
Evolution and Maintenance of Frequent Pattern
Space when Transactions are Removed

Mengling Feng,1 Guozhu Dong,2 Jinyan Li,3 Yap-Peng Tan,1 Limsoon Wong4

1Nanyang Technological University, 2Wright State University,
3Institute for Infocomm Research, & 4National University of Singapore

1{feng0010, eyptan}@ntu.edu.sg, 2guozhu.dong@wright.edu,
3jinyan@i2r.a-star.edu.sg, & 4wongls@comp.nus.edu.sg

Abstract. This paper addresses the maintenance of discovered frequent
patterns when a batch of transactions are removed from the original
dataset. We conduct an in-depth investigation on how the frequent pat-
tern space evolves under transaction removal updates using the concept
of equivalence classes. Inspired by the evolution analysis, an effective
and exact algorithm TRUM is proposed to maintain frequent patterns.
TRUM maintains frequent patterns efficiently by updating only the af-
fected equivalence classes. Experimental results demonstrate that our
algorithm outperforms representative state-of-the-art algorithms.

1 Introduction

Update is a fundamental data management activity. Data updates allow users
to remove expired data, to correct data, and to insert new data. Maintenance
of a dynamic dataset and its corresponding discovered knowledge is more com-
plicated compared to the knowledge discovery of a stable dataset. Updates may
induce new knowledge and invalidate discovered information. Re-execution of
discovery algorithms from scratch every time when a database is updated causes
significant computation and I/O overheads. Therefore, effective algorithms to
maintain discovered knowledge on the updated database without re-execution
of mining algorithms are very desirable.

Databases can be updated in several manners. We focus here on the case when
a batch of transactions are removed from the existing database. According to
[15], transaction removal is one of the most frequently used operations in DBMS.
This operation is very crucial in the applications of sales data, transaction records
and clinical data to delete expired data and error records.

In this paper, a novel method is proposed to update and maintain discovered
frequent patterns [1], an important pattern type in data mining. One major
challenge of maintaining frequent patterns is that the pattern space is often
huge. E.g. mushroom dataset, which has about 8 thousands transactions, returns
over 100K frequent patterns when minimum support is 1K. Furthermore, among
the enormous frequent pattern space, we have no prior knowledge about which
patterns are affected by the transaction removal update. In addition, updates

cause various degrees of impacts on different patterns, e.g. some patterns may
experience just a change of support values, but some may be removed completely.

This paper makes the following contributions: (1) We conduct an in-depth
analysis on how the frequent pattern space evolves under transaction removal
updates using the concept of equivalence classes. To the best of our knowledge,
no previous works have studied this. The evolution analysis inspires us to solve
the maintenance problem effectively in a divide-n-conquer manner. (2) An effec-
tive and exact algorithm, Transaction Removal Update Maintainer (TRUM), is
proposed to maintain frequent patterns when transactions are removed. TRUM
maintains the pattern space effectively by updating only the affected equivalence
classes. Besides equivalence classes, TRUM can be applied to update closed and
key patterns, since they are the borders of equivalence classes. It is worth point-
ing out that the maintenance of key patterns has rarely been studied in prior
works. (3) Extensive experimental studies are conducted to evaluate the perfor-
mance of the proposed algorithm. Experiments show that TRUM has significant
performance advantage over some state-of-the-art approaches.

2 Preliminaries and Previous Work

Let I = {i1, i2, ..., im} be a set of distinct literals called “items”. An “itemset”,
or a “pattern”, is a set of items. A “transaction” is a non-empty set of items. A
“dataset” is a non-empty set of transactions. A pattern P is said to be contained
or included in a transaction T if P ⊆ T . A pattern P is said to be contained
in a dataset D, denoted as P ∈ D, if there is T ∈ D such that P ⊆ T . The
“support” of a pattern P in a dataset D, denoted sup(P,D), is the number of
transactions in D that contain P . A pattern P is said to be frequent in a dataset
D if sup(P,D) is greater than or equal to a pre-specified threshold ms. Given a
dataset D and a support threshold ms, the collection of all frequent itemsets in
D is called the “space of frequent patterns”, and is denoted by F(ms,D).

The “space of frequent patterns” can be large. As a result, maximum pat-
terns [3, 8], closed patterns [7, 9], key patterns [12] (also known as generators),
and borders of equivalence classes [11] have been proposed to concisely represent
the space of frequent patterns. Borders of equivalence classes are arguably the
most flexible succinct lossless representation of the frequent pattern space [11].
Conceptually, it partitions the frequent pattern space into equivalence classes
that are convex. Then the entire space is represented by the most general and
most specific patterns of these equivalence classes. As it turns out, these most
general patterns are precisely the key patterns, and these most specific patterns
are precisely the closed patterns.

The task of frequent pattern maintenance is to update the “space of frequent
patterns” according to the updates of the dataset.

Incremental maintenance, where new transactions are inserted, has at-
tracted intensive research attention. Current incremental maintenance algo-
rithms can be categorized into two main approaches: Apriori-based [5, 6, 2]
and sliding window filtering (SWF) [4, 10]. The performance of both Apriori-

2

based and SWF algorithms is limited by the candidate-generation-elimination
framework, which involves multiple data scans and unnecessary computations
on infrequent candidates.

To achieve more efficient updates, algorithms are proposed to incrementally
maintain only frequent maximum patterns. ZIGZAG1 [13] is one effective repre-
sentative. ZIGZAG is inspired by its related work GenMax [8]. It incrementally
maintains maximum patterns by a backtracking search, which is guided by the
outcomes of previous maintenance iteration.

Decremental maintenance, where old transactions are removed, on the
other hand, has not received as much research attention. Zhang et al. [15] pro-
posed an algorithm, named DUA, to address the decremental maintenance prob-
lem. DUA maintains frequent patterns by a pairwise comparison of original fre-
quent patterns and patterns included in the removed transactions. Since the
number of frequent patterns is usually enormous, the pairwise comparisons cause
heavy computations. In addition, algorithms FUP2H [6], Borders [2], ZIGZAG can
also be applied to decremental maintenance with some parameter changes.

It is observed that most previous methods are proposed as an extension
of some effective data mining algorithms or data structures. E.g. FUP [5] and
Borders [2] are developed based on Apriori , and ZIGZAG is inspired by GenMax.
Unlike these previous works, our algorithm is proposed based on an in-depth
study on the evolution of the frequent pattern space.

3 Evolution of Frequent Pattern Space

3.1 Basic Properties of Frequent Pattern Space

The space of frequent patterns possesses the nice convexity property, which is
very helpful when it comes to concise and lossless representation and mainte-
nance of the space.

Definition 1. A space S is convex if, for all X,Y ∈ S such that X ⊆ Y , it is
the case that Z ∈ S whenever X ⊆ Z ⊆ Y .

For a convex space S, we define the collection of all “most general” patterns
in S as a “bound” of S, where a pattern X is most general in S if there is no
proper subset of X in S. Similarly, we define the collection of all “most specific”
patterns as another bound of S, where a pattern X is most specific in S if there
is no proper superset of X in S. We call the former bound the “left bound” of
S, denoted L; and the latter bound the “right bound” of S, denoted R. We call
the pair of left and right bound the “border” of S, which is denoted by 〈L,R〉.
A space can be concisely represented by its borders without loss of information.

