including functionally unrelated neighbors in the prediction process. At
that time, there have already been some studies that observe functional similarity
between proteins with overlapping interaction neighborhood [19, 20]. These inde-
pendent observations motivated us to study the possibility of using the observation
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of common interaction partners as a way to identify functionally related protein
pairs from the large number of indirectly interacting proteins. We initially adopted
the Czekanowski-Dice distance (CD distance) used in [20] for this purpose. The
CD-Distance is defined as:

D (u, v) = |Nu�Nv|
|Nu ∪ Nv| + |Nu ∩ Nv| (1)

where Np refers to the set that contains p and proteins that interact with it, and X
� Y refers to the symmetric difference between two sets X and Y. D(u, v) < 1 if
proteins u and v interacts with each other, or with at least one common protein. If
Nu = Nv, D(u, v) will be 0. On the other extreme, if Nu ∩ Nv = Ø, D(u, v) will be
1. This distance function can be trivially converted into its corresponding similarity
function:

SCD (u, v) = |Nu ∩ Nv|
|Nu ∪ Nv| + |Nu ∩ Nv| (2)

The similarity function captures the overlap between two sets reasonably when
the sets Nu and Nv are not very different in size. However, when one set is greater
than the other, SCD(u, v) will be small even when Nu ∩ Nv is a large or complete
subset of the smaller set. Since the sets represent interaction neighbors in this case,
this means that the similarity score between a protein with low degree and one that
is well connected will always be low. As protein interactions are subjected to sys-
tematic biases due to experimental design and incomplete coverage, this similarity
function is likely to underestimate functional relationships in such cases. Hence we
proposed a variant of the similarity function, which we refer to as the Functional
Similarity weight (FS-weight) to place greater weight on the overlap between the
two sets:

SFS (u, v) = 2 |Nu ∩ Nv|
|Nu − Nv| + 2 |Nu ∩ Nv| + λu,v

× 2 |Nu ∩ Nv|
|Nv − Nu| + 2 |Nu ∩ Nv| + λv,u

(3)

λu,v = max
(
0, navg − (|Nu − Nv| + |Nu ∩ Nv|)

)
where navg is the average number

of interactions that a protein participates in.

Functional Association and Experimental Assays

As described earlier, protein-protein interactions can be observed in a variety of
experimental assays. While the different assays are capable of identifying inter-
actions between proteins (and genes), they often rely very diverse mechanisms.
Consequently, each assay comes with its limitations. In yeast two-hybrid systems,
false positives (interactions observed that are non-existent) can arise due to a wide
number of factors such as background transcriptional activity of baits, mutation of
the host yeast strain, bait proteins that binds directly to the DNA upstream of the
reporter genes, and “sticky” bait or prey proteins that easily binds a large number of
proteins in a non-specific manner [21]. In tandem affinity purification experiments,
false negatives (interactions that exist but not observed) may arise due to the TAP

dcswls
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Protein Function Prediction Using Protein–Protein Interaction Networks

tag interfering with interaction, and not all proteins within the complex may bind
tightly enough to be detected [22]. While there is no simple way to take into account
such differences in the nature and limitations of different experimental assays, we
can moderate the impact of such differences to the function prediction process by
estimating the confidence we have in each type of experiment with regard to their
ability to associate proteins with similar functions. For each type of experiment, this
can be a simple estimate of the prior probability that protein interactions observed
by such experiments involve protein pairs that share some function:

ri =

∑

(u,v)∈Ei

δ(u, v)

|Ei| (4)

Ei is the set of interactions observed in experiment i; δ(u,v) is 1 when protein u and
v share some function, 0 otherwise.

For interactions that are observed in multiple experiments, we would expect the
confidence to be much higher since it is reproducible and less likely to be a false
positive due to random experimental errors. Taking into account the confidence of
individual experimental types, as well as reproducibility over multiple experiments
of the same or different nature, we can naively combine the prior probabilities for
each experimental type to compute the probability that an observed interaction is
associated with sharing of function:

ru,v = 1 −
∏

i∈Eu,v

(1 − ri)
ni,u,v (5)

ri is the estimated reliability of experimental type i; Eu,v is the set of experiments in
which interaction between u and v is observed;
ni,u,v is the number of times interaction (u,v) is observed from experimental type i.

