Big data in bioinformatics: Is more better?

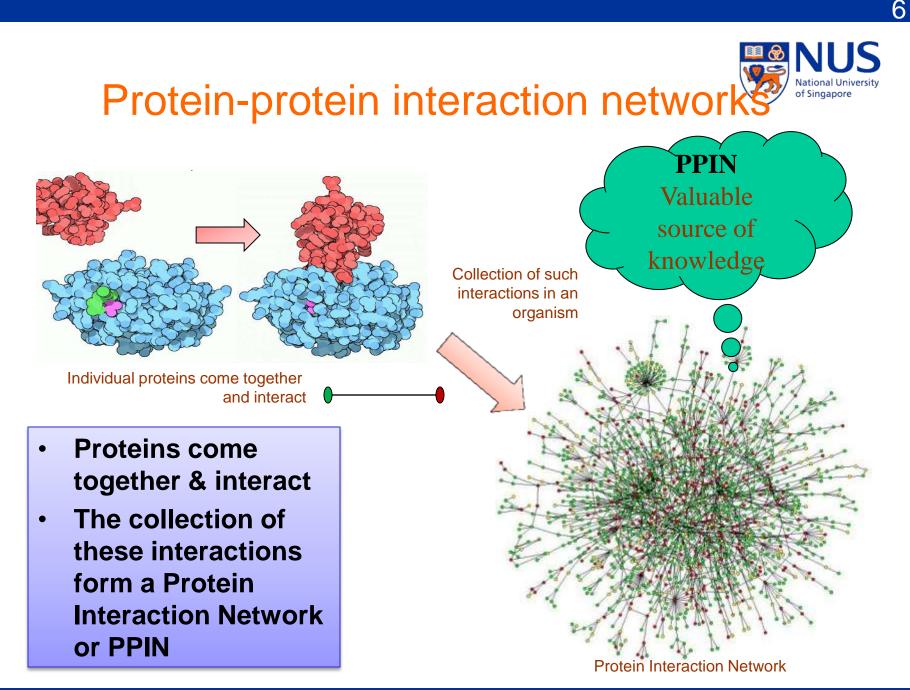
Limsoon Wong

What is Big Data and Why

- Big data *a la* Gartner
 - Volume, velocity, variety
- Other
 characteristics
 - Veracity, v...

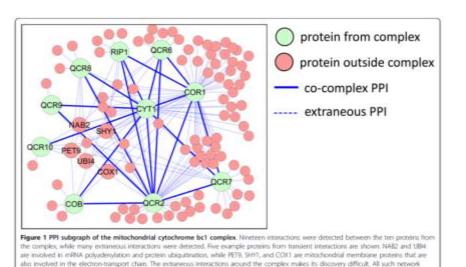
A practical definition "More than you know how to handle" • Why big data?

- Can collect cheaply, due to automation
- Can store cheaply, due to falling media prices
- Many success stories, where useful predictions were made with the data



- Much emphasis is on scaling issues
- But there are non-scaling-related issues that affect fundamental assumptions in current bioinformatics and statistical analysis
 - Big data may break analysis procedures in fundamental ways

- Discovering protein complexes from PPIN
- Identifying causal genes
- Finding interesting patterns



KAUST CBRC Inauguration Symposium, 8 June 2014

Difficulties

- Cytochrome BC1 complex
 - Involved in electrontransport chain in mitochondrial inner membrane

- Discovery of BC1 from
 PPI data is difficult
 - Sparseness of its PPI subnetwork
 - Only 19 out of 45 possible interactions were detected between the complex's proteins
 - Extraneous interactions with other proteins outside the complex
 - E.g., UBI4 is involved in protein ubiquitination, and binds to many proteins to perform its function

KAUST CBRC Inauguration Symposium, 8 June 2014

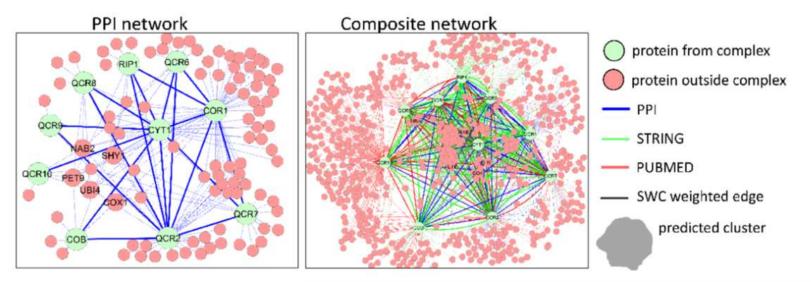
figures were generated by Cytoscape (30),

Perhaps "big data" can help?