Fact 2 (Cf. [11]) F(ms,D) is convex. Furthermore, it can be structurally de-
composed into convex sub-spaces — equivalence classes.
1 We thank Adriano Alonoso Veloso, Professor Srinivasan Parthasarathy and Professor

Mohammed J. Zaki for providing the ZIGZAG source code.

3

Sample Dataset (ms =2)

a, b, c, d
b, d
a, c, d
a, c

{}

a : 3 c : 3 d : 3 b : 2

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

Fig. 1. Demonstration of how a space of frequent patterns, which contains 9 patterns,
is decomposed into 5 frequent equivalence classes.

The fact indicates that the space of frequent patterns is a convex space.
We found that convex space has an interesting property: it can be decomposed
into convex sub-spaces. In the case of frequent pattern space, it can be further
decomposed systematically into equivalence classes.

Definition 3. Let the “filter”, f(P,D), of a pattern P in a dataset D be defined
as f(P,D) = {T ∈ D | P ⊆ T}. Then the “equivalence class” [P]D of P in a
dataset D is the collection of patterns defined as [P]D = {Q | f(P,D) = f(Q,D),
Q is a pattern in D}. Note that under this definition, [Q]D = ∅ if Q does not
appear in D. For convenience in some of our proofs, we also use the traditional
notion of an equivalence class, and write it as [P]∗D = {Q | f(P,D) = f(Q,D)}.

In other words, two patterns are “equivalent” in the context of a dataset D
iff they are included in exactly the same transactions in D. Thus the patterns in
a given equivalence class have the same support. So we extend the notations and
write sup(C,D) to denote the support of an equivalence class and C ∈ F(ms,D)
to mean the equivalence class is frequent. Figure 1 presents the frequent pattern
space for the sample dataset with ms = 2. In addition, it graphically demon-
strates how the space of frequent patterns can be structurally decomposed into
frequent equivalence classes.

Structural decomposition of frequent pattern space inspired us to solve the
maintenance problem in a divide-and-conquer manner. Instead of maintaining
the pattern space as a whole, which is computationally costly, we attack the
problem by maintaining each frequent equivalence class. Compared with the
frequent pattern space, an equivalence class is much smaller and easier to update.
Moreover, not all the equivalence classes are affected by the updates. If we can
efficiently locate only those equivalence classes that are affected by the updates,
we can solve the problem effectively by updating only the affected equivalence
classes. In addition, a nice property of equivalence classes of patterns is that
they are convex and they can be concisely represented by their borders.

Fact 4 (Cf. [11]) [P]D is convex, and the right bound of its border is a singleton
set.

Together with equivalence classes, frequent “closed patterns” and frequent
“key patterns” (also called “generators”) have been widely studied in the data

4

Original Dataset (ms =2)

a, b, c, d
b, d
a, c, d
a, c

Frequent equivalence classes:

{ {a}, {c}, {a, c} } : 3

{ {a, d}, {c, d}, {a, c, d} } : 2

{ {b, d} } : 2

Frequent equivalence classes:

Updated Dataset (ms =2)

a, b, c, d
b, d
a, c
b

Notation: {.} : x refers to an equivalence class with x as
support value and consists of patterns {.}.

{ {d} } : 3

Remove
transaction {a,c,d}

{ {a}, {c}, {a, c} } : 2Decreased in
support

b

{ {b} } : 3

Merged { {d}, {b, d} } : 2

Unchanged { {b} } : 3
Decreased in

support infrequent

Fig. 2. An example to demonstrate how equivalence classes and the frequent pattern
space may evolve when a transaction is removed.

mining field. We discuss next the relationship between equivalence classes and
closed and key patterns.

Definition 5. A pattern P is a “key pattern” in a dataset D iff for every P ′ ⊂
P , it is the case that sup(P ′,D) > sup(P,D). In contrast, a pattern P is a “closed
pattern” in a dataset D iff for every P ′ ⊃ P , it is the case that sup(P ′,D) <
sup(P,D).

It is discovered in [11] that the right bound of an equivalence class is actually
a closed pattern, and the left bound is a group of key patterns. Thus, the corre-
sponding closed and key patterns form the border of and define an equivalence
class. Following the definition of borders of convex spaces, a key pattern must
be most general in its equivalence class. Similarly, a closed pattern must be most
specific in its equivalence class. So we have the following alternative equivalent
definitions for key and closed patterns.

Fact 6 A pattern P is a key pattern in a dataset D iff P is a most general
pattern in [P]D. A pattern P is a closed pattern in a dataset D iff P is the most
specific pattern in [P]D. Therefore, to mine or maintain key and closed patterns,
it is sufficient to mine or maintain the borders of equivalence classes, and vice
versa.

3.2 Impacts of Transaction Removal

We investigate in this section how frequent patterns, key patterns, closed pat-
terns, equivalence classes and their support values evolve when multiple trans-
actions are removed from an existing dataset. We use the following notations:
Dorg is the original dataset, Ddec is the set of old transactions to be removed,
and Dupd− = Dorg − Ddec is the updated dataset. We assume without loss of
generality that Ddec ⊆ Dorg.

5

An existing equivalence class can evolve in exactly three ways, as shown in
Figure 2. The first way is to remain unchanged without any change in support.
The second way is to remain unchanged but with a decreased support. If the sup-
port of an existing frequent equivalence class drops below the minimum support
threshold, the equivalence class will be removed. The third way is to grow—by
merging with other classes, where at most one of the merging classes has the
same closed pattern and the same support as the resulting equivalence class and
all other merging classes have lower support. In short, after the decremental
update, the support of an equivalence class can only decrease and the size of an
equivalence class can only grow by merging.

In order to have an in-depth understanding of the three ways that an existing
equivalence class may evolve, we now provide the exact conditions for each of
these ways to occur. The evolution of frequent pattern space under decremental
updates are characterized as follows:

Theorem 1. For every frequent equivalence class [P]Dorg in Dorg, exactly one of the
6 scenarios below holds:

1. P is frequent in Dorg, P is not in Ddec, and f(P,Dorg) �= f(Q, Dorg)− f(Q,Ddec)
for all Q in Ddec, corresponding to the scenario where an equivalence class has
remained totally unchanged. In this case, [P]Dupd− = [P]Dorg , sup(P,Dupd−) =
sup(P,Dorg), f(P,Dupd−) = f(P,Dorg), and the closed pattern of [P]Dupd− is the
same as that of [P]Dorg . The key patterns of [P]Dupd− are the same as that of
[P]Dorg .