With a quantifiable estimate of the confidence of different experimental sources
of interaction data, we can incorporate this information into the FS-weight
formulation:

SFS (u, v) =
2
∑

w∈(Nu∩Nv)

ru,wrv,w

(
∑

w∈(Nu−Nv)

ru,w+ ∑

w∈(Nu∩Nv)

ru,w(1−rv,w)

)

+2
∑

w∈(Nu∩Nv)

ru,wrv,w+λu,v

×
2
∑

w∈(Nu∩Nv)

ru,wrv,w

(
∑

w∈(Nv−Nu)

rv,w+ ∑

w∈(Nu∩Nv)

rv,w(1−ru,w)

)

+2
∑

w∈(Nu∩Nv)

ru,wrv,w+λv,u

(6)

We find the FS-weight measure to correlate positively with function similarity
between interacting proteins (pearson’s correlation coefficient = 0.53). The measure
also exhibit a positive, abeit weaker correlation with function similarity between
level-2 interaction neigbors (correlation coefficient = 0.38).
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Function Prediction Using Indirect Association

With an appropriate function to estimate the strength of functional relationships
between directly and indirectly interacting proteins, it is now more plausible to
include the level-2 neighborhood for functional prediction. We proposed the FS-
weighted averaging function that uses the weighted frequency of a function x in
both the direct (Nu) and indirect (Nw) neighbors of a protein u to compute a nor-
malized score to estimate the likelihood of protein u to participate in function x:

fx(u) = 1

Z

[
λrintπx +

∑

v∈Nu

(
SFS(u, v)δ(v, x) +

∑

w∈Nv

SFS(u, w)δ(w, x)

)]

Z is the sum of all weights:

Z = 1 +
∑

v∈Nu

(
SFS (u, v) +

∑

w∈Nv

max(SFS(u, v)SFS(v, w), SFS(u, w))

)
(7)

Evaluation on Function Prediction

The FunCat annotation scheme is a tree-like structure with each child term being
a more specific form of its parent. Some fuctional aspects of proteins tend to be
better studied than others, and hence some annotation branches tend to be deeper
and annotated to a larger number of proteins. To minimize biases when evaluating
prediction performance, we want to avoid evaluating redundant annotations (e.g. a
functional term and its parent function, as well as more distant ancestor terms). A
simple way to achieve this would be to decide on an arbitary level of annotation
(e.g. all nodes with a depth of 5), but due to large variations in the depth of different
branches, we may end up evaluating very general functions of some branches and
very specific functions of others. To overcome this problem, we adopt the informa-
tive functional classes approach proposed in [23]. A functional term is designated
as informative if it is annotated to n or more proteins (we use n = 30), and does not
have a child term that is annotated to n or more proteins. In this way, an informative
term will be the only informative term among all its ancestors or descendants. By
using only informative terms, we can ensure that there is no redundancy between
the functions that are used for evaluation. Moreover, since these informative terms
are annotated to a sufficiently large number of proteins, we will avoid evaluating
functional terms that are too rare to be inferred practically. Using a 10-fold cross val-
idation procedure, we benchmarked our proposed method against several published
approaches at the time of the study on the prediction of informative FunCat terms
using protein-protein interactions from BioGRID and showed that it performed sig-
nificantly better (Fig. 2). We also benchmarked our method against other approaches
using a dataset compiled in an earlier study comprising YPD functional categories
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Fig. 2 Precision–recall
curves for prediction of
FunCat functions for proteins
from S. cerevesiae from
BioGRID interactions using
various approaches. Figure
from [17]

and protein–protein interactions from MIPS [14], and showed that the predictions
made using our method achieved a better precision at nearly all levels of recall for
the three YPD categories (Fig. 3).

