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In data-processing pipelines, upstream steps can influence downstream processes because of their

sequential nature. Among these data-processing steps, batch effect (BE) correction (BEC) and missing
value imputation (MVI) are crucial for ensuring data suitability for advanced modeling and reducing
the likelihood of false discoveries. Although BEC–MVI interactions are not well studied, they are
ultimately interdependent. Batch sensitization can improve the quality of MVI. Conversely, account-
ing for missingness also improves proper BE estimation in BEC. Here, we discuss how BEC and MVI are
interconnected and interdependent. We show how batch sensitization can improve any MVI and bring
attention to the idea of BE-associated missing values (BEAMs). Finally, we discuss how batch-class
imbalance problems can be mitigated by borrowing ideas from machine learning.

Keywords: class-batch proportion imbalance; batch effects; confounding; data science; computational biology; missing
value imputation; statistics
Data processing steps are interconnected
and interdependent
A typical functional analysis pipeline for
high-throughput ‘-omics analysis requires
a series of sequential steps, from raw data
acquisition, to MVI, BEC, and normaliza-
tion, before differential effect analysis
(DEA) is performed.1 The series of sequen-
tial steps also means that an upstream pro-
cessing step would directly impact the
1359-6446/� 2023 Elsevier Ltd. All rights reserved.
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downstream process. We have previously
shown that the choice of normalization
method influences BEC.2 Other dependen-
cies also exist but remain poorly explored
and understood. Here, we discuss potential
interactions between MVI and BE correc-
tion algorithms (BECAs), as well as the
added complexities contributed by batch-
size and batch-class imbalances and differ-
ing missing proportions between batches.
Missing values (MVs) in data are
instances where a biological moiety is spo-
radically observed. MVs are usually taken
care of by MVI methods3,4 and can be cat-
egorized into three types: Missing Not At
Random (MNAR); Missing Completely At
Random (MCAR); and Missing At Random
(MAR).5 MNAR are usually associated with
low-abundance biological moieties that
occasionally fall below instrument detec-
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tion limits. MAR and MCAR are generally
randomly distributed and are occasionally
difficult to distinguish, particularly on
smaller data sets. However, MAR depends
on other attributes; that is, there are speci-
fic patterns in the data (or in auxiliary vari-
ables not in the data) that lead to specific
patterns of missing values. By contrast,
MCAR has no such dependency. The rea-
sons for, and frequency of, MVs vary
depending on the field of ‘-omics dis-
cussed. For example, in mass
spectrometry-based untargeted metabolo-
mics and proteomics data (�30–60% miss-
ingness),6,7 MVs can occur because of
deficiencies in peak detection or when
compounds are co-eluted. These MV
mechanisms would fall under the MAR/
MCAR category. MNAR generally occurs
in these types of data when the detection
signal falls under the limit of detection.
This type of missing data is challenging
to interpret, because we cannot easily
determine whether it stems from a biolog-
ical issue, such as the true absence of the
biological moiety, or a technical issue per-
taining to low abundances or poor ioniza-
tion. MVs in single cell RNA-sequencing
(scRNA-seq) technologies (�30%)8 are
commonly termed as ‘dropouts’, and can
stem from poor efficiency in gene capture,
low gene expression, and stochastic gene
expression across cells.9

Notably, MVs can occur across both fea-
tures and samples. When MVs occur across
a feature, it might be because of a technical
issue, such as a limitation in sensitivity, or
a biological issue in which the abundance
of the target is too low, or the target is sim-
ply absent. By contrast, when MVs occur
across a sample, it is likely because of tech-
nical issues specific to the sample or the
batch in which it belongs to. This issue
becomes more apparent when samples
from several batches are integrated into a
single data set.10

With regards to the extent of missing
data, the technology at hand also mat-
ters. For example, unlike RNA-seq tech-
nologies, array-based gene expression
data typically contain low levels of miss-
ing data (�1–10%). 11 This is because
specific probes are designed to each
hybridize with a predefined target
sequence and, thus, the transcripts of dif-
ferent genes do not need to compete
with those of other genes to be sampled
and measured; by contrast, RNA-seq seeks
2 www.drugdiscoverytoday.com
to measure the expression levels of all
genes present12 and their transcripts have
to compete to be sampled and measured.
However, MVs remain prevalent in
microarray data because of poor
hybridization, scratches, and errors in
the slides, among others.13 Nevertheless,
these ‘-omics sciences suffer from similar
limitations regarding high-throughput
technologies, and MVI and BECAs are
both important steps in their data-
processing pipelines.14–16 Hence, depen-
dencies between MVI and BECAs are rel-
evant regardless of the ‘-omics in
question.

