Guts of Dragon Promoter Finder & Mapper

Limsoon Wong (Based on work with Vladimir Bajic & Rajesh Chowdhary)

- Promoter & Promoter Modeling
- Dragon Promoter Finder
- Dragon Promoter Mapper
 - Specific modeling of histone promoters
 - Whole-genome scan for genes co-regulated with histones

Promoter & Promoter Modeling

Promoter Modeling

- What does it involve?
 - Characterization of known promoters
 - Recognition of promoters in uncharacterized genome
- Why is it important?
 - Unravel gene's regulatory mechanism
 - Discover new genes
 - Define potential regulatory networks
 - i.e. genes with similar regulatory behaviour/ promoter structure as target gene group

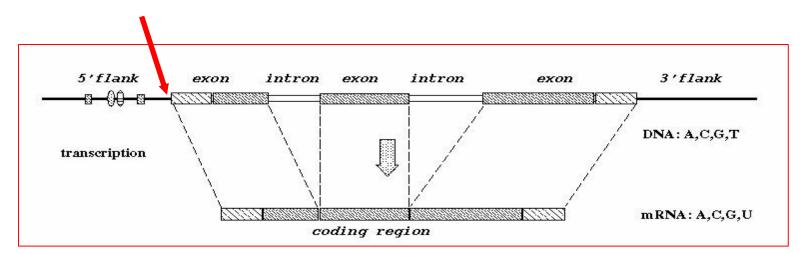
• Why is it difficult?

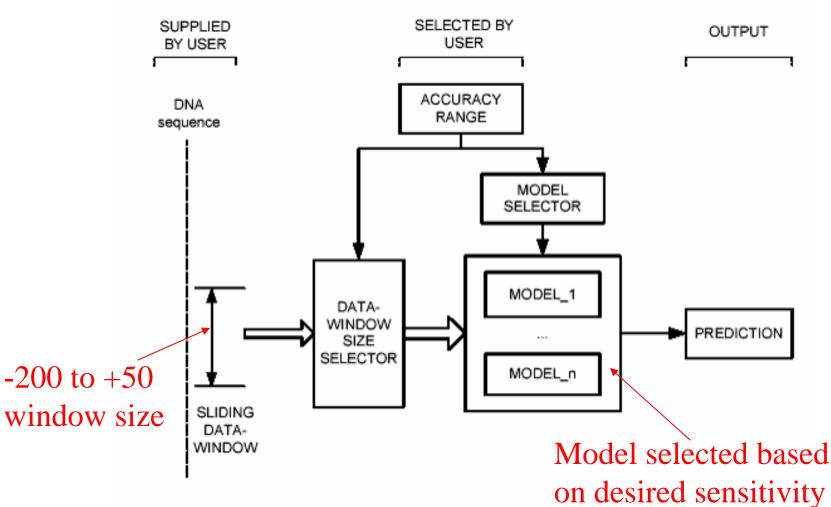
- High variability in length of promoter: Hundreds to thousands of bases
- High variability in promoter features which themselves are difficult to predict
 - A set of features can't be universally applied for all types of promoters
- TFBS occur in numerous combinations & order.
 Location, orientation, and mutual distance vary
- Incomplete information about TF and TFBS

Types of Promoter Modeling Studies

- General promoter modeling
 - Wide applicability
 - But too general
 - one size doesn't fit all
- Specific promoter modeling
 - Better suitability in some situations