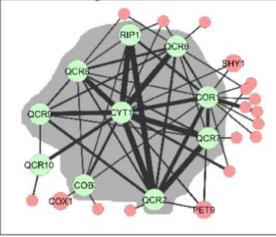
Composite network

 Vertices represent proteins, edges represent relationships between proteins. Put an edge betw proteins u, v, iff u and v are related according to any of the data sources

Data sourc	e	Databa	ase		Scoring method	
PPI		BioGR	BioGRID, IntACT, MINT		Iterative AdjustCD.	
L2-PPI (indirect PPI)		BioGR	BioGRID, IntACT, MINT		Iterative AdjustCD	
Functional association		STRIN	STRING		STRING	
Literature co-occurrence		PubMe	PubMed		Jaccard coefficient	
		Yeast			Human	
	# Pairs	% co-complex	coverage	# Pairs	% co-complex	coverage
PPI	106328	5.8 %	55%	48098	10%	14%
L2-PPI	181175	1.1%	18%	131705	5.5%	20%
STRING	175712	5.7%	89%	311435	3.1%	27%
PubMed	161213	4.9%	70%	91751	4.3%	11%
All	531800	2.1%	98 %	522668	3.4%	49%


KAUST CBRC Inauguration Symposium, 8 June 2014

Yong, et al. Supervised maximum-likelihood weighting of composite protein networks for complex prediction. *BMC Systems Biology*, 6(Suppl 2):S13, 2012



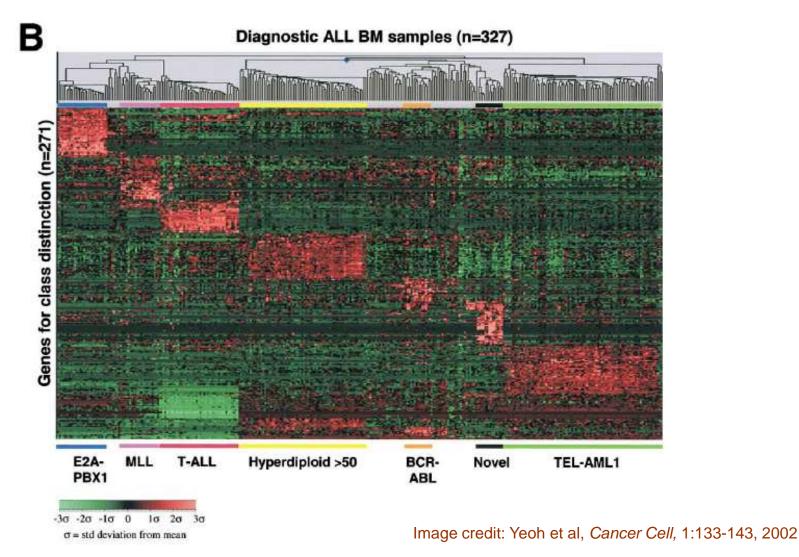
9

More is not always better, unless.

SWC-weighted network

While proteins in BC1 become fully connected in the composite network, there is a blow-up in extraneous proteins. So clustering won't discover the complex, unless you know how to remove the extraneous proteins

KAUST CBRC Inauguration Symposium, 8 June 2014



A few stories

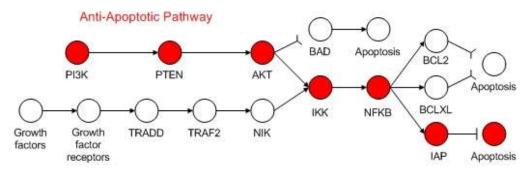
- Discovering protein complexes from PPIN
- Identifying causal genes
- Finding interesting patterns

Gene Expression Profiling

KAUST CBRC Inauguration Symposium, 8 June 2014

Difficulties

- Low % of overlapping genes from diff expt in general
 - Prostate cancer
 - Lapointe et al, 2004
 - Singh et al, 2002
 - Lung cancer
 - Garber et al, 2001
 - Bhattacharjee et al, 2001
 - DMD
 - Haslett et al, 2002
 - Pescatori et al, 2007


Datasets	DEG	POG
Prostate	Тор 10	0.30
Cancer	Тор 50	0.14
	Top100	0.15
Lung	Тор 10	0.00
Cancer	Тор 50	0.20
	Top100	0.31
DMD		
	Top 10	0.20
DMD	Тор 50	0.42
	Top100	0.54