MVI development is a complex and
exciting area, where there is a wide variety
of techniques addressing various data
types and MV types.17 Different tech-
niques exist for resolving MNAR from
MAR/MCAR MVs. Mixed-technique mod-
els capable of dealing with all three are
rare. MVs are considered a serious issue,
especially in high-throughput technolo-
gies with limited resolutions and high
noise,18 as mentioned above. Many power-
ful analysis methods downstream require
completed data, which necessitates the
use of MVIs. Of course, the proper selec-
tion of MVI is necessary for reducing false
positives and false negatives.17

BEs are technical sources of variation
that can arise from systematic differences
between machines, experimenters, reagent
lots, and so on.14,19–21 They can cause both
false positives and false negatives during
DEA, and can be removed by BECAs.
Examples of BECAs include ComBat and
Combat-Seq,15 Harman,22 SVA,23 and
Batch-Mean Centering (BMC).24 However,
the proper application of BECAs is neces-
sary, because wrong usage can generate
errors.15,25 Interestingly, most BECAs can-
not deal with MVs and require a full data
matrix as input. Therefore, MVI is usually
performed upstream of BEC. There is a
notable exception, HarmonizR,26 which
works by first combining data into one
matrix. It then extracts submatrices that
do not have too many missing values
and independently batch corrects each
submatrix based on user input, before
stitching the corrected submatrices
together again. This means that Harmo-
nizR works around MVs by dissecting the
matrix into regions without MVs. It then
batch-normalizes the non-missing regions.
This way, it aims to perform BEC without
being affected by MVs. MVI can then be
performed on the whole re-merged matrix
as the last step. However, the creators of
HarmonizR state that, when MVI is
needed, it should preferably be performed
before BEC rather than after.

At the BECA level, issues can also arise
when the batch-class sizes are imbalanced.
This refers to an imbalanced experimental
design, such that, within a single batch,
one class might have much fewer samples
than another, or is entirely absent from
the batch.2,27 Avoiding such situations is
not always possible, because of factors
such as poor sample availability (e.g.,
obtaining samples for a rare disease) or
failed experiments. The imbalance in
batch-class proportions is akin to the en
masse missingness of entire samples and
can hinder the proper correction of BEs.
It was shown in a previous study that,
when the experiment design was severely
unbalanced, BECA performance suffered
and consequently affected downstream
analysis outcomes.2

For most MVIs, batch information is
not considered a priori. When imputation
is performed across batches, this can lead
to signal obfuscation, whereby the
imputed value is essentially some artificial
value averaged between the batches. Fur-
thermore, the problem does not stop
there: when the mis-imputed data matrix
is subsequently fed to a BECA, this can
cause under- and overcorrection, which,
in turn, can impact DEA.

Despite being logically intuitive, MVI-
BE confounding (MBC) is poorly charac-
terized and there are few related studies.
In both simulations and on real data
benchmarks, it has been shown that
MBC can create non-negligible issues on
DEA.28 The problem can be deceptively
subtle: when MVI is misapplied in the
presence of a BE, it can result in
increased sample variances after BEC, cre-
ating issues with false positives and false
negatives during DEA, while misleadingly
appearing as though BEs have been
eradicated.10

Given that MBC is a complex and
newly characterized issue with direct
effects on how much useful information
we can get out of data, it is important to
better understand the underlying issues:
namely, how exactly MVIs can be led
astray by BEs, how BECAs can be thwarted
by MVs, and what can be done.
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How do missing value imputation
methods work (broadly) and how are
MVIs misled by presence of batch effects?
Here, we provide a short introduction into
how MVIs work. Broadly, MVIs are divisi-
ble into three categories: fixed (also known
as naïve) imputation methods (e.g., zero or
mean imputation), feature-based (e.g., the
K-Nearest Neighbors; KNN), and multivari-
ate (e.g., Multivariate imputation by
chained equations; MICE).