Prediction of Gene Ontology Functional
Annotations on Multiple Species

While we had some success showing that indirect association of FunCat functional
annotations are abundant between non-interacting proteins, the annotation scheme
that was, and still is most widely adopted is the Gene Ontology (GO). Similar
to FunCat, this comprehensive functional annotation scheme organizes functional
annotations into a hierarchical structure that explicitly describes parent-child rela-
tionships between annotations, where the children of an annotation are more specific
annotations that fall under it. The hierarchy structure adopted by GO, however, is
a Directed Acyclic Graph (DAG), instead of the tree structure used by Funcat. The
main implication of this is that a GO term can have more than one parent term. The
GO annotation scheme constitute a DAG structure for each of the 3 namespaces
molecular_function, biological_process, and cellular_component, that provide dif-
ferent aspects of biological characterization of a gene and its protein product. To
study if the use of indirect functional association is general enough to be beneficial
for functional prediction based on the GO scheme, and for species other than S. cere-
visiae, we performed a follow-up computational study in 2007 on 7 species [24]. The
objective of the study was to answer 3 key questions about using protein-protein
interactions and indirect functional association for protein function prediction: (1)
Does the use of protein-protein interactions provide any additional coverage over the
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Fig. 3 Precision–recall
curves for prediction of YPD
functions for proteins from
S. cerevesiae from MIPS
protein–protein interactions
using various approaches.
Figure from [17]
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conventionally accepted use of sequence homology for protein function prediction;
(2) Does the use of indirect functional association provides any additional enhance-
ment in coverage over direct guilt by association; and (3) Are the conclusions made
for indirect functional association on FunCat terms applicable to function prediction
using GO terms over different species with differences in quantity and even quality
of data?

Data Availability

At the time of study, protein-protein interaction data was available for 7 species
in the BioGRID database: S. cerevisiae, D. melanogaster, A. thaliana, H. Sapiens,
M. Musculus, R. norvegicus and C. elegans. Gene Onotology annotations were also
available for these species. The amount of interaction data available to perform the
study is summarized in Table 1. As we can only evaluate prediction performance
on annotated proteins, we present the number of interactions that involve annotated
proteins as a proxy for data availability.

Table 1 Annotation and interaction data statistics for different species at time of study. Table
from [24]

Genome
Interactions involving
annotated proteins Annotated proteins

Avg. no. of annotated
neighbours per protein

S. cerevisiae 50, 434 4005 21.6654
D. melanogaster 24, 991 2763 4.2823
A. thaliana 909 382 1.8386
H. Sapiens 5784 5784 1.6761
M. Musculus 1892 1892 1.3595
R. norvegicus 590 590 0.9803
C. elegans 4349 382 0.7382

Protein–Protein Interactions vs. Sequence Homology

To answer our first question on the usefulness of protein–protein interaction data
as an additional source of data to complement conventional sequence homology for
protein function inference, we examine the number of known functional annotations
can already be inferred using the top hits of a BLAST search against all sequences
from the Gene Ontology Database. The analysis is only done for S.cerevisiae and
D. melanogaster as the amount of protein–protein interaction data is too little for
meaningful analysis on the other species. The fraction of known annotations that
can be annotated in this way for each species is computed using E-value cut-offs
between 1 and 1e–10, and summarized as white bars in Fig. 4. As one would expect,
coverage decrease with more stringent E-value cut-offs, possibly in exchange for
better precision (not shown). For each E-value cut-offs, we next compile the num-
ber of additional functional annotations that can be transfer in a guilt-by-association
fashion based on protein–protein interactions as a fraction of the total number
of known annotations (light blue bars in Fig. 4). We find that protein–protein
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interactions provided some additional coverage (around 20% for S.cerevisiae and
10% for D. melanogastor) even at relaxed BLAST E-value cutoffs of >=0.01 for
inferring biological_process and cellular_component annotations. Finally, we also
compute any further coverage that may be gleaned if we also allow functional infer-
ence using indirect functional associations between level-2 interaction neighbors.
We found that there is substantial additional coverage that may be gained in this
way (dark blue bars in Fig. 4) for both species. This analysis addressed the first two
questions we seek to answer, that is: (1) There are a fair number of GO annota-
tions that cannot be inferred through simple sequence homology, but can potentially
be predicted from protein-protein interactions; and (2) Extending functional predic-
tions to level-2 neighbors helps to further increase coverage by including functional
annotations that cannot be associated to a protein via sequence homology or direct
protein–protein interactions.