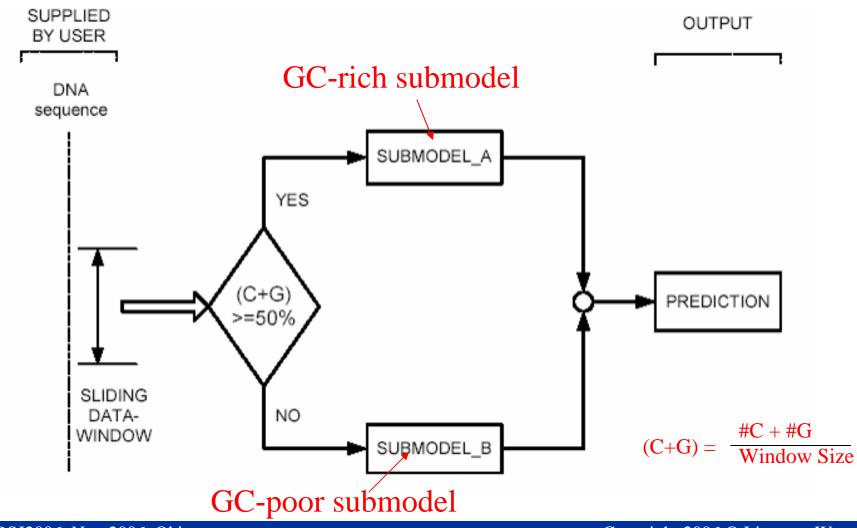
- Advantages of specific promoter modeling
 - Promoter structure comparison betw target & query seq give more info
 - Increased sensitivity & specificity
 - Identify co-regulated genes
 - determine tissue specificity of genes
 - predict function of genes


A General Promoter Finder: Dragon Promoter Finder



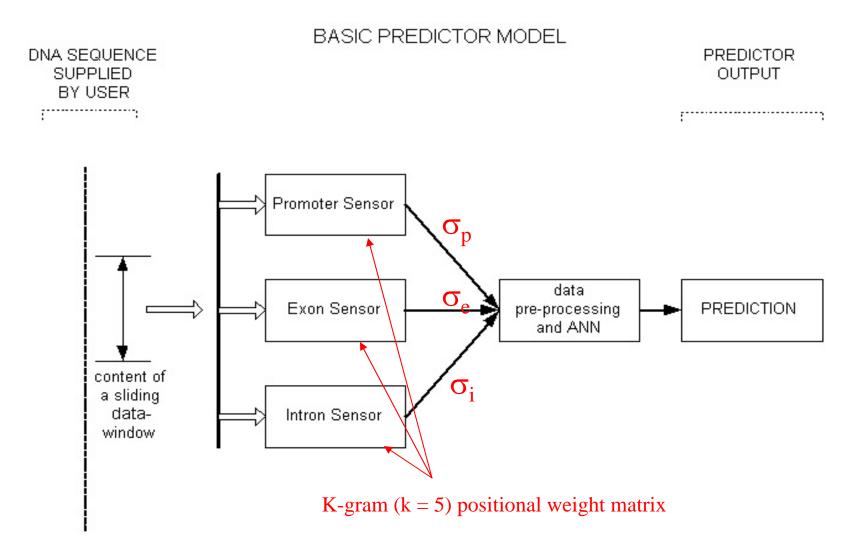
Dragon Promoter Finder

- Multi-sensor integration via ANNs
- Multi-model system structure
 - for different sensitivity levels
 - for GC-rich and GC-poor promoter regions



Structure of Dragon Promoter Finder

National University of Singapore


Each Model Has 555 Two Submodels Based On GC Content

BSJ2006, Nov 2006, Okinawa

National University of Singapore

Promoter, Exon, Intron Sensors

- These sensors are positional weight matrices of k-grams, k = 5 (aka pentamers)
- They are calculated as σ below using promoter, exon, intron data respectively

Pentamer at ith

position in input

$$\boldsymbol{\sigma} = \frac{\left(\sum_{i=1}^{L-4} p_j^i \otimes f_{j,i}\right)}{\left(\sum_{i=1}^{L-4} \max_j f_{j,i}\right)}, \qquad p_j^i \otimes f_{j,i} = \begin{cases} f_{j,i}, \text{ if } p_i = p_j^i \\ 0, \text{ if } p_i \neq p_j^i \end{cases},$$