Fixed imputation methods (FIMs) insert
a static value for MVs belonging to the
same biological moiety. Among FIMs, zero
imputation is obviously wrong and can
cause severe issues with downstream anal-
ysis.29,30 This is because MVs can derive
from the failure to detect the biological
moiety, possibly because of low abun-
dance. Given that this would not consti-
tute a true zero, replacing the MV with
zero will greatly underestimate the true
value. Furthermore, if the proportion of
MVs is high, zero imputation can also
introduce false correlations between vari-
ables. Mean imputation is easy to under-
stand and commonly used. MVs are filled
in based on the average or median of
non-missing observations given the same
biological moiety. This approach disre-
gards the presence of any batch factors in
the data. It has previously been shown
that, during mean imputation, ignoring
batch information can be misleading.28

In addition, mean imputation is often
not conducted correctly. Some users forget
that the mean or median should be
derived from non-missing observations of
the same biological moiety and, instead,
incorrectly use the global mean or median
over all biological moieties/class labels.
FIMs also include minimum value imputa-
tions, such as the limit of detection (LOD)
imputation, which replaces MVs with the
minimum value of the sample.3,31 This
form of MVI is deemed to be simple and
effective when handling left-censored data
but fails to accurately retain class informa-
tion, especially when MVs are MCAR.3,32

Feature-based methods use the concept
of broad similarities calculated on
observed variables to identify a set of sam-
ples most like the sample with the MV,
allowing for ‘informative’ transfer of infor-
mation only from those similar samples. A
representative example is KNN, which is a
classic machine learning approach used in
both supervised and unsupervised con-
texts. In KNN, we identify neighboring
points through a measure of distance and
the MVs can be estimated using completed
values of neighboring samples. There are
various implementations of KNN for MVI
(e.g., KNN-Mean and KNN-Imputer).33

Similar to classic KNN for unsupervised
learning, KNN as MVI also requires identi-
fication of an optimal set of k most similar
samples. In many implementations, k is
taken by default as the square root of N,
the sample size. This default value of k
does not consider any crucial structure in
the data (including the presence of out-
liers), and certainly not the proportion of
mixtures between batches found in the
neighborhood. Deliberately increasing k
increases the cross-batch mixture, but this
likely simultaneously decreases DEA per-
formance. Again, this informs us that
batch sensitization of MVI is important,
especially for methods the parameters of
which can result in batch mixing.

Multivariate methods (MVMs) use vari-
ous alternative features to converge on a
‘best guess’ for an MV. Among MVMs,
Multiple Imputation by Chained Equa-
tions (MICE) is a popular method,34 which
works by multiple iterations of predic-
tions. Placeholder values from complete
cases are used to initiate the imputation
process, and predicted values are fed back
until stable.

Although it is common practice to
remove features affected with MVs, it is
recognized that doing so would result in
the potential loss of important informa-
tion. Generally, MVs in different ‘-omics
studies are often handled differently, par-
ticularly in their imputation approaches.
In mass spectrometry-based proteomics
and metabolomics, Random Forest,35

Bayesian PCA,36 forms of KNN,37 and
mechanism aware methods38 have been
developed for MVI. Several MVI methods
have also been developed specifically for
scRNA-seq; some focus on preserving bio-
logical zeros, whereas others use data-
driven machine learning approaches to
recover MVs. By contrast, local-least
squares-based approaches of MVI have
been used for microarray data sets.13,39

There is also wisdom in refusing to
impute when imputation is not necessary.
A general recommendation is that if MVs
account for <15% of data, you might be
better off simply dropping those sample
instances containing MVs (as opposed to
dropping the features).17 This case implic-
itly assumes that the MVs are MCAR;
hence, dropping sample instances are akin
to the effect of a random subsample. If the
MVs are MAR or MNAR, they are depen-
dent on either patterns of other data val-
ues in these sample instances or the
actual values of the MVs themselves; thus,
dropping these sample instances can lead
to systematic biases that confound down-
stream analysis.40 When MVs are >15%
of the data, it would perhaps be more sen-
sible to drop the MV-laden features,
because there is little hope for MVI meth-
ods to work well on these MVs. There are
also conflicting and extreme recommenda-
tions: while some hold that �5% missing-
ness produces negligible biases following
MVI,40 others have stated that 5%missing-
ness should be the upper limit (for large
data sets).41 There has also been advice
that, when imputing on 10% missingness,
bias should be of concern and that, at 40%
missingness, the imputed data should be
viewed only as hypothesis generating.42