Function Prediction Performance

Finally, we investigate if the function prediction method that we proposed earlier
can be used to make better predictions for GO terms for the seven species by
using functional association with indirect interaction neighbours. Again, we used
the informative functional classes concept to identify informative GO terms to be
used for evaluation for each species. Comparing FS-weighted averaging with the
Neighbor-Counting and Chi-Square approaches, we found that FS-weighted aver-
aging achieved superior precision–recall performance in all seven species (Fig. 5).

Indirect Functional Association and Complex Discovery

Protein Complex Discovery

Proteins often perform function by aggregating into complexes to perform sophis-
ticated biological tasks. Many well-conserved protein complexes perform key
biological functions such as transcription, splicing, mRNA export and protein syn-
thesis. Through complex formation, the primary molecular functions of individual
proteins (such as the ability to bind DNA or RNA, shuttle between membranes,
transport certain materials and interact with particular proteins) are recruited in a
coordinated fashion to perform highly specialized functions. RNA polymerases,
ribosomes and spliceosomes are some examples of widely studied protein com-
plexes with well-understood functionalities. Therefore to better understand the
higher-level biological processes in which proteins participate, it is necessary to look
beyond individual protein features such as sequences and structures and observe
how proteins form larger functional units. While experimental assays such as tan-
dem affinity purification and co-immunoprecipitation can be used to identify protein
complexes, these are usually suitable for capturing stable complexes. Many weak or
transient complexes are likely to be missed.
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Fig. 5 Precision vs. recall graphs of the predictions of informative GO terms from the gene
ontology biological process category using (1) Neighbour Counting(NC); (2) Chi-Square; and (3)
FS-Weighted Averaging(WA), for seven genomes. Figure from [24]
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The importance of identifying protein complexes motivated many bioinformat-
ics approaches to identify protein complexes computationally from protein–protein
interactions. Several insightful studies contributed significantly in motivating
research in this area. Spirin and Mirny [25] investigated highly connected pro-
teins in a physical protein–protein interaction network, and found functionally
related proteins to be highly connected with each other, but sparsely connected
with the rest of the network. Some of these densely connected proteins coincide
with known stable protein complexes, while many others are found to be related to
dynamic functional units involved in activities such as signaling cascades and cell
cycle regulation. Bu and colleagues studied topological structures (quasi-cliques
and quasi-bicliques) in protein–protein interactions and found that many of these
structures involved functionally related proteins [26]. Bader and Hogue [27] pro-
posed a computational method of protein complex discovery from protein–protein
interaction networks by “growing” complexes from “seed proteins” with dense local
network. The algorithm, MCODE, was subsequently implemented as a plug-in for
the popular bioinformatics visualization software Cytoscape [28]. The recurring
theme among these studies is that function modularity in biological systems may
be encoded in protein–protein interactions, and identifying such functional modules
allows us to better understand how proteins function together.

Protein Complexes with Limited Interactions

From our earlier studies, we found that many indirectly interacting proteins share
functional annotations from different schemes including YPD, FunCat and GO.
These indirectly interacting proteins that perform similar biological functions could
in reality be forming protein complexes, with their common interacting proteins
acting as adaptors that bring them into close proximity. This is especially likely for
larger complexes since proteins have limited binding pockets and usually have rea-
sonably high binding specificity. Since these proteins do not interact, there may not
be sufficient overlap between their local interaction neighborhoods for conventional
clustering approaches based on network density to associate them. As the FS-weight
measure has been demonstrated to provide some estimation to functional similari-
ties between two indirectly interacting proteins, we are interested to see whether
including indirect interactions with high FS-weight scores into the protein interac-
tion network can help improve discovery of complexes that involves less physical
inter-connections. On the other hand, since the FS-weight can also provide some
estimation of functional similarity between proteins that interact, we may be able
to remove possibly spurious interactions that are likely to be functionally unrelated
from the interaction network. We explore these ideas in a subsequent work [29, 30]
that study how complex prediction performance is affected by (1) applying exist-
ing clustering methods on modified physical protein–protein interactions; and (2)
proposing a clustering algorithm that implicitly take FS-weight into account.