Frequency of *j*th

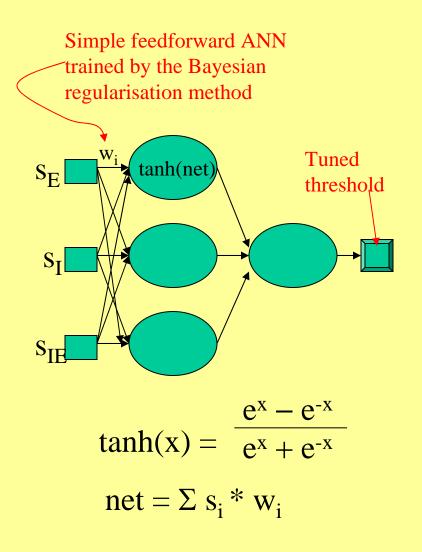
in training window

pentamer at ith position

jth pentamer at ith position in training window

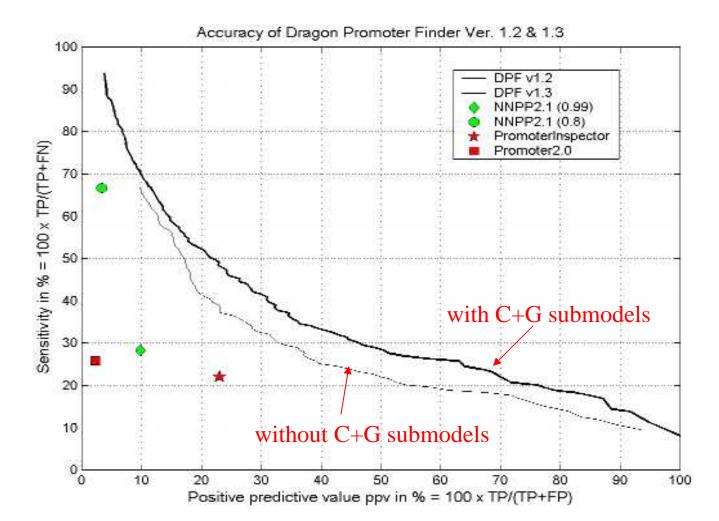
Data Preprocessing & ANN

Tuning parameters


$$s_{E} = sat(\sigma_{p} - \sigma_{e}, a_{e}, b_{e}),$$

$$s_{I} = sat(\sigma_{p} - \sigma_{i}, a_{i}, b_{i}),$$

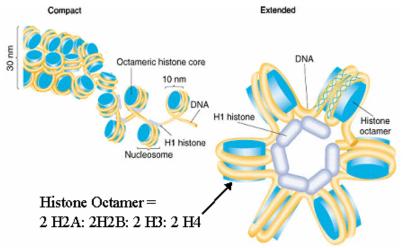
$$s_{EI} = sat(\sigma_{e} - \sigma_{i}, a_{ei}, b_{ei}),$$


where the function sat is defined by

$$sat(x,a,b) = \begin{cases} a, if & x > a \\ x, if & b \le x \le a. \\ b, if & b > x \end{cases}$$

Accuracy

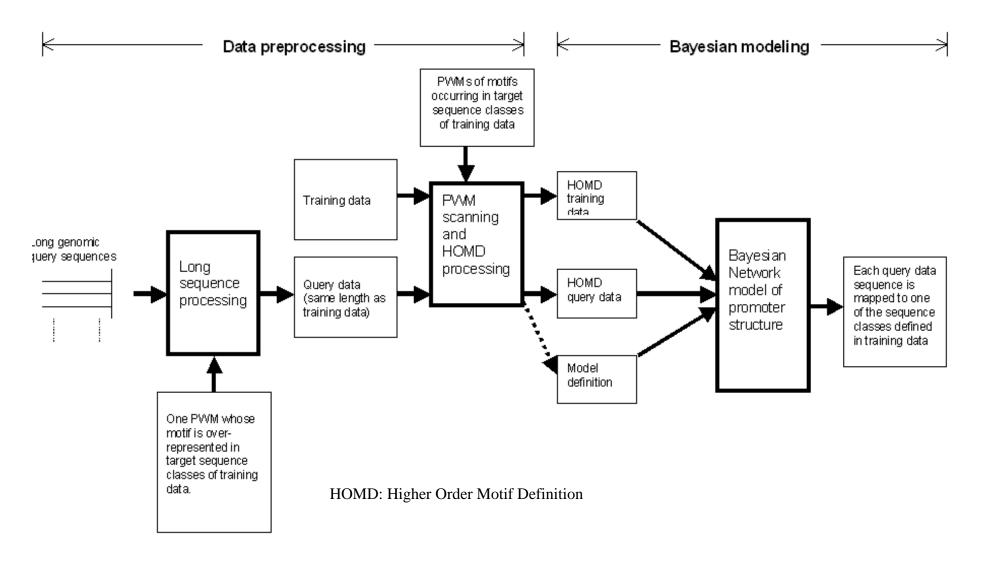
Specific (Histone) Promoter Modeling: Dragon Promoter Mapper