Notably, different MV proportion cut-
offs are used in different ‘-omics studies.
Even then, several approaches exist to
determine them. In metabolomics, for
example, one might follow the ‘80%
rule’,30 which refers to retaining only fea-
tures with at least 80% observations. How-
ever, such defined thresholds are often
arbitrary and, thus, data-driven
approaches have also been developed,43

which make use of blank samples, MV pro-
portions, and intraclass correlations to
identify and drop features that are deemed
uninformative. In proteomics, no specific
guide on a missing threshold exists.
Although we might turn to the 15% cutoff
described above, it is still advisable to
assess your data set for a more case-
appropriate threshold. One method is to
use OptiMissP,44 an R dashboard that visu-
alizes changes in the data with varying
missing thresholds, allowing the user to
make a more informed decision on a miss-
ing threshold that least alters the distribu-
tion of the data.

In some cases, features of importance
might contain too many MVs and drop-
ping them would lead to undesirable
downstream analysis outcomes. For exam-
ple, in a study involving participants who
include both smokers and non-smokers,
it is possible to observe the presence of
nicotine derivatives, such as cotinine, in
www.drugdiscoverytoday.com 3
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samples from smokers but not in those
from non-smokers.45 In such cases, the
missingness in the data can be informative
and a binary analysis that categorizes sam-
ples as either present or missing might be a
possible approach. Alternatively, a zero-
inflated method can be used to account
for the excessive number of samples with
zero levels of the compound in the non-
smoking group. Thus, a purely statistical
standpoint might not always be sufficient
to decide whether to drop or impute a set
of features. The decision to impute might
also need to be driven by the importance
of the specific features, how the imputa-
tion should be done, and whether the
imputed values make sense.

A key point to note is that MVI meth-
ods were never developed to explicitly
consider batch factors. Yet, by their con-
struction, many MVI strategies could be
impaired by BEs. In the next section, we
FIGURE 1
Strategies for batch sensitization and desensitization
aggregated from all samples irrespective of the batch
opposite of M2, drawing information only from the
otherwise be hidden in M1).

4 www.drugdiscoverytoday.com
will take a deeper look into what happens
during MBC using the example of mean
imputation.

Batch-sensitizing MVI methods improves
batch effect correction
We recently explored and evaluated how
batch sensitization in MVI impacts BEC
(which subsequently impairs the ability
to identify correct gene targets) by model-
ing three simple imputation strategies [glo-
bal (M1), self-batch (M2) and cross-batch
(M3)] first via simulations, and then cor-
roborated on real proteomics and geno-
mics data (Figure 1).28

Developing a batch-sensitized approach
is simple: we simply split the single-class/-
moiety data up by batch and mean impute
the MVs of each batch separately (we call
this approach M2.) We compare M2
against a typical imputation strategy,
which takes the global mean with no
regard for the batch factor (we call this
on missing value imputation (MVI). M1 is a typical n
for imputation. M2 is batch sensitized, and only sam

opposite batch (this scenario is meant to exemplify th
M1.) For a drastic contrast against M2, we
purposely perform cross-batch imputation,
such that the imputed mean value comes
from the opposite batch (we call this M3).

We found that M1 and M3 impair all
evaluated BECAs, including the popular
method ComBat. This observation is plat-
form independent, consistent on simula-
tions, proteomics, and genomics data. We
also found that the batch-sensitized
approach, M2, is superior and consistently
outperforms M1 and M3 on DEA. A crucial
finding is that both M1 and M3 result in
increased sample variance following BECA
processing, whereas this is not the case for
M2. For M2, the reduced sample variance
is similar to the original batch-cleaned
data (without MVs). This suggests that,
when imputing missing values without
regard for the batch factor, we end up
exchanging BEs for noise, rendering them
unrecognizable by BECAs and, therefore,
Drug Discovery Today
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uncorrectable. The increased sample vari-
ance has direct implications for DEA,
resulting not only in false positives and
negatives, but also mis-estimations of
effect sizes.

Nonetheless, even with a good batch-
sensitized strategy, we found that FIMs
enhanced with M2 could never quite
recover the original effect size (this is cer-
tainly a good argument as to why proper
experiment design trumps post-hoc data
salvage.) With increasing proportions of
MVs, this problem gets worse. Although
one could argue that feature-based meth-
ods and MVMs could do better, these
methods are also constrained by their
design: they require meaningful borrow-
able information from other samples and
variables, respectively.