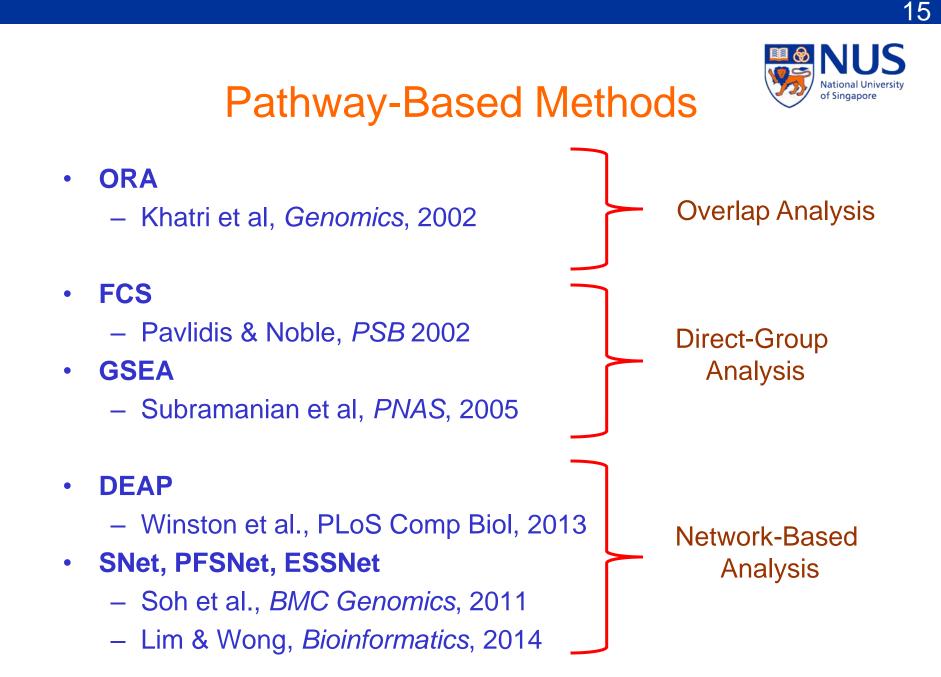
Zhang et al, Bioinformatics, 2009

KAUST CBRC Inauguration Symposium, 8 June 2014

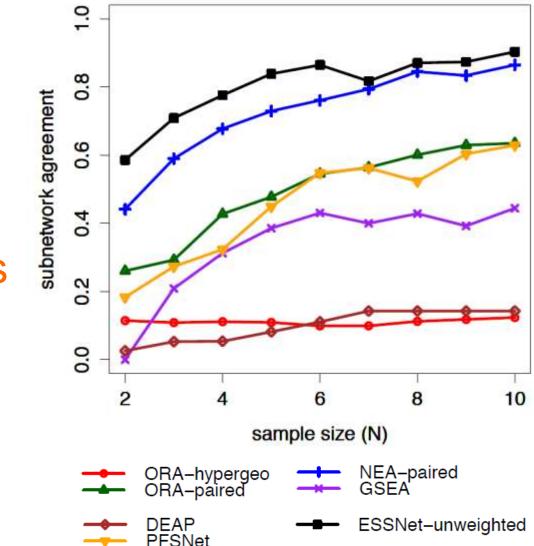
Biology to the rescue: Gene Regulatory Circuits

- Each disease phenotype has some underlying cause
- There is some unifying biological theme for genes that are truly associated with a disease subtype
- Uncertainty in selected genes can be reduced by considering biological processes of the genes
- The unifying biological theme is basis for inferring the underlying cause of disease subtype

Database	Remarks	
KEGG	KEGG (http://www.genome.jp/kegg) is one of the best known pathway databases (Kanehisa <i>et al.</i> , 2010). It consists of 16 main databases, comprising different levels of biological infor- mation such as systems, genomic, etc. The data files are down- loadable in XML format. At time of writing it has 392 path- ways.	l University pore
WikiPathways	WikiPathways (http://www.wikipathways.org) is a Wikipedia-based collaborative effort among various Big data labs (Kelder et al., 2009). It has 1,627 pathways of which 369 are human. The content is downloadable in GPML format.	of al
Reactome	are human. The content is downloadable in GPML format. Reactome (http:://www.reactome.org) is also a collaborative effort like WikiPathways (Vastrik <i>et al.</i> , 2007). It is one of the largest datasets, with over 4,166 human reactions organized into 1,131 pathways by December 2010. Reactome can be down- loaded in BioPax and SBML among other formats.	/S
Pathway Commons	Human T (The Second Sec	
PathwayAPI	PathwayAPI (http://www.pathwayapi.com) contains unified human pathways obtained from a merge of WikiPathways and Ingenuity® Knowledge Base (Sol 2010). Data is downloadable as a SQL dump or as a and is also interfaceable in JSON format.	