Histones

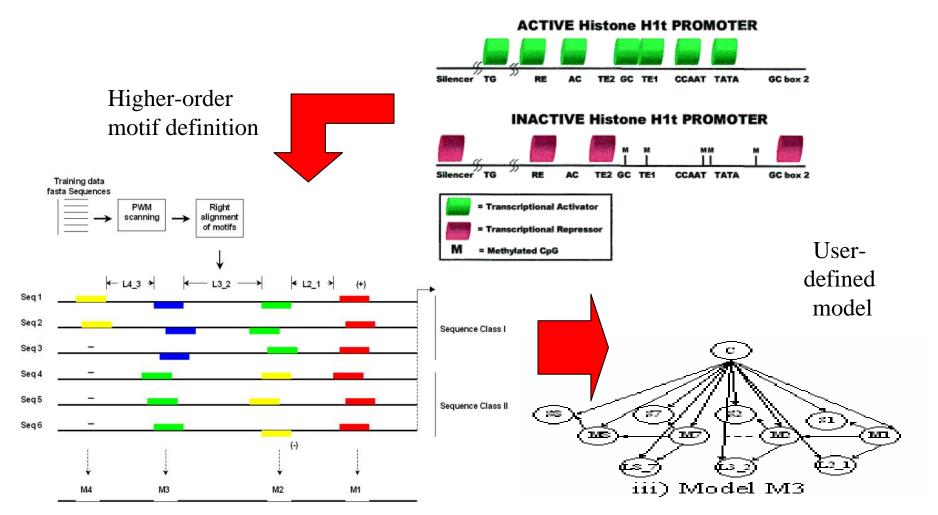
- What are histones?
 - Basic proteins of eukaryotic cell nucleus
 - Form a major part of chromosomal proteins
 - Help in packaging DNA in the chromatin complex
- Five types, namely H1, H2A, H2B, H3 and H4
 - Several subtypes of the main types
- Highly conserved
 - H1 least conserved, H3 & H4 most conserved

- Play essential role in chromosomal processes
 - gene transcription, regulation
 - chromosome condensation, recombination, replication


Dragon Promoter Mapper

- Model histone promoter structure by
 probabilistically combining information on
 - motif
 - its position
 - its strand
 - mutual spacer length between adjacent motifs
- Guiding principle: A promoter is known by the binding sites it keeps

Adapted from Chowdhary's PhD thesis presentation


DPM Workflow

Higher-Order Motif Definition

	COMET	Cluster-	Meta-	MCAST	DPM
		Buster	MEME		
#of hits in 68	46 (0.677)	55 (0.809)	67 (0.985)	49 (0.721)	64 (0.941)
promoter sequences					
(number in brackets					
represent Se)					
#of FP hits	2 (0.958)	2 (0.965)	38 (0.638)	35 (0.583)	5 (0.928)
(number in brackets					
represent ppv)					
Correlation	0.677	0.790	0.508	0.212	0.868
coefficient					