Thus, where both BEs and missing val-
ues are present in data, we recommend
caution, and to ensure that the batch fac-
tor is taken into consideration early during
the data-processing stage.
Batch effect-associated missing values
create additional challenges for resolving
batch effect-MVI confounding issues
We normally assume that MVs are evenly
distributed across batches, such that batch
sensitization [i.e., splitting by batch (M2)]
FIGURE 2
Batch effect-associated missing values (BEAMs). In (
greater missingness from left to right. This imbalance
(MV) imputation.
is sufficient. However, we have found
nothing instructing what to do with MVs
that manifest as BEs. BEAMs are MVs asso-
ciated with batches, such that, in one
batch, there is a pronouncedly higher
degree of missingness than in the other
(Figure 2).10 These MVs can be mixtures
of MNAR, MAR, and MCAR. However, we
think that BEAMs are likely mostly MAR
because this depends on values in the data
set. In this case, the values have BE
components.

When MVs are batch associated, they
should be mostly specific to the batch they
are in. This suggests that batch sensitiza-
tion (M2) should still work well. When
batch-associated MVs are usually MAR,
there should be other variables in the data
(or auxiliary variables not in the data),
which are highly correlated with the MV-
laden variables. Then, MVI might still per-
form reasonably well despite large
amounts of missingness,41 provided all
such variables highly correlated with the
MV-laden variables are made available in
the data. Nonetheless, we can also intu-
itively infer that MVI performance is likely
inversely correlated to the amount of miss-
ingness: the greater the number of MVs in
the samples, the higher the likelihood of
having missing values in correlated vari-
a), the distribution of missingness is even across ea
of missingness that is batch specific is referred to as B
ables as well. As a result, there is less infor-
mation available to accurately perform
MVI.

Hence, when there are several batches,
such that some batches have many more
MVs, a more elaborate strategy than M2
might be required. One possible idea is to
perform a stepwise imputation (SIM) so
that MV-laden batches can borrow infor-
mation from batches with fewer MVs.
Although this SIM approach has not been
proven in the context of BEs, it is in align-
ment with the default ‘impute feature with
fewest missing value first’ option of Itera-
tiveImputer, which is the main MVI pro-
vided by the very popular scikit-learn
Python software package. In SIM, MVI is
performed sequentially on the batches
from least to most missingness. Following
each MVI step, the imputed values are
then transferred to the next batch in order
of increasing missingness. SIM can be
tricky to get right because it has similar
problems to M3 if the imputed values are
transferred directly without attempting to
perform some form of batch adjustment
a priori. For example, a batch correction
factor could be estimated based on
observed components across batches. This
information could then be used to adjust
the imputed values on the confident batch
Drug Discovery Today
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with lower missingness before transfer to
the next batch with higher missingness.

It is difficult to say when BEAM issues
are pertinent enough to warrant alterna-
tive strategies, such as SIM over M2. We
encountered the issue when we found
that, given the same sample, technical
replicates across machines generated miss-
ingness rates of 10%, 30%, and 50%,
respectively (data from the Clinical Pro-
teomic Tumor Analysis Consortium;
CPTAC).46 In such situations, we showed
that a pure M2 batch-sensitization
FIGURE 3
How class-batch proportion imbalance can affect bat
of the shapes across the diagonal (Batch 1 is below a
correction, In the lower row, because there are mor

6 www.drugdiscoverytoday.com
approach is insufficient because there is a
missingness hierarchy across batches,
which causes an overall loss of coverage
limited to the batch with lowest missing-
ness. A global M1 would be even less
appropriate, because the imputation result
would be driven essentially by the batch
with least missingness.10
Batch-class imbalance can impede proper
batch effect correction
So far, we have taken an MVI-centric per-
spective. That is, we considered how vari-
ch effect correction. Class labels are shown as differen
nd Batch 2 is above). In the top row, balanced class-b
e samples in batch 2, it will bias the correction facto
ous strategies of MVI impact BEC. This is
primarily because MVI is usually per-
formed upstream of BEC. However, there
is another layer to consider, specifically
in terms of how BECAs work.