2. P is frequent in Dorg, P is not in Ddec, and f(P,Dorg) = f(Q, Dorg)− f(Q,Ddec)
for some Q occurring in Ddec, corresponding to the scenario where the equivalence
class of Q has to be merged into the equivalence class of P . In this case, let all such
Q’s in Ddec be grouped into n distinct equivalence classes [Q1]

∗
Ddec

, ..., [Qn]∗Ddec
,

having representatives Q1, ..., Qn satisfying the condition on Q. Then [P]Dupd− =
[P]Dorg ∪

⋃
i
[Qi]Dorg , sup(P,Dupd−) = sup(P,Dorg), f(P,Dupd−) = f(P,Dorg),

and the closed pattern of [P]Dupd− is the same as the closed pattern of [P]Dorg .
The key patterns of [P]Dupd− are the most general ones among the key patterns of
[P]Dorg , [Q1]Dorg , ..., [Qn]Dorg . Furthermore, [Qi]Dupd− = [P]Dupd− for 1 ≤ i ≤ n.

3. P is frequent in Dorg, P is in Ddec, and |f(P,Dupd−)| < ms, corresponding to the
scenario where the equivalence class is removed.

4. P is frequent in Dorg, P is in Ddec, and f(Q,Dorg) = f(P,Dorg) − f(P,Ddec) for
some Q that is frequent in Dorg but not in Ddec, corresponding to the scenario
where the equivalence class of P has to be merged into the equivalence class of
Q. This scenario is complement to Scenario 2. In this case, the equivalence class,
support, key, and closed patterns of [P]Dupd− is the same as that of [Q]Dupd− , as
computed in Scenario 2.

5. P is frequent in Dorg, P is in Ddec, |f(P,Dupd−)| > ms, f(Q,Dorg) �= f(P,Dorg)−
f(P,Ddec) for all Q in Dorg and not in Ddec, and f(P,Dorg) − f(P,Ddec) �= f(Q,
Dorg) − f(Q,Ddec) for all Q in Ddec and Q �∈ [P]Dorg , corresponding to the sit-
uation where the equivalence class has remained unchanged but has decreased in
support. In this case, [P]Dupd− = [P]Dorg , f(P,Dupd−) = f(P , Dorg)−f(P,Ddec),
sup(P,Dupd−) = sup(P,Dorg) − sup(P,Ddec), and the closed pattern of [P]Dupd−
is the same as that of [P]Dorg . The key patterns of [P]Dupd− are the same as that
of [P]Dorg .

6

6. P is frequent in Dorg, P is in Ddec, |f(P,Dupd−)| > ms, f(Q,Dorg) �= f(P,Dorg)−
f(P,Ddec) for all Q in Dorg and not in Ddec, and f(P,Dorg) − f(P,Ddec) = f(Q,
Dorg) − f(Q,Ddec) for some Q in Ddec and Q �∈ [P]Dorg , corresponding to the
situation where the equivalence classes of P and Q have to be merged. In this case,
let all such Q’s in Ddec be grouped into n distinct equivalence classes [Q1]

∗
Ddec

, ...,
[Qn]∗Ddec

, having representatives Q1, ..., Qn satisfying the condition on Q. Then
[P]Dupd− = [P]Dorg ∪

⋃
i
[Qi]Dorg , sup(P,Dupd−) = sup(P,Dorg) − sup(P , Ddec),

and f(P , Dupd−) = f(P,Dorg)− f(P,Ddec). The closed pattern of [P]Dupd− is the
most specific pattern among the closed patterns of [P]Dorg , [Q1]Dorg , ..., [Qn]Dorg .
The key patterns of [P]Dupd− are the most general ones among the key patterns of
[P]Dorg , [Q1]Dorg , ..., [Qn]Dorg . Furthermore, [Qi]Dupd− = [P]Dupd− for 1 ≤ i ≤ n.

Proof. Refer to the Appendix (http://www.ntu.edu.sg/home5/feng0010/
appendix.pdf) for the detailed proof.

This theorem describes in detail how the space of frequent patterns evolves
when a group of transactions are removed. Moreover, it describes how to derive
equivalence classes in Dupd− from existing equivalence classes in Dorg, which is
an extremely constructive result for the maintenance of frequent patterns.

4 Proposed Algorithm: TRUM

An algorithm for maintaining the frequent pattern space after some trans-
actions are removed from the original database is proposed in Figure 3. In
the proposed algorithm TRUM, we use notations X.closed to mean the closed
pattern of an equivalence class, X.keys to mean the set of keys of an equiv-
alence class, and X.sup to denote the support value of an equivalence class.
The algorithm addresses the maintenance problem effectively by working on
the borders of equivalence classes, instead of the entire pattern space. The
proposed algorithm is proved to be correct and complete in the Appendix
(http://www.ntu.edu.sg/home5/feng0010/appendix.pdf).

According to Figure 3, the maintenance problem mainly consists of two major
computational tasks. The first task is to update the support values of each
existing frequent equivalence classes. The second task is to merge equivalence
classes that are to be joined together after the decremental update.

4.1 Implementation Techniques

TRUM is implemented efficiently with a novel data structure — Tid-tree. The
Tid-tree is developed based on the concept of Transaction Identifier List, in short
Tid-list. The Tid-list is very popular in the literature of data mining [8, 13]. Tid-
lists, serve as the vertical projections of items, greatly facilitate the discovery
of frequent itemsets and their support. A new feature of Tid-lists is exploited
here. They are utilized as the identifers of equivalence classes. Each frequent
equivalence class is associated with a Tid-list, which records all the transactions
it appears in. According to the definition of an equivalence class, each equivalence

7

Input: The set O = O1, ..., On of frequent equivalence classes in Dorg ,represented by their
borders—viz., the corresponding key and closed patterns and supports—and identified by their
unique closed patterns, and the set T = T1, ..., Tm of transactions in Ddec, and the minimum
support threshold ms.

Output: The set O′
1, ..., O′

n (if they still exist) of updated frequent equivalence classes in Dupd−
represented by their borders and identified by their unique closed patterns.

Method:
1: {Scenario 1 is default for equivalence classes in Dorg}
2: O′

1 := O1; ...; O′
n := On;

3: for all T ∈ T , O ∈ O do
4: if O.closed ⊆ T then
5: {Scenario 5 is default for equivalence classes, whose support is decreased due to the decre-

mental update. O′ has already been initialized as per Scenario 1.}
6: O′.sup := O′.sup − 1;
7: end if
8: end for
9: for all O′

i ∈ {O′
1, ..., O′

n} (if they exist) do
10: if O′

i.sup < ms then
11: {Scenario 3. The equivalence class is no longer frequent.}
12: Remove O′

i, continue;
13: end if
14: for all O′

j ∈ {O′
i+1, ..., O′

n} (if they exist) do

15: if O′
i.sup = O′

j .sup & O′
j .closed ⊂ O′

i.closed then

16: {Scenario 2 & 6. O′
j merges into O′

i.}
17: O′

i.keys := min{K|K ∈ O′
i.keys orK ∈ O′

j .keys}
18: Remove O′

j ;

19: end if
20: if O′

i.sup = O′
j .sup & O′

j .closed ⊃ O′
i.closed then

21: {Scenario 4 & 6. O′
i merges into O′

j .}
22: O′

j .keys := min{K|K ∈ O′
i.keys orK ∈ O′

j .keys}
23: Remove O′

i;
24: end if
25: end for
26: end for

return O′
1, ..., O′

n (if they still exist);

Fig. 3. TRUM: a novel algorithm for maintaining frequent patterns after some trans-
actions are removed from the original database.

class has a unique Tid-list, and so can be identified by it. This observation forms
the foundation of the proposed implementation technique. To construct a Tid-
list, we need to assign a unique Tid to each transaction as shown in Part (a) of
Figure 4.