Compared	Motif distribution/arrangement	
programs		
COMET	HISTIHIA: [+AC]13[+TATA]	
	HISTIHIB: [+AC]56[+AC]13[+TATA]	
	HISTIHIC: [+AC]49[+AC]77[+TATA]	National University
	HISTIHID: [+AC]52[+CAAT]16[+TATA]	of Singapore
	HISTIHLE: [+AC]78[+TATA]	\checkmark
Cluster-Buster	HIST1H1A: [+AC]3[-GC]-8[-TATA]-9[+TATA]	
	HIST1H1B: [+TG]-10[-AC]105[-CAAT]45[+CAAT]170[+AC]56[+AC]6[-	
	TATA]-7[+TATA]	
	HIST1H1C: [+TG]-10[-AC]9[+AC]122[+AC]71[-	
	AC]52[+AC]5[+E2F]37[+AC]54[+AC]6[-TATA]-12[-TATA]-9[+TATA]	
	HISTIHID: [+AC]-10[-TG]51[+CAAT]9[-TATA]-7[+TATA]	
	HIST1H1E: [+TG]-10[-AC]189[-E2F]146[+AC]55[+AC]3[-GC]-10[-	
		4
Meta-MEME	HISTIHIA: [-AC]34[+RT1]9[-	
	E2F]53[+AC]12[+TATA]11[+0ct1]35[+TG]17[-GC]	
	HISTIHIB: [+AC]31[+GC]10[+AC]12[+TATA]	
	HIST1H1C: [-TG]1[+TG]8[+AC]4[-Oct1]48[-GC]44[+AC]70[-	
	AC]51[+AC]4[+E2F]36[+AC]53[+AC]7[-TATA]2[-GC] HIST1H1D: [+TG]8[+AC]9[+Oct1]13[+TATA]38[-	Comparison
	Oct1]121[+AC]93[+AC]51[+CAAT]15[+TATA]	CUMPANSUN
	HISTIHLE: [+TG]188[-E2F]145[+AC]33[+GC]7[+AC]12[+TATA]	
MCAST	HISTIHLA: [-AC]34[+RT1]9[-	
1101101	E2F]53[+AC]12[+TATA]11[+0ct1]35[+TG]17[-GC]	w/ Similar
	HISTIHIB: [+AC]31[+GC]10[+AC]12[+TATA]	
	HISTIHLC: [+AC]7[-TATA]2[-GC]	
	HISTIHID: [+CAAT]15[+TATA]	Programs
	HISTIHLE: [+AC]12[+TATA]	Invyranis
DPM	HIST1H1A: [-AC]104[+GC]13[+CAAT]19[+TATA]68[+TG]	\mathbf{U}
	HIST1H1B: [+TG]348[+AC]36[+GC]3[-CAAT]9[+CAAT]19[+TATA]	
	HIST1H1C: [+TG]349[+AC]56[+CAAT]19[+TATA]	
	HIST1H1D: [+TG]348[+AC]58[+CAAT]19[+TATA]	
	HISTIHLE: [+TG]348[+AC]57[+CAAT]12[-GC]3[+TATA]	4
Meergans et.	Known binding sites in Hl histone promoters:	
al., (1998)	HISTIHLA: [+CAAT]19[+TATA]	
	HISTIHIB: [+TG]364[+AC]56[+CAAT]19[+TATA]	
	HIST1H1C: [+TG]340[+AC]58[+CAAT]19[+TATA]	
	HIST1H1D: [+TG]372[+AC]57[+CAAT]19[+TATA] HIST1H1E: [+TG]354[+AC]58[+CAAT]19[+TATA]	
Duncliff el.	Mutual distance between TG-box and AC-box:	
al., (1995)	HISTIHIB: [+TG]359[+AC]	
ai., (1993)	HISTIHLD: [+TG]355[+AC]	
Duncliff et.	General structure of H1 histone promoter, drawn from	
al., (1995),	information in the reference:	
Osley (1991),	[TG]350[AC]34[GC]10[CAAT]19[TATA]	
Gallinari et.		rom Chowdhary's PhD thesis presentation
al., (1989)		• •
BSJ2000,	, NOV 2000, Okinawa	Copyright 2006 © Limsoon Wong

Comparison w/ General Promoter **Prediction Programs**

	Dragon Promoter Finder	Eponine	DPM
# of hits in 68 promoter sequences (number in brackets represent Se)	36 (0.529)	17 (0.250)	64 (0.941)
# of FP hits (number in brackets represent ppv)	2 (0.947)	0 (1.000)	5 (0.928)
Correlation coefficient	0.509	0.378	0.868

Dragon Gene Start Finder and FirstEF - not applicable on analyzed data.

Human Genome Scan Expt

- Genome scanning
 - GC-content in a genomic segment > 0.37
 - Motif for initial scan = CAAT-box
 - Length of segment upstream of CAAT-box = 425, downstream = 175
 - Min spacer betw CAATboxes = 0
 - Min no. of motifs in seq = 3
- Each extracted segment classified to Histone vs Nonpromoter class based on their structures

- Predictions classified as "Histone" were further analyzed:
 - Annotation available?
 - Use RefSeq gene data (HG17, May 2004)
 - These may be coregulated genes
 - Are available annotations co-expressed with histone genes?
 - Use Gene Sorter utility (with GNF Gene Expression Atlas2 data) of UCSC Genome browser