Most BECAs make naïve assumptions
on data. A typical assumption for optimal
application of ComBat is that there is no
batch-size and batch-class imbalance in
data (Figure 3). Whereas, when there is
batch-size imbalance or even worse,
batch-class imbalance, the eventual correc-
tion efficacy is affected, resulting in mis-
Drug Discovery Today
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correction of BEs on data, with conse-
quences for DEA2 and other downstream
analysis. In such situations, this is akin to
the en masse missingness of entire samples
(of the minority classes or the small
batches, as the case might be) that could
have given us a better estimate of class
and batch representation. A crucial exam-
ple was pointed out by Yong et al.47 in
the context of scRNA-seq analysis: when
there are some rare mutant cell types
(e.g., premalignant mutants and emerging
treatment-resistant mutants) that are pre-
sent only in some batches and not in other
samples/batches, many BECAs specialized
for scRNA-seq (in particular, Seurat,48

LIGER,49 and Harmony50) have been
shown to miscorrect these mutant cells
into their parental cell types; this loss of
information would cause the nondetec-
tion of these mutant cell types.

Such problems with imbalance are well
known in machine learning. High class
representation disparities can lead to ‘lazy
learners’, where a trained classifier
achieves good performance accuracy sim-
ply by assigning all test samples to the
majority class. Such imbalance problems
(but not an entire class missing en masse)
are typically handled by simple tech-
niques, such as oversampling, undersam-
pling, and Synthetic Minority
Oversampling Technique (SMOTE).27

Oversampling replicates samples from
the minority class in the training data
set. Given that it creates many repeated
instances that might not reflect the true
data distributions, it might cause overfit-
ting in trained models. By contrast, under-
sampling randomly selects samples from
the majority class. Depending on whether
the sampling is representative, it can result
in losing important information in the
model. A third alternative is SMOTE,
which involves synthesizing new
instances from the minority class. SMOTE
works by selecting proximal samples in
feature space, drawing a line between the
samples, and generating a new sample at
a point along that line. SMOTE can be
powerful if its running parameters can be
constrained to produce simulated data pre-
serving the characteristics of the original
data.51

All three techniques can be applied to
address batch-size and batch-class imbal-
ance issues, which impact BECAs. In a
recent study, oversampling was performed
to improve BEC before investigation for
Doppelgänger effects in machine learn-
ing.52 As for the observation of Yong
et al. on rare cell types in the context of
scRNA-seq BE correction and batch inte-
gration, it is more a biological than a tech-
nological phenomenon. Thus, there is not
an MVI issue; instead, one should deploy a
highly conservative BE correction to avoid
losing the rare cell types.19,47
Recommendations
Given that there are many kinds of MVIs
and MVs, identifying the right tool for per-
forming MVI is important. Consider using
this guide by Kong et al.17 to help you
decide an appropriate imputation strategy.
More importantly, MVI is batch sensitive;
thus, you should check whether BEs might
be present in your data. One simple
approach is to check the meta-
information, but you can also inspect via
visualizations or calculations based on
common non-missing variables.

� When missingness is evenly distributed
across batches, consider using a batch-
sensitized M2 strategy for MVI.

� When missingness is non-evenly dis-
tributed across batches, unconven-
tional strategies for MVI, such as
stepwise imputation (SIM), might be
necessary, but requires further investi-
gation and development. Alternatively,
a method such as HarmonizR can also
be useful.26.

� BECAs generally require balance in
terms of class and batch sizes. An imbal-
ance in this aspect can be regarded as a
form of en masse missingness. Some
methods used in machine learning can
be borrowed to address this issue.

� Relevant approaches include oversam-
pling, undersampling, and SMOTE.
There does not appear to be consensus
on which approach is optimal and it
remains an open area for further
research and understanding.

� Finally, when batches are unavoidable,
adequate planning/designing of the
batches is essential: batches should be
roughly the same size, have roughly
the same proportions of class types,
and so on.

Concluding remarks
BEC is closely interdependent with MVI.
Although identifying the correct MVI is
important, such methods do need to take
BEs into account to work optimally (i.e.,
batch sensitization). Where MVs are also
batch associated, special care needs to be
taken during MVI. An en masse form of
missingness resulting in class-batch pro-
portion imbalances also prevents BECAs
from working optimally; these are address-
able by borrowing data-balancing methods
from machine learning. Finally, when
batches are unavoidable, the planning/de-
signing of batches must be performed
sufficiently.
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