The Tid-tree is a prefix tree of the Tid-lists of equivalence classes. The prefix
tree has been used as a concise storage of frequent patterns [9] and closed patterns
[7]. In this implementation, Tid-tree serves as a concise storage of Tid-lists of the
existing equivalence classes. Figure 4 (b) shows how the Tid-lists of equivalence
classes in Figure 4 (a) can be stored in a Tid-tree. Details of the construction of
a prefix tree can be referred to [7]. Here, we emphasize two features of the Tid-
tree: (1) Each node in the Tid-tree stores a Tid. If the Tid of the node is the last
Tid in some equivalence class’s Tid-list, the node points to the corresponding
equivalence class. Moreover, the depth of the node reflects the support of the
corresponding equivalence class. (2) The Tid-tree has a header table, where each
slot stores a linked list that connects all the nodes with the same Tid.

8

Original Dataset
(ms =2)

a, b, c, d
b, d
a, c, d
a, c

Frequent ECs:

EC_1: { {a}, {c}, {a, c} } : 3

EC_5: { {a, d}, {c, d}, {a, c, d} } : 2

EC_2: { {b, d} } : 2

Notation: EC_i: {.} : x refers to an equivalence class EC_i with
x as support value and consists of patterns {.}.

EC_3: { {d} } : 3

b

EC_4: { {b} } : 3

Tid Transactions

1

2

3
4
5

(a) (b) (c)

Root

1

3 2
EC_2

3
EC_5

5
EC_4

3
EC_3

4
EC_1

Tid
header
table

1

2

3

4

5

Root

2
EC_2'

5
EC_4

4
EC_1

Tid
header
table

1

2

4

5

1
EC_5

Note: EC_2' = EC_2 U EC_3

Remove
transaction 3

Fig. 4. A running example of TRUM with Tid-tree implementation. (a) Original
dataset with Tids and its frequent equivalence classes (ECs). (b)Tid-tree for the original
dataset. (c) Tid-tree after removal of transaction 3.

When transactions are removed from the original dataset, the Tid-tree can be
updated by removing all the nodes that include the Tids of deleted transactions.
This can be accomplished effectively with the help of the Tid header table.
As demonstrated in Figure 4, after a node is removed, its children re-link to
its parent to maintain the tree structure. If the node points to an equivalence
class, the pointer is passed to its parent. When two or more equivalence class
pointers collide into one node, they should be merged together. E.g. in Figure 4,
equivalence class EC 2 and EC 3 of the original dataset merge into EC 2’ after
the update.

With the Tid-tree, two major maintenance computational tasks of TRUM
are accomplished in one step as we remove Tids from the Tid-tree. Since the
Tid linked list can only be removed one by one, the computational complexity
of TRUM is O(|Ddec|), where |Ddec| denotes the size of the decremental dataset.
TRUM is much more computationally effective, compared to previous works, like
[8, 13], whose computational complexity is O(NFP), where NFP refers to the
number of frequent patterns. This is because O(|Ddec|) � NFP .

4.2 Limitations and Extensions

TRUM is developed under the setting where minimum support threshold ms is
defined in counts. This definition of ms is used in applications like [14]. But in
some other applications, ms may be defined in percentages. In such a case, the
actual support (in absolute count) of a pattern for satisfying the ms threshold
(in percentage) drops after some transactions are removed. Thus new frequent
patterns may emerge. So TRUM cannot be directly applied. Nonetheless, this
problem can be solved by extending the Tid-tree.

9

Instead of storing only frequent equivalence classes, whose supports are above
the percentage threshold x%, we also include equivalence classes, whose supports
are above (x−)%, in the Tid-tree. In this way, we actually build a “buffer” in
the Tid-tree, which contains a group of infrequent equivalence classes that are
likely to become frequent after some transactions are removed. This means that,
so long as the total number of deletions does not exceed |Dorg| × 	% (|Dorg| is
the size of Dorg), all the “new” equivalence classes that may emerge are already
kept in the “buffer” of the extended Tid-tree. With the extended Tid-tree, TRUM
can now be employed for multiple rounds of decremental maintenance, as long
as the accumulated amount of deletion is less than |Dorg| ×	%. As the amount
of deletion gets close to this limit, we re-execute the discovery algorithm and
rebuild the buffer. The size of the 	% buffer can be adjusted based on specific
application requirements.

5 Experimental Studies

Extensive experiments were performed to evaluate the proposed algorithm.
TRUM was tested using several benchmark datasets from the FIMI Reposi-
tory, http://fimi.cs.helsinki.fi. Due to space constraints, only the results
of T10I4D100K, mushroom and gazelle are presented in this paper. These
datasets form a good representative of both synthetic and real datasets.

We varied two parameters in our experiments: minimum support ms and
update interval. For each employed ms, we preformed multiple execution of the
algorithm, where each execution employed a different update interval. Moreover,
the performance of the algorithm varies slightly when different sets of transac-
tions are removed. To have a stable performance measure, for each update inter-
val, 5 random sets of transactions were employed, and the average performance
of the algorithm was recorded. The experiments were run on a PC with 2.8GHz
processor and 2GB main memory.

To justified the effectiveness of the proposed algorithm, we compared its per-
formance against some state-of-art frequent pattern discovery and maintenance
algorithms. These algorithms includes ZIGZAG [13], FpClose [9] and GC-growth
[11]. ZIGZAG is one of the most recently proposed algorithms, which also ad-
dresses the maintenance of frequent patterns when transactions are removed. It
outperforms most of the previous works. On the other hand, FpClose, according
to our knowledge, is the fastest algorithm for closed pattern mining. GC-growth
is the only algorithm that generates frequent equivalence classes. Results of the
performance comparison is presented in Figure 5.

We observe that TRUM outperforms ZIGZAG by at least an order of magni-
tude over all update intervals. The advantage of the proposed algorithm is most
obvious in mushroom dataset. For mushroom dataset, TRUM, on average, out-
performs ZIGZAG 200 times. It is measured that, for both T10I4D100K and
gazelle, TRUM achieves around 80 and 20 times average speed-up.

TRUM is also more effective compared to re-discovering all patterns using
FpClose and GC-growth. E.g. TRUM is, on average, 30 times faster than FpClose

10

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

size of removed transactions (in percentage)

ti
m

e
(s

ec
.)

T10I4D100K, ms = 100

TRUM
ZIGZAG
FpClose
GC−growth

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

size of removed transactions (in percentage)

ti
m

e
(s

ec
.)

mushroom, ms = 1000

TRUM
ZIGZAG
FpClose
GC−growth

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

size of removed transactions (in percentage)

ti
m

e
(s

ec
.)

gazelle, ms = 50

TRUM
ZIGZAG
FpClose
GC−growth

Fig. 5. Average run time comparison of ZIGZAG, FpClose, GC-growth and TRUM.