Approaches for Protein Complex Prediction

At the time of the study there are two general approaches to protein complex pre-
diction from protein-protein interactions. The first approach, which we refer to as
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clique finding, imposes a stringent requirement on what constitutes a protein com-
plex. A clique is a fully connected subgraph in which each node is connected to
all other nodes in the subgraph. Spirin and Mirny [25] explored two methods of
finding densely connected subgraphs in a protein interaction network, one of which
is to renumerate all cliques in the network. The strict constraint imposed by clique
finding keeps false positives low and makes the approach robust to noise in the
interaction network. However, sensitivity is likely to be severely limited. Bu and
colleagues used a more relaxed constraint for complex prediction by looking for
quasi-cliques, which are dense subgraphs that are almost complete [26]. The other
general approach to complex prediction, which we refer to as clustering, involves
the use of heuristic algorithms to find groups of densely connected proteins, usually
based on network properties such as network density. Brohee and colleagues [31]
evaluated some of these clustering methods, namely the Restricted Neighborhood
Cost-Based Clustering (RNSC) [32], MCODE, Markov Clustering (MCL) [33],
and Super Paramagnetic Clustering (SPC) [34] for protein complex prediction from
protein–protein interaction networks. Using 6 protein–protein interaction networks
from [2, 5, 35–38] and cataloged complexes from MIPS [39], the authors optimized
the parameters for each clustering algorithm and benchmarked them over several
performance metrics.

Modifying the Interaction Network with FS-Weight

Given a input interaction network, FS-weight is applied to assign a score to all
interactions as well as level-2 indirect interactions. By applying a threshold FS-
Weightmin, we include indirect interactions that surpass this threshold into the
original interaction network. On the other hand, direct interactions in the origi-
nal interaction network that does not meet this threshold are removed from the
interaction network. Since the FS-Weight measure exhibit positive correlation with
functional similarity, we expect connected proteins in the modified network to be
more functionally related than that of the original network. In the study we per-
formed experiments using the 6 protein–protein interaction networks studied in [31],
which comprises 2 datasets derived from large-scale yeast two-hybrid studies, and
4 datasets from affinity purification and mass spectrometry. We refer to this com-
bined network as the “combined” dataset. We also used a larger dataset comprising
all physical protein-protein interactions from BioGRID which is a superset of the
6 networks.

As a preliminary study of the feasibility of this approach, we compute the frac-
tion of all interactions that involve a pair of proteins that belong to some common
complex for the two interaction networks, as well as the modified versions of these
networks. We find that if we introduce level-2 indirect interactions indiscriminately,
the fraction of interactions that involve co-complex proteins decreases drastically
(Fig. 6, L1 & L2). However, if we only include level-2 interactions with high FS-
weight scores, we are able to maintain these fractions at similar levels (L1 & Filtered
L2) as that for the original interaction networks (L1). Finally, when we also remove
direct interactions with low FS-weight after including level-2 interactions with high

dcswls
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Fig. 6 Fraction of intra-complex interactions with nodes sharing some complex membership for
different PPI networks. Figure from [30]

FS-weight, the fractions of the interactions that involve proteins from common com-
plex increased significantly (Filtered L1 & L2). These observations are encouraging
and suggest that we could possibly make the network more amenable to complex
discovery in this manner.

A New Complex Prediction Approach

Since the FS-weight can provide a decent estimate of the functional relatedness of
an interaction, we may be able to exploit this information in the complex prediction
process. Taking this idea into consideration, we proposed a novel complex predic-
tion approach and benchmark it alongside with the 4 existing clustering algorithms
evaluated in [31]. Our approach, PCP (Protein Complex Prediction), is a heuristic
algorithm that involves a three-step iterative process:

Maximal Clique Finding

The first step involves finding all maximal cliques of at least size 2 from the network.
This can be done efficiently on a sparse graph using the algorithm described in
[40]. For nodes that belong to multiple cliques, we assign them to only one clique
using a heuristic method to maximize the average FS-Weight scores of the edges
in each non-overlapping clique. Since this is also the performance bottleneck of
the algorithm, we also proposed an alternative heuristic method for finding non-
overlapping cliques as a replacement for this step which did not have any significant
impact on prediction performance.