Goh, et al. *Proteomics*, 12(4-5):550-563, 2012.

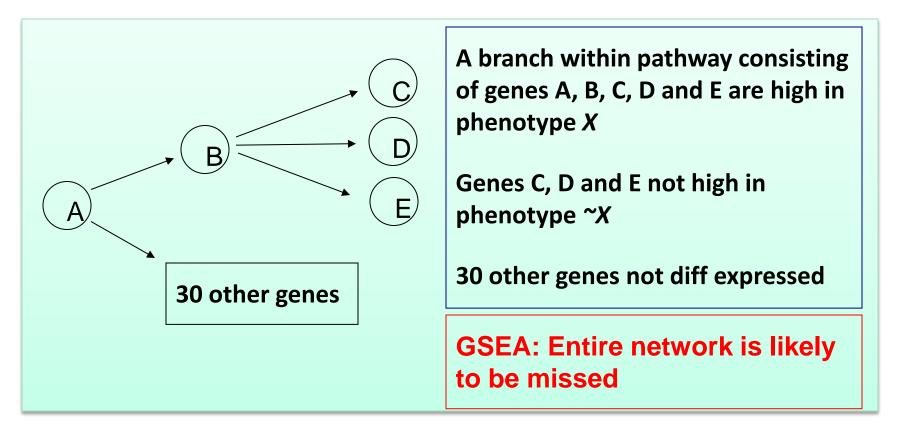
Copyright 2014 © Limsoon Wong


Soft-of all Completings Comprehension and Compatibility of Pathway Collaboration BNC disordermarks, 11 Halk, 2010.

14

KAUST CBRC Inauguration Symposium, 8 June 2014

upregulated in DMD



Lim et al. ESSNet, finding consistent disease subnetworks in data with extremely small sample sizes. *Bioinformatics*, submitted.

Unfortunately, most pathwaybased gene expression analysis methods don't always work, especially when sample size is small

More is not always better, unless .

 Need to know how to capture the subnetwork branch within the pathway

Dataset	PFSNet	GSEA	GGEA	-	NUS National University of Singapore
Leukemia ALL (subtype) DMD	1.00 0.56 0.82	0.12 0.34 0.57	0.18 0.37 0.51	- PFSNe GSEA & Q Pathway Ag	GGEA:
					PFSNet
fr	sting su om PFS sing GS GGE	SNet EA & A	Leuke ALL s ALL s DMD	emia (GSEA) emia (GGEA) subtype (GSEA) subtype (GGEA) (GSEA) (GGEA)	0.50 0.67 1.00 1.00 0.90 0.54

Lim & Wong. Finding consistent disease subnetworks using PFSNet. *Bioinformatics*, 30(2):189--196, 2014

18

A few stories

- Discovering protein complexes from PPIN
- Identifying causal genes
- Finding interesting patterns

Statistics lies, unless ...

Overall

Men

	А	В
lived	60	65
died	100	165

Looks like treatment A is better

Women

	Α	В
lived	40	15
died	20	5

History of heart disease

	Α	В
lived	10	5
died	70	50

 A
 B

 lived
 20
 50

 died
 80
 160

No history of heart disease

	Α	В
lived	10	45
died	10	110

Big data may break the i.i.d. assumption underlying most statistical tests

KAUST CBRC Inauguration Symposium, 8 June 2014

Looks like treatment B is better

Looks like treatment A is better

Rules are just rules, unless

Data mining sensor & telemetry data in a factory may give you rules like ...

Fuse blow \rightarrow Robot stop

··· a thousand other rules ···

Circuit overload \rightarrow Fuse blow

··· a thousand other rules ···

Insufficient lubrication \rightarrow Circuit overload

··· a thousand other rules ···

Oil pump clogged \rightarrow Insufficient lubrication

··· a thousand other rules ···

Metal shavings \rightarrow Oil pump clogged

Asking "why" 5 levels deep, and getting to the root cause

What have we learned?

- More data can offer a more complete picture, fill in gaps, etc.
- More data can also introduce noise into an analysis
- Unless you know how to tame this noise, more data may not lead to a better analysis

- Mechanical application of statistical and data mining techniques often does not work
- Must understand statistical and data mining tools & the problem domain
 - Must know how to logically exploit both