0 5% 10% 15% 20% 25% 30%

20

40

60

80

100

120

size of removed transactions (in percentage)

sp
eed

-up

T10I4D100K

ms = 50
ms = 100
ms = 500
ms = 1000

0 5% 10% 15% 20% 25% 30%
0

5

10

15

20

25

30

35

40

size of removed transactions (in percentage)

sp
eed

-up

mushroom

ms = 50
ms = 100
ms = 500
ms = 1000

Fig. 6. Speed-up achieved by TRUM against FpClose over various ms thresholds.

and 100 times faster than GC-growth for T4I10D100K dataset. However, we also
observe that as the size of the removed transactions increases, the advantage of
TRUM diminishes. This is because, corresponding to the complexity analysis, the
execution time of TRUM increases as more transactions are removed. In contrast,
due to the shrinkage of data size, the execution time of re-discovery approaches
drops when more transactions are removed. Combining these two effects, it is
logical that the speed-up gained by our maintenance approach diminishes as the
size of removed transactions goes up.

The performance of the proposed algorithm was also evaluated under different
support thresholds ms. The results are presented in Figure 6. It demonstrates
that TRUM remains effective compared to FpClose over a wide range of minimum
support thresholds. Nevertheless, the achieved speed-up drops slightly for higher
ms thresholds. When ms is high, the frequent pattern space becomes smaller,
which makes the discovery process much easier. As a result, the advantage of
TRUM becomes less obvious.

6 Closing Remarks

This paper has investigated how the space of frequent patterns, equivalence
classes, closed and key patterns will evolve when transactions are removed from
a given dataset. It was shown that the equivalence classes can evolve in three
ways: (1) remain unchanged with the same support value, (2) remain unchanged
with decreased support value, and (3) grow by merging with others. Based the
evolution analysis, an effective maintenance algorithm TRUM is proposed. TRUM
maintains the frequent pattern space in a divide-and-conquer manner using the

11

concept of equivalence classes. With the newly proposed data structure — Tid-
tree, TRUM addresses the problem efficiently by updating only the affected
equivalence classes. The effectiveness of the proposed algorithm is validated by
experimental evaluations.

This paper, to our best knowledge, is the first to study the evolution of
frequent pattern space under data updates. The proposed algorithm outperforms
the state-of-the-art algorithms at least an order of magnitude over a wide range
of support thresholds and update sizes.

In the future, it is interesting to exploit the evolution of frequent pattern
space under other types of updates, e.g. addition of transaction and items, or
removal of items. Solving these maintenance problems with a divide-n-conquer
approach could be promising.

References

[1] R. Agrawal, et al. Mining association rules between sets of items in large databases.
In SIGMOD, pages 207–216, 1993.

[2] Y. Aumann, et al. Borders: An efficient algorithm for association generation in
dynamic databases. In JIIS, (12) page 61-73, 1999.

[3] R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD, pages
85–93, 1998.

[4] C. Chang, et al. Enhancing SWF for incremental association mining by itemset
maintenance. In PAKDD, pages 301–312, 2003.

[5] D. Cheung, et al. Maintenance of discovered association rules in large databases:
an incremental update technieq. In ICDE, pages 106–114, 1996.

[6] D. Cheung, et al. A general incremental technique for maintaining discovered
association rules. In Proc. 1996 DASFAA, pages 185–194, 1997.

[7] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets.
In Proc. 1st IEEE ICDM Workshop on Frequent Itemset Mining Implementations,
2003.

[8] K. Gouda, et al. GenMax: An efficient algorithm for mining maximal frequent
itemsets. In Data Mining and Knowledge Discovery: An International Journal, 11:
1-20, 2005.

[9] J. Han, et al. Mining frequent patterns without candidates generation. In SIGMOD,
pages 1–12, 2000.

[10] C. Lee, et al. Sliding window filtering: An efficient method for incremental mining
on a time-variant database. Information Systems, 30(3):227-244, 2005.

[11] H. Li, et al. Relative risk and odds ratio: A data mining perspective. In PODS,
pages 368–377, 2005.

[12] N. Pasquier, et al. Discovering frequent closed itemsets for association rules. In
ICDT, pages 398–416, 1999.

[13] A.A. Veloso, et al. Mining frequent itemsets in evolving databases. In SIAM,
2002.

[14] C. Wong, et al. Parallel Algorithms for Mining Frequent Structural Motifs in
Scientific Data In ICS, pages 31-40, 2004.

[15] S. Zhang, et al. A decremental algorithm for maintaining frequent itemsets in
dynamic databases. In DaWak, pages 305–314, 2005.

12

Appendix: Proofs of Propositions and Theorems

Evolution of Frequent Pattern Space

To better appreciate Theorem 1, we discuss here the evolution of frequent pattern
space when multiple transactions are removed in a greater detail.

The transaction removal operation is very disruptive to the space of frequent
patterns. Most of the characteristics of the original frequent pattern space are
not preserved. Let us review one of the few characteristics that are preserved by
the decremental updates.

Proposition 1. Suppose P and Q are patterns in both Dorg and Dupd−. Then
Q ∈ [P]Dupd− if Q ∈ [P]Dorg

. Consequently, if P occurs in Dorg and P does not
occur in Dupd−, then all patterns in [P]Dorg

disappear in Dupd−.

This Proposition expresses two observations. First, suppose two patterns are
in the same equivalence class in the original dataset. They are still in the same
equivalence class in the updated dataset (if they still exist), and vice versa.
Secondly, equivalence classes may disappear after a group of transactions are
removed.

It is also observed that, after the decremental update, the support of an
equivalence class can only decrease and the size of an equivalence class can only
grow by merging. The details of this observation are described in the following
propositions.

Proposition 2. Let P be a pattern in Dupd−. Then [P]Dupd− ⊇ [P]Dorg
, and

sup(P,Dupd−) ≤ sup(P,Dorg).

Proposition 3. Let P be a pattern in Dupd−, and Q1, ..., Qn be patterns in Dorg

and [Qi]Dorg
∩[Qj]Dorg

= ∅ for 1 ≤ i
= j ≤ n. Then [Q1]Dorg
, ..., [Qn]Dorg

merge
to form [P]Dupd− iff [P]Dupd− =

⋃
1≤i≤n[Qi]∗Ddec

∩ [Qi]Dorg
, where Qi ∈ [P]Dupd−

for 1 ≤ i ≤ n and [Qi]∗Ddec
∩ [Qj]∗Ddec

= ∅ for 1 ≤ i < j ≤ n. Furthermore,
[Qi]Dorg

= [Qi]∗Ddec
∩ [Qi]Dorg

for 1 ≤ i ≤ n. Moreover, there is at most one
Qi among Q1, ..., Qn, such that Qi does not occur in Ddec and Qi ∈ [C]Dorg

,
where C is the closed pattern of [P]Dupd− . Also, if P ∈ F(ms,Dupd−), then
Qi ∈ F(ms,Dorg) for 1 ≤ i ≤ n.