Adapted from Chowdhary's PhD thesis presentation

	DPM predictions		DPM predictions mapped DPM predictions mapped				pped	1				
			with anno tated RefSeq genes		with histone co-expression							
			(including histone genes) data (including		luding histor	ading history		. г	National University			
		1			A Gene	Jel	() (C)	# Gene	DGa	BN		Results of Singapore
Ch ro	# Predictio	# (A) with	#(B) predicted	# (0)	# Gene transcripts	# Unicu	mapped	# Gene transcript	uniqu			
mo	ns with	motifs	ashistone	m appe d with	mapped	e e	with	s mapped	e e			
so	CAAT-	=> 3	class	known	with(C)	genes	known	with(C)	genes		•	No. of regions w/
me	box			genes	(redundant1	mappe	genes	(redundan	mapp			
		_	(C)		y)	d with		tly)	eđ			histone promoter-
	(A)	(B)				C			with			
1	108973	39360	10669	1627	2220	659	473	710	(C) 215			like struct =
2	108973	40786	10009	1027	1641	450	292	406	129			134626
3	90473	34231	8642	1009	1391	372	306	373	115	1		134020
4	78265	31004	8316	741	967	264	184	260	63	1		Found CO biotono
5	82101	31490	8179	869	1355	346	225	333	88		•	Found 62 histone
6	76965	29486	8007	1000	1249	384	318	389	140			promotor w/
7	70615	26053	6895	1011	1440	299	224	291	91			promoter w/
8	66855	25329	6543	744	953	238	172	222	56			CAAT-box
9	56715	20600	5542	684	945	244	167	211	67			OAAT BOX
10	65527	24104	6534	956	1317	293	242	353	88			 – 53 were training
11	63993	23468	6037	805	1074	323	197	282	100			- 55 were training
12	62499	23626	6466	800	981	348	275	331	122			seq out of 60
13	39684	15488	4292	396	484	131	102	119	35			
14	41734	15367	4001	530	757	201	181	229	73			that had CAAT-
15	41 196	14726	4023	482	676	198	123	195	58			
16	41963	14779	4064	641	834	245	152	213	66			box
17	39083	12970	3709	645	867	306	231	279	126	4		
18	34174	12987	3431	359	472	115	88	107	28		•	Found that histone
19	28738	10202	3472	681	950	350	252	370	113			
20	32508	11636	3087	420	646	147	92	124	49	4		genes are co-
21	15138	5803	1578	214	408	86	80	172	22	-		
22 M	17620 18	5730 5	1743 0	315 0	521 0	128 0	126 0	188 0	59 0	-		regulated w/ many
X	18 74725	5 29971	0 7598	0 807	0 1344	285	0 336	U 446	U 108			genes
Y	12531	4869	1371	52	1344 89	20	10	11	5			yenes
То	12001	4007	13/1	54	07	20	10	11	<u> </u>			
tal	1351936	504070	134626	16978	23581	6432	4848	6614	2016			

Conclusions

- DPM performs well
- User can implement any type of correlations betw motif features based on his background knowledge
- Explicitly classify a segment w/ cluster of binding sites to one of target classes
- Handle multiple target classes of seq

- Create well-annotated data set of histone promoters
- Comprehensive model of histone promoter struct
- Discover regions in human genome w/ similar struct as histone promoters
 - May be promoters coregulated w/ histones
 - We are verifying these experimentally w/ collaborators in Germany

- V.B.Bajic et al., "Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates", *J. Mol. Graph. & Mod.* 21:323--332, 2003
- V.B.Bajic et al., "Dragon Promoter Finder: Recognition of vertebrate RNA polymerase II promoters", *Bioinformatics* 18:198--199, 2002.
- R.Chowdhary et al., "Dragon Promoter Mapper: A Bayesian framework for modeling promoter structures", *Bioinformatics*, 2006. To appear.
- R Chowdhary et al., "Finding functional promoter motifs by computational methods: A word of caution", *International Journal of Bioinformatics Research and Applications*, 2:282–288, 2006.
- R Chowdhary et al,. "Promoter modeling: The case study of mammalian histone promoters", *Bioinformatics*, 21:2623--2628, 2005.