Computing InterClusterDensity

The clique finding step will return very dense subgraphs that are completely con-
nected. A clique is unlikely to represent a complete real complex, but rather a
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densely-connected subset of it. To associate less densely connected parts of the
complex, we can merge cliques that are well-connected. To provide a quantitative
measure of interconnectedness between a pair of subgraphs (Sa, Sb), we define the
InterClusterDensity (ICD) as follows:

ICD(Sa, Sb) =
∑

SFS(i, j)|i ∈ Va, j ∈ Vb, (i, j) ∈ E

|Va| · |Vb| (8)

where Vx is the set of vertices of subgraph Sx. This is simply the weighted sum of
all edges between members of the two subgraphs, divided by the maximum number
of possible edges between them.

Subgraphs Merging

Using the ICD measure, we can now imagine each clique as a node in a new graph,
and insert an edge between two nodes that has a ICD score greater than an arbitary
threshold ICDmin. We can now perform the maximal clique finding step again on
the new graph. The nodes in the cliques found will no longer be proteins, but rather
groups of proteins. By reiterating this process, smaller groups of proteins will grad-
ually be merged into large groups in a hierarchical manner. To allow the better
connected nodes to be merged first, we start from a high ICDmin threshold, and
gradually reduce the threshold whenever no further merging can be made.

Performance Evaluation

Known protein complexes from MIPS is used as the gold standard against which
performance is evaluated. In order to see if novel predictions are indeed made, we
also used MIPS complexes released 2 years apart, in 2004 and 2006. Unlike func-
tion prediction, the practical usefulness of complex prediction lies in the ability to
predict a set instead of a pair. Therefore to make quantitative evaluation meaningful,
we must first define what constitute a correct prediction, that is, the critria for a pre-
dicted cluster to be considered as matching a known complex. We adopt the overlap
measure from [27]:

Overlap(S, C) = |Vs ∩ Vc|
|Vs| · |Vc| (9)

In [27], and overlap score of 0.2 or more is considered a match. We used a slightly
higher threshold of 0.25 in our study. Since there may be more than one cluster
matching a complex and vice versa, we used a slightly modified version of the con-
ventional precision and recall measure. We defined precision here as the number of
predicted clusters that matched a complex:

Precision = matchedclusters

predictedclusters
(10)
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Similarly, we defined recall as the number of known complex that matched a
cluster:

Recall = matchedcomplexes

knowncomplexes
(11)

Complex Prediction Performance

We performed protein complex prediction using RNSC, MCL, MCODE and PCP on
the original interaction networks as well as the modified networks. For the RNSC,
MCL and MCODE algorithms we used the optimal parameters that are derived
by the authors in [31]. We determined optimal parameters for PCP empircally.
Compared to predictions made on the orignal network (Fig. 7 top row), we found
that the precision–recall performance for MCL, MCODE and PCP improved sig-
nificantly after the networks are augmented and filtered using FS-weight (Fig. 7
middle row) for both the combined and BioGRID datasets. The performance of
RNSC, however, did not changed significantly. PCP performed the best among the
clustering algorithms studied for both interaction datasets. We also evaluated the
predictions made for the modified network against the newer 2006 MIPS complex
dataset (Fig. 7 bottom row), and found that precision–recall performance has gener-
ally improved for all the algorithms, which suggested that some of the predictions
made which are “novel” based on the 2004 complex dataset were indeed identified
to be real complexes a couple of years later.

Improving the Reliability of Interactions

Efforts in computational protein function prediction and protein complex discovery
are plagued by the common challenges of false positives, and perhaps more seri-
ously, false negatives in protein–protein interactions. Much work has been done to
assess the error rates of interaction data [41–44], and estimates based on overlaps
in datasets indicated yeast two-hybrid datasets to contain false positives as high as
50%. More recent work [45] suggested that such estimation are likely to be flawed,
and a more recent estimate [46] placed the false discovery rate of yeast two-hybrid
interactions at around 10% and false negative rate at around 50% for S.cerevisiae.
Nonetheless, false positives and false negatives is an important concern, and much
effort has been made to improve the quality of interaction data by computationally
assessing the confidence of individual interactions. Some of these methods involve
using independent, biologically relevant data such as gene expression and sequence
homology [43, 47], while others solely used topological properties inherent in the
network [48–51].