Proof of Theorem 1

Proof. Scenario 1 and Scenario 3 is obvious. Scenario 4 follows from Scenario 2.
To prove Scenario 5, suppose (i) P is frequent in Dorg, (ii) P is in Ddec,

(iii) |f(P,Dupd−)| > ms, (iv) f(Q,Dorg) �= f(P,Dorg) − f(P,Ddec) for all Q in Dorg

and not in Ddec, and (v) f(P,Dorg) − f(P,Ddec) �= f(Q,Dorg) − f(Q,Ddec) for all Q
in Ddec and Q �∈ [P]Dorg . Point (iv) implies that [P]Dupd− �= [Q]Dupd− for all Q not
in Ddec and Q �∈ [P]Dorg . Point (v) implies that [P]Dupd− �= [Q]Dupd− for all Q in
Ddec and Q �∈ [P]Dorg . Thus no pattern Q outside of [P]Dorg can become a member of
[P]Dupd− . Thus [P]Dupd− ⊆ [P]Dorg . Then [P]Dupd− = [P]Dorg by Proposition 2. The
rest of the results for this scenario now follow straightforwardly.

13

To prove Scenario 2, suppose (i) P is frequent in Dorg, (ii) P is not in Ddec,
and (iii) f(P,Dorg) = f(Q,Dorg) − f(Q,Ddec) for some Q occurring in Ddec. Also,
let all such Q’s in Ddec be grouped into n distinct equivalence classes [Q1]Ddec , ...,
[Qn]Ddec , having representatives Q1, ..., Qn satisfying the condition on Q. Points (i)
and (ii) imply f(P,Dupd−) = f(P,Dorg) and sup(P,Dupd−) = sup(P,Dorg). Let C
be the closed pattern of [P]Dorg . By Proposition 3, we conclude that C is the closed
pattern of [P]Dupd− and that [P]Dupd− = [P]Dorg ∪

⋃
i
[Qi]Dorg . Points (i), (ii), and (iii)

imply that f(P,Dupd−) = f(P,Dorg) = f(Qi,Dorg) − f(Qi,Ddec) = f(Qi,Dupd−) for
1 ≤ i ≤ n. Thus [P]Dupd− = [Qi]Dupd− for 1 ≤ i ≤ n.

Next, we show that the key patterns of [P]Dorg , [Q1]Dorg , ..., [Qn]Dorg are also
patterns of [P]Dupd− . It basically follows the results of Proposition 1. This also implies
that the non-minimal ones cannot be key patterns of [P]Dupd− .

Now, to show that the key patterns of [P]Dupd− are the most general ones among
the key patterns of [P]Dorg , [Q1]Dorg , ..., [Qn]Dorg , it is sufficient to show instead
that the key patterns of [P]Dupd− are also the key patterns of [P]Dorg , [Q1]Dorg , ...,
[Qn]Dorg . Suppose K is a key pattern of [P]Dupd− = [P]Dorg ∪

⋃
i
[Qi]Dorg . Then K is

a pattern in [P]Dorg ∪
⋃

i
[Qi]Dorg . Without loss of generality, suppose K is a pattern

in [Qi]Dorg . If K is not a key pattern of [Qi]Dorg , this would imply there is a pattern
K′ ∈ [Qi]Dorg that is more general than K. However, such a K′ would also be a pattern
in [P]Dupd− = [P]Dorg ∪

⋃
i
[Qi]Dorg . This would contradict that assumption that K is a

key pattern of [P]Dupd− . Hence, such a K′ could not have existed, and thus K is a key
pattern of [Qi]Dorg . Thus, every key pattern of [P]Dupd− is a key pattern among the
key patterns of [P]Dorg , [Q1]Dorg , ..., [Qn]Dorg . This completes the proof for Scenario 2.

As for Scenario 6, it can be proved in the same way as Scenario 2, with a small
modification to handle the inference of the closed pattern. In particular, we assume
that f(P,Dorg) − f(P,Ddec) = f(Q,Dorg) − f(Q,Ddec) for some Q occurring in Ddec.
Then let all such Q’s in Ddec be grouped into n distinct equivalence classes [Q1]Ddec , ...,
[Qn]Ddec , having representatives Q1, ..., Qn satisfying the condition on Q. By Propo-
sition 3, [P]Dupd− = [P]Dorg ∪

⋃
i
[Qi]Dorg . Let C be the closed pattern of [P]Dupd− .

Then C ∈ [P]Dorg ∪
⋃

i
[Qi]Dorg . Since no pattern in [P]Dupd− is more specific than C,

we conclude that C is the most specific closed pattern among the closed patterns of
[P]Dorg , [Q1]Dorg , ..., [Qn]Dorg , as desired for Scenario 6. The rest of the proof for this
scenario is exactly the same as that for Scenario 2.

Completeness and Correctness of Proposed Algorithm

Closed patterns enjoy the “anti-monotonicity” property, in the sense that a
closed pattern is a subset of another closed pattern whenever the filter of the
latter is a subset of the former. Similarly, equivalence classes of patterns enjoy
the “anti-monotonicity” property.

Fact 7 1. Let P and Q be closed patterns in D. Then P ⊆ Q iff f(Q,D) ⊆
f(P,D).

2. Suppose D′ ⊆ D. Then [P]D ⊆ [P]D′ iff f(P,D′) ⊆ f(P,D).

Following the Fact 7, we have Lemma 1 and Corollary 1.

Lemma 1. Let [P]Dorg
be an equivalence class in Dorg. Then P is in Ddec ⊆

Dorg iff [P]Dorg
⊆ [P]Ddec

. Furthermore, since equivalence classes partition the

14

patterns in a dataset, it follows that [Q]Ddec
= [P]Ddec

whenever P ′ ∈ [Q]Ddec

for any P ′ ∈ [P]Dorg
.

Corollary 1. Let [P]Dorg
be an equivalence class in Dorg having C as its closed

pattern. Let [Q]Ddec
be an equivalence class in Ddec. Suppose C ∈ [Q]Ddec

.
Then for every pattern P ′ ∈ [P]Dorg

, it is the case that (i) P ′ ∈ [Q]Ddec
,

(ii) f(P ′,Ddec) = f(Q,Ddec), (iii) f(P ′,Dupd−) = f(P ′,Dorg) − f(Q,Ddec),
and (iv) sup(P ′,Dupd−) = sup(P ′,Dorg) − sup(Q,Ddec).

With the above results, we are now ready to prove the correctness and com-
pleteness of the proposed algorithm.

Theorem 2. The algorithm given in Figure 3 correctly maintains the key pat-
terns, closed patterns, and supports of equivalence classes after multiple trans-
actions are removed from the original database.

Proof. According to Theorem 1, for any equivalence class [P]Dorg in Dorg, there are
only 6 scenarios. We prove the correctness of the proposed algorithm according to these
6 scenarios.

