Talk given at University of Warsaw, January 2010

Topology of PPI Networks: Applications and Questions

Limsoon Wong (Works with Hon Nian Chua & Guimei Liu)

experimental method category*	Number of interacting pairs	Co-localization ^b (%)	Co-cellular-role ^b (%)
All: All methods	9347	64	49
A: Small scale Y2H	1861	73	62
A0: GY2H Uetz et al. (published results)	956	66	45
A1: GY2H Uetz et al. (unpublished results)	516	53	33
A2: GY2H Ito et al. (core)	798	64	40
A3: GY2H Ito et al. (all)	3655	41	15
3: Physical methods	71	98	95
2: Genetic methods	1052	77	75
D1: Biochemical, in vitro	614	87	79
D2: Biochemical, chromatography	648	93	88
E1: Immunological, direct	1025	90	90
E2: Immunological, indirect	34	100	93
2M: Two different methods	2360	87	85
3M: Three different methods	1212	92	94
M: Four different methods	570	95	93

ary 2010. Copyright © 2010 by Lin

v University, Ja

noise level	k	#common PPIs	avg rank diff	avg score dif
100%	1	5669	540.21	0.10
	2	5870	144.86	0.02
	20	5849	67.00	0.01
300%	1	5322	881.77	0.18
	2	5664	367.45	0.06
	20	5007	249.85	0.02
500%	1	5081	1013.14	0.23
	2	5502	625.46	0.12
	20	5008	317.33	0.05
1000%	k=1	4472	1187.10	0.28
	k=2	5101	1021.69	0.27
	k=20	5264	614.66	0.13

Talk at Warsaw University, January 2010. Copyright © 2010 by Limsoon We

	RNSC	MCODE	MCL
Туре	Clustering, local search cost based	Local neighborhood density search	Flow simulation
Multiple assignment of protein	No	Yes	No
Weighted edge	No	No	Yes

					СМС	C vs	Othe	ers			1	
sco	oring	method: Ad	ljustCD				ma	utch_thr	es=0.50			
					A	loy (#comp	lexes: 63)		MIP	S (#con	plexes: 162)
clustering			avg	loc_	#matched		#matched		#matched		#matched	
methods	k	#clusters	size	score	clusters	precision	complxes	recall	clusters	prec	complxes	recall
CMC	0	172	9.83	0.823	53	0.308	53	0.841	42	0.244	55	0.340
	1	121	9.42	0.897	50	0.413	49	0.778	41	0.339	51	0.315
	2	148	8.50	0.899	57	0.385	56*	0.889	44	0.297	56*	0.346
	20	146	8.78	0.891	56	0.384	56*	0.889	43	0.295	56*	0.346
CFinder	0	103	13.84	0.528	39	0.379	38	0.603	34	0.330	40	0.247
	1	76	12.86	0.724	38	0.500	38	0.603	30	0.395	34	0.210
	2	95	11.66	0.713	44	0.463	43	0.683	36	0.379	46	0.284
	20	95	11.77	0.718	44	0.463	43	0.683	37	0.389	49	0.302
MCL	0	372	9.40	0.638	27	0.073	27	0.429	30	0.081	37	0.228
	1	120	10.18	0.848	49	0.408	49	0.778	40	0.333	51	0.315
	2	116	10.31	0.856	52	0.448	52	0.825	41	0.353	51	0.315
	20	110	10.75	0.849	49	0.445	49	0.778	37	0.336	47	0.290
MCode	0	61	7.31	0.849	20	0.328	20	0.317	18	0.295	22	0.136
	1	103	7.42	0.913	35	0.340	35	0.556	30	0.291	39	0.241
	2	88	8.67	0.897	34	0.386	34	0.540	29	0.330	39	0.241
	20	82	10.28	0.838	29	0.354	29	0.460	23	0.280	32	0.198
e 3. The imp	act of	the iterative :	coring m	ethod on	he performan	ce of four clu	stering method	is. For CN	AC, MCL and	CFinder,	we retain only	the top-6
actions, and r est score. The enumber of c	no nev e 2nd e fluster	v interactions column is the s generated, t	are adde number a he 4th and	ed. For M of iteratic d 5th colu	Code, we reta ns k of the ite mn is the aver	in all the inte rative scoring age size and	eractions with method, and co-localization	non-zero k=0 mea 1 score of	score and add ns the PPI net generated clu	1 top-300 work is u sters.	0 new interac nweighted. Th	tions with a 3rd colu

Integrating Reliability

Talk at Warsaw University, January 2010. Copyright © 2010 by Limsoon W

• Equiv measure shows improved correlation w/ functional similarity when reliability of interactions is considered:

Neighbours	CD-Distance	FS-Weight	FS-Weight R
$egin{array}{c} S_1 \ S_2 \ S_1 \cup S_2 \end{array}$	0.471810	0.498745	0.532596
	0.224705	0.298843	0.375317
	0.224581	0.29629	0.363025