For methods that derive confidence for each interaction using a topological
measure, the weighted interactions can be seen as a being more representative of
the underlying “real” network. Hence intuitively it would make sense to use this
weighted network to re-compute the confidence for each interaction. We showed in
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Fig. 7 Precision–recall curves for complex predictions using MCL, RNSC, MCODE and PCP
for the combined (left column) and BioGRID (right column) datasets. Predictions are made
using the original networks (top row) and the modified networks (middle row) and evaluated
against complexes from the 2004 MIPS dataset. Predictions made using the modified net-
works are also evaluated against complexes from the 2006 MIPS dataset (bottom row). Figure
from [30]
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two recent studies that this concept can be used to improve upon local topological
measures such as the CD-Distance or FS-Weight in identifying functionally-related
interactions and improve complex prediction performance [52, 53].

Iterative Scoring

We define the iterative scoring function from a base topological score function. In
the study we used a variant of the CD-Distance as the base measure:

AdjustCD (u, v) = 2 |Nu ∩ Nv|
|Nu| + λu + |Nv| + λv

(12)

λu and λv are pseudo counts used to penalize proteins with few neighbors, and are
defined similarily as λu,v used in FS-weight. The iterative version of AdjustCD is
defined as:

wk(u, v) =
∑

x∈Nu∩Nv
(wk−1(x, u) + wk−1(x, v))

∑
x∈Nu

wk−1(x, u) + λk
u +∑

x∈Nv
wk−1(x, v) + λk

v
(13)

where wk−1(u, v) is the weight of the edge (u,v) at the (k–1)-th iteration. At the
initial stage (k = 0), w0(u, v) = 1 if the edge (u,v) exists and w0(u, v) = 0
otherwise.

λk
u = max

⎧
⎨

⎩
0,

∑
x∈V

∑
y∈Nx

wk−1 (x, y)

|V| −
∑

x∈Nu

wk−1 (x, u)

⎫
⎬

⎭

λk
v = max

⎧
⎨

⎩
0,

∑
x∈V

∑
y∈Nx

wk−1(x, y)

|V| −
∑

x∈Nv

wk−1(x, v)

⎫
⎬

⎭
(14)

are the weighted variants of λu and λv at the k-th iteration and V is the set of all
nodes in the network. At iteration k = 1, wk(u, v) = AdjustCD(u, v). We refer to the
k-iteration version of this scoring function as AdjustCDk.

We showed in [52], that the use of this iterative scoring function reaches best
performance at k = 2. The weights assigned to interactions using the score func-
tion were significantly more predictive of functional similarity and co-localization
than FS-Weight and CD-Distance. The weights assigned to indirect level-2 inter-
actions with the iterative function are also more relevant to functional homogenity
and localization coherence. These observations suggested that the iterative weight-
ing function may be used to improve the protein complex prediction approach we
visited in the previous section.
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Complex Discovery Using AdjustCDk Weighted Interactions

In [53] we conducted a detailed analysis on protein complex finding using interac-
tions that are weighted using AdjustCDk. Two reference sets of protein complexes
are used. The first set is the set of hand-curated complexes from MIPS [39]. The
other set of complexes are modeled from three-dimensional structures that were
screened using electron microscopy by Aloy et al. [54]. Using the 6 physical protein-
protein interaction datasets used in [30, 31], we study how the performance of MCL,
MCODE, CFinder [55] and a new clustering algorithm, which we called CMC
(Clustering Based on Maximal Cliques), is affected when the input interaction is
weighted using AdjustCDk.