For Scenario 1, suppose (i) P is frequent in Dorg, (ii) P is not in Ddec, and (iii)
f(P,Dorg) �= f(Q,Dorg) − f(Q,Ddec) for all Q in Ddec. Suppose P ∈ Oi. Points (i)
and (ii) and Lemma 1 imply Oi.closed is not in any transaction of T . Thus Line 4
cannot hold on Oi. So O′

i = Oi, as initialized in Line 2 when we reach Line 8. Points (i)
and (ii) imply O′

i.sup = Oi.sup > ms. Thus Line 10 cannot hold. Next, we consider
those O′

j where O′
j �= O′

i. Point (iii) implies that, for all O′
j , O′

j .sup �= O′
i.sup. Thus

Line 15 and Line 20 cannot hold for all O′
j . This proves Scenario 1.

For Scenario 2, suppose (i) P is frequent in Dorg, (ii) P is not in Ddec, and (iii)
f(P,Dorg) = f(Q,Dorg)−f(Q,Ddec) for some Q in Ddec. Let Oi ∈ O be the unique one
equivalence class that contains P . Since Ddec ⊂ Dorg, by Lemma 1, Points (i) and (ii)
imply that Oi.closed is not in Ddec. Thus Oi does not satisfy Line 4 for all T ∈ T . As
a result, O′

i.sup = Oi.sup and O′
i.closed = Oi.closed, as correctly initialized in Line 2,

By an argument similar to Scenario 1, Points (i) and (ii) imply Line 10 cannot hold.
Next we show that Lines 15 and 20 can hold. First observe that Points (ii) and (iii)
imply that Oi.sup = O′

i.sup = O′
j .sup for some Oj �= Oi.

The situation where j < i, we should encounter O′
j before we encounter O′

i in our
iteration. So O′

j .closed = Oj .closed at the point of encounter, as initialized in Line 2.
Then O′

j .closed = Oj .closed ⊂ Oi.closed = O′
i.closed by Fact 7. Then Line 20 holds—

note that as j < i, the role of “i” and “j” in Line 20 is reversed. Since we iterate all
O′

j ∈ {O′
1, ..., O

′
i−1} if they exist, we find all O′

j , that are numbered in front of O′
i, that

satisfy Line 20. Let O′
j1 , ..., O′

jh
be such O′

js. Then Line 22—note that as j < i, the role

of “i” and “j” in Line 22 is reversed—iteratively updates [P]Dupd− .keys to O
′(j1)
i .keys,

..., O
′(jh)
i .keys, where O

′(jq)

i .keys = min{kjq | kjq ∈ O
′(jq−1)

i .keys or kjq ∈ O′
jq

.keys},
for 1 ≤ q ≤ h. Also, O

′(j0)
i = [P]Dorg as initialized in Line 2.

For the situation where j > i, we have O′
j .closed = Oj .closed at this point, as

initialized in Line 2. Then O′
j .closed = Oj .closed ⊂ Oi.closed = O′

i.closed by Fact 7.
Thus Line 15 holds. Since we iterate all O′

j ∈ {O′
i+1, ..., O

′
n} if they exist, we find all

O′
j , that are numbered behind O′

i, that satisfy Line 15. Let O′
jh+1

, ..., O′
jh+g

be such

O′
js. Then Line 17 iteratively updates [P]Dupd− .keys to O

′(jh+1)

i .keys, ..., O
′(jh+g)

i .keys,

15

where O
′(jq)

i .keys = min{kjq | kjq ∈ O
′(jq−1)

i .keys or kjq ∈ O′
jq

.keys}, for h + 1 ≤ q ≤
h+g. Also, O

′(jh)
i is as last updated in Line 22, as described in the previous paragraph.

After unfolding this chain, it is clear that [P]Dupd− .keys has been updated to
min{k|k ∈ O′

i or k ∈ O′
j1 or ... or k ∈ O′

jh+g
}, which correctly corresponds to Scenario 2.

For Scenario 3, suppose (i) P is frequent in Dorg, (ii) P is in Ddec, and
(iii) |f(P,Dupd−)| < ms. Let C be the closed pattern of [P]Dorg . According to Point (ii)
and and Corollary 1, there are transactions T ∈ T , such that C ⊂ T . Thus, Line 4 is
satisfied, and the support of [P]Dupd− is iteratively updated by Line 6. Point (iii) im-
plies that [P]Dupd−.sup < ms. Then Line 10 succeeds and [P]Dorg is removed, correctly
corresponding to Scenario 3, where the equivalence class disappears completely.

Scenario 4 is complementary to Scenario 2. So we do not repeat the proof here.

For Scenario 5, suppose (i) P is frequent in Dorg, (ii) P is in Ddec,
(iii) |f(P,Dupd−)| > ms, (iv) f(Q,Dorg) �= f(P,Dorg) − f(P,Ddec) for all Q in Dorg

and not in Ddec, and (v) f(P,Dorg) − f(P,Ddec) �= f(Q, Dorg) − f(Q,Ddec) for all Q
in Ddec and Q �∈ [P]Dorg . Let Oi ∈ O be the unique equivalence class that contains P .
Similar to Scenario 3, Point (ii) and Corollary 1 imply there are transactions T from
T , such that Oi.closed ⊂ T . Thus, Line 4 is satisfied. Then [P]Dupd− .sup is iteratively
updated by Line 6. Eventually, [P]Dupd− .sup =, [P]Dorg .sup − [P]Ddec .sup. Point (iii)
then implies [P]Dupd− .sup > ms. So Line 10 cannot hold.

Let O′
i = [P]Dupd− . We now show that Lines 15 and 20 also cannot hold. Let

Oj ∈ O be an equivalence class that contains a pattern Q, where (a) Q is in Dorg

and (b) Q is not in Ddec. Points (a) and (b) and and Corollary 1 imply Oj .closed
is not in any transaction of Ddec. Thus Line 4 cannot hold on Oj . So O′

j = Oj , as
initialized in Line 2. Point (iv) implies that, for all Q satisfies Points (a) and (b),
f(Q,Dorg) = f(Q,Dupd−) �= f(P,Dupd−). Thus P �∈ O′

j and O′
i ∩ O′

j = ∅. We then
have two cases. In the first case, we have O′

i.sup �= O′
j .sup. For this case, it is clear

that Line 15 and 20 cannot hold. In the second case, we have O′
i.sup = O′

j .sup. In this
case, O′

i.sup = O′
j .sup, O′

i ∩O′
j = ∅ and FACT 7 imply that O′

j .closed �⊂ O′
i.closed and

O′
i.closed �⊂ O′

j .closed. Line 15 and 20 cannot hold in this case neither.

Now, let Oj ∈ O be an equivalence class that contains a pattern Q′, where (a) Q′

in Dorg, (b) Q′ in Ddec, and (c) Q′ �∈ [P]Dorg . Points (a) and (b) and Corollary 1
imply that there is T ∈ T such that Oj .closed ⊂ T . Thus Line 4 is satisfied. Let
O′

j = [Q′]Dupd− . Then O′
j .sup is iteratively updated in Line 6. Point (v) implies that,

for all Q′ satisfies Points (a) (b) and (c), f(P,Dupd−) �= f(Q′,Dupd−). Thus P �∈ O′
j

and O′
i ∩O′

j = ∅. With a similar argument in the previous paragraph, we can reach the
conclusion that Line 15 and 20 cannot hold on such O′

js neither.

Moreover, it is clear that O.closed either satisfies the definition of Q or the definition
of Q′, for any O ∈ O where O �= Oi. Therefore, combining above two conclusions,
Line 15 and 20 cannot hold, and the main loop is basically skipped. As a result,
[P]Dupd− remains the same as [P]Dorg except for a decrease in support, which correctly
corresponds to Scenario 5.

For Scenario 6, suppose (i) P is frequent in Dorg, (ii) P is in Ddec,
(iii) |f(P,Dupd−)| > ms, (iv) f(Q,Dorg) �= f(P,Dorg) − f(P,Ddec) for all Q in Dorg

and not in Ddec, and (v) f(P,Dorg) − f(P,Ddec) = f(Q, Dorg) − f(Q,Ddec) for some
Q in Ddec and Q �∈ [P]Dorg . Let Oi ∈ O be the unique one equivalence class containing
P . Then, O′

i is then initialized in Line 2 as O′
i = Oi. Similar to Scenario 3, Point (ii)

and Corollary 1 imply that O′
i.sup is iteratively updated by Line 6. Point (iii) then im-

plies that O′
i.sup > ms. Thus Line 10 cannot hold. As proven in Scenario 5, Point (iv)

16

implies that Line 15 and 20 cannot hold for any Oj ∈ O and O′
j = Oj that contains

Q, where Q is in Dorg but not in Ddec.

Now let Oj ∈ O be an equivalence class that contains a pattern Q′, where
(a) Q′ in Dorg, (b) Q′ in Ddec, (c) Q′ �∈ [P]Dorg , and (d) f(P,Dorg) − f(P,Ddec) =
f(Q,Dorg)− f(Q,Ddec). Points (a) and (b) and Corollary 1 imply there is T ∈ T such
that Oj .closed ⊂ T . Thus Line 4 is satisfied. Let O′

j = [Q′]Dupd− . Then O′
j .sup is

iteratively updated in Line 6. Point (c) implies Oj �= Oi. Point (d) implies Oj contains
a Q′ that witnesses Point (v). Specifically, we conclude (e) O′

i.sup = O′
j .sup and (f)

either O′
i.closed ⊂ O′

j .closed or O′
j .closed ⊂ O′

i.closed, for Q′ ∈ [P]Dupd− .

Assume O′
j1 , ..., O′

jg
, ..., O′

jg+h
, where jg < i < jg+1, are all the equivalence classes

in O that contain some Q′s as described in Points (a) to (d) above. Now we proceed by
a case analysis. Due to the constrains introduced by per Conclusion (f), we have four
cases based on the relationship between O′

i.closed and O′
jq

.closed, where 1 ≤ q ≤ g+h.

In the first case, we have O′
i.closed ⊂ O′

jq
.closed, for some O′

jq
, where 1 ≤ q ≤ g.

In this case, jq < i. Thus O′
jq

is encountered before O′
i in our iteration. Moreover,

as per Conclusion (e), O′
jq

.sup = O′
i.sup and O′

i.closed ⊂ O′
jq

.closed. Then Line 15
holds—note that as jq < i, the role of “i” and “j” in Line 15 are reversed. Then, O′

i

is removed by Line 18—note that as jq < i, the role of “i” and “j” are reversed. This
means we will not encounter O′

i later in our iteration. Therefore, for all encountered
O′

i, this case is definitely invalid.

In the second case, we have O′
i.closed ⊃ O′

jq
.closed, for all O′

jq
, where 1 ≤ q ≤ g,

and O′
i.closed ⊂ O′

jg+1 .closed,. For all O′
jq

, where 1 ≤ q ≤ g, since jq < i, O′
jq

is

encountered before O′
i in our iteration. Moreover, as per Conclusion (e), O′

jq
.sup =

O′
i.sup and O′

i.closed ⊃ O′
jq

.closed. Thus Line 20 holds — note that as jq < i, the
roles of “i” and “j” in Line 20 are reversed. Since we iterate all O′

j ∈ {O′
1, ..., O

′
i−1}

if they exist, we find all O′
jq

, 1 ≤ q ≤ g. Then, [P]Dupd− .keys is iteratively updated

to [P]Dupd− .keys(i), where [P]Dupd− .keys(i) = min{k|k ∈ O′
i or k ∈ O′

j1 or ... or
k ∈ O′

jg
}, as described in the j < i case of Scenario 2. The proof will not be repeated

here. For O′
jg+1 , Conclusion (e) and O′

i.closed ⊂ O′
jg+1 .closed imply that Line 20 holds

for O′
i. Thus Line 22 further updates [P]Dupd− .keys to [P]Dupd− .keys(jg+1), where

[P]Dupd− .keys(jg+1) = min{k|k ∈ [P]Dupd− .keys(i) or k ∈ O′
jg+1 .keys}. Then, O′

i is
removed by Line 23. [P]Dupd− .keys continues to be iteratively updated, in a similar
manner as Scenario 2. Eventually, [P]Dupd− .keys = min{k|k ∈ O′

i or k ∈ O′
j1 or ... or

k ∈ O′
jg+h

}, which correctly corresponds to Scenario 6.

In the third case, we have O′
i.closed ⊃ O′

jq
.closed, for for all O′

jq
, where 1 ≤

q ≤ v & g ≤ v ≤ g + h, and O′
i.closed ⊂ O′

jv+1 .closed. For all O′
jq

, where 1 ≤
q ≤ g, [P]Dupd− .keys is updated to [P]Dupd− .keys(i) in the same manner as discussed
in the previous case. For those O′

jq
, where g + 1 ≤ q ≤ v and g ≤ v ≤ g + h,

O′
i.closed ⊃ O′

jq
.closed and Conclusion (e) imply that Line 15 holds. [P]Dupd− .keys is

further updated to [P]Dupd− .keys(jv) in the similar manner described in the j > i case

of Scenario 2. Here, [P]Dupd− .keys(jv) = min{k|k ∈ O′
i or k ∈ O′

j1 or ... or k ∈ O′
jv
}. We

then iterate to O′
jv+1 . Conclusion (e) and O′

i.closed ⊂ O′
jg+1 .closed imply that Line 20

holds for O′
i. Thus, Line 22 further update [P]Dupd− .keys to [P]Dupd− .keys(jv+1), where

[P]Dupd− .keys(jv+1) = min{k|k ∈ [P]Dupd− .keys(jv) or k ∈ O′
jv+1 .keys}. Then, O′

i is
removed by Line 23. [P]Dupd− .keys continues to be iteratively updated, in a similar
manner as Scenario 2. Eventually, [P]Dupd− .keys = min{k|k ∈ O′

i or k ∈ O′
j1 or ... or

k ∈ O′
jg+h

}, which correctly corresponds to Scenario 6.

17

In the last case, we have O′
i.closed ⊃ O′

jq
.closed, where 1 ≤ q ≤ g + h. This

case corresponds to the situation where [P]Dupd− .closed = O′
i.closed. In this case,

[P]Dupd− .keys is updated in exactly the same manner as in Scenario 2. This completes
the proof.

18