The CMC Algorithm

Like the PCP algorithm, the CMC algorithm starts by finding all maximal cliques
in the network using the algorithm described in [40]. However, unlike PCP, CMC
do not iteratively merge cliques through building higher-level abstract networks.
Instead, a heuristic procedure is used to quickly merge well overlapping cliques into
larger clusters. Each clique C is first scored based on its weighted network density:

score(C) =
∑

u∈C,v∈C w (u, v)

|C| · (|C| − 1)
(15)

where w(u,v) is the weight of edge (u,v) scored using AdjustCDk. The cliques are
then sorted into a list based on their score in a decreasing order. Each clique Ci is in
turn examined beginning from the top of the sorted list. For every other clique Cj in
the list which overlaps with Ci above a predefined threshold (i.e.

∣
∣Ci ∩ Cj

∣
∣ /
∣
∣Cj
∣
∣ ≥

overlap_thres) and score(Cj) < score(Ci), Cj is removed from the list. A weighted
inter-connectivity score is then computed between Ci and Cj to decide if Cj should
be merged with Ci:

inter−score (C1, C2) =
√∑

u∈(C1−C2)

∑
v∈C2

w (u, v)

|C1 − C2| · |C2| ·
∑

u∈(C2−C1)

∑
v∈C1

w (u, v)

|C2 − C1| · |C1|
(16)

If inter−score(Ci, Cj) ≥ merge_thres, then Cj will be merged with Ci, otherwise it
is discarded. merge_thres is a pre-defined parameter. The parameters overlap_thres
and merge_thres are empirically determined.

Performance Evaluation

In this study we considered a predicted cluster to match a protein complex if the
Jaccard index between them is at least 0.5. To ensure that random matches are
unlikely, we randomly swapped complex members to see if the resulting random
complexes match with any predicted clusters from the CMC algorithm. We found no
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matches over 1000 such runs. Precision and recall are defined similarly as described
in the previous section of this chapter. We found that all 4 clustering methods
achieved significant improvement in precision when using weighted networks com-
pared to unweighted networks. Using k=2 in the AdjustCDk weighting function
result in the best performance among most of the clustering algorithms that are
evaluated, and further increase in k to 20 showed little change in performance for
CMC and Cfinder.

Robustness Against Noise in the Interaction Network

Perhaps the most interesting observation we made from this study is the robustness
of the weighted network to random additive noise. By randomly adding edges to the
original network, we examine the impact of additive noise on the prediction perfor-
mance of CMC using k=1, k=2 and k= 20 for AdjustCDk weighted versions of the
interaction network. Evaluating against the complex dataset from [54], we find that
when k=1, the performance of the CMC algorithm degrades significantly when ran-
dom interactions amounting to 50% of the original network is added, and continues
to degrade quickly with higher levels of noise (Fig. 8, top). When k=2, however,
the performance of CMC showed only a slight decrease when 50% random inter-
actions are added, and only exhibited significant degradation when added random
interactions is greater than 300% of the original network. At k=20, the performance
of CMC only showed signs of degradation when the number of added random inter-
actions is 5 times that of the original network. These observations suggests that the
iterative scoring approach can potentially be used to benefit downstream analyses
that makes use of protein-protein interaction data by accentuating the biologically
relevant subset of interactions within noisy datasets.

Conclusions

In this chapter, we briefly review some of the works we have done on using
protein-protein interactions for computational approaches related to protein function
discovery. The key concepts introduced here includes indirect functional associa-
tion between proteins that do not interact directly, the use of topological weights
such as FS-weight to identify functionally relevant interactions so that such indirect
interactions can be feasible for practical use, and the impact of using topological
weighting techniques (such as FS-weight and the iterative AdjustCDk) to improve
interaction data quality on protein complex prediction. It is noteworthy that while
protein-protein interaction data is highly relevant to understanding and inferring
protein functions, it captures a limited aspect of protein functionality. Greater suc-
cess in computational function prediction is likely to be achievable through the use
of a multitude of biological data such as expression profiles, sequence homology
and more. Such holistic approaches are actively being researched on [56–59], and
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Fig. 8 Precision–recall curves for Aloy reference set when different amount of interactions are
randomly added. Overlap thres=0.5, match thres=0.5. Figure from [53]
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hold promise for the eventual goal of reliable characterization of protein function-
ality in a high-throughput fashion. Protein-protein interaction data is an important
source of data for these approaches, and research on the analysis and processing
of protein–protein interactions will continue be a key area of research in protein
function prediction.
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