Adventures of a Logician-Engineer: A Journey Through Logic, Engineering, Medicine, Biology, and Statistics

Limsoon Wong

- Understanding query languages
- Engineering data integration systems
- Optimising disease treatments
- Recognizing DNA feature sites
- Discovering reliable patterns

Understanding Query Languages

Nested Relational Calculus (NRC)

The complex object types are:

$$s, t ::= \mid bool \mid b \mid s \times t \mid \{s\}$$

The expression constructs are:

$m^{s} \cdot c$	$\frac{e_1:s}{(e_1,e_2):s\times t}$	e: π. e:	$\frac{s \times t}{\pi_{2} \cdot e \cdot t}$
1.5	(e_1, e_2) . $s \times t$	110.8	5 <i>n</i> ₂ e. <i>i</i>
true · bool	false : bool	e_1 : bool	$e_2:s e_3:s$
	<i>juice</i>		
$\{\}^s:\{s\}$	$\frac{e:s}{\{e\}:\{s\}}$	$e_1: \{s\}$ $e_1 \bigcup e_1$	$e_2: \{s\}$ $e_2: \{s\}$
$e_1:\{s\} = e_2:\{$	$\{t\}$ $e:$	$\{s\}$	$e_1: s \ e_2: s$
$\cup \{e_1 \mid x^t \in e_2\} :$	$\{s\}$ empty	e: bool	$e_1 = e_2$: bool

Explanation

- π₁ e stands for the first component of the pair e
 Eg: π₁ (o₁, o₂) = o₁
- ∪{e₁ | x ∈ e₂} stands for the set obtained by combining the results of applying the function f(x) = e₁ to each element of e₂
 Eg: ∪{{x, x+1} | x ∈ {1,2,3}} = {1,2,3,4}

Examples

Relational projection

 $\Pi_2(R) := \cup \{ \{ \pi_2 \ x \} \mid x \in R \}$

- Relational selection $\sigma(p)(R) := \bigcup \{ \text{if } p(x) \text{ then } \{x\} \text{ else } \} \mid x \in R \}$
- Cartesian product
 ⊗(*R*,*S*) := ∪{∪{{(*x*,*y*)} | *x* ∈ *R*} | *y* ∈ *S*}

Conservative Extension Property

A language \mathcal{L} has conservative extension property if

for every function \mathcal{L} definable in \mathcal{L} , there is an implementation of \mathcal{L} in \mathcal{L} such that

for any input *i* and corresponding output *a*, each intermediate data item created in the course of executing *f* on *i* to produce *a* has nesting complexity less than that of *i* and *a*

Expressive Power of NRC

• Proposition 1 (Tannen, Buneman, Wong, ICDT92)

NRC has the same expressive power as Schek&Scholl, Thomas&Fischer, etc.

• Theorem 2 (Wong, PODS93)

NRC has the conservative extension property at all input/output types

• Corollary 3

Every function from flat relations to flat relations expressible in NRC is expressible in FO(=)

Theoretical Reconstruction of SQ

$$\begin{array}{c} \underline{e_1:\mathbb{Q}\quad e_2:\mathbb{Q}}\\ \hline e_1+e_2:\mathbb{Q} \end{array} \quad \underline{e_1:\mathbb{Q}\quad e_2:\mathbb{Q}}\\ \hline e_1:\mathbb{Q}\quad e_2:\mathbb{Q} \end{array} \quad \underline{e_1:\mathbb{Q}\quad e_2:\mathbb{Q}}\\ \hline e_1:\mathbb{Q}\quad e_2:\mathbb{Q} \end{array} \quad \underline{e_1:\mathbb{Q}\quad e_2:\{s\}}\\ \hline e_1-e_2:\mathbb{Q} \end{array} \quad \underline{E_1:\mathbb{Q}\quad e_2:\{s\}}\\ \hline \Sigma\{|e_1\mid x^s\in e_2|\}:\mathbb{Q} \end{array} \quad \underline{e_1:\mathbb{Q}\quad e_2:\mathbb{Q}}\\ \hline e_1:\mathbb{Q}\quad e_2:\mathbb{Q} \end{array}$$

Semantics. $\Sigma\{|e_1 | x \in e_2|\} = f(o_1) + \ldots + f(o_n)$, where f is the function $f(x) = e_1$ $\{o_1, \ldots, o_n\}$ is the set e_2 .

Example Aggregate Functions

- Count the number of records $count(R) := \Sigma\{|1| x \in R|\}$
- Total the first column

 $total_1(R) := \Sigma \{ | \pi_1 X | X \in R | \}$

- Average of the first column
 ave₁(R) := total₁(R) ÷ count(R)
- A totally generic query expressible in SQL but inexpressible in FO(=) eqcard(R,S) := count(R) = count(S)

• **Proposition** (Libkin, Wong, DBPL93)

NRC(Q,+,•,-, \div , Σ ,=, \geq^{Q}) captures "standard" SQL

- Theorem 4 (Libkin, Wong, PODS94)
 NRC(Q,+,•,-,÷,Σ,=, ≥^Q) has the conservative extension property at all input/output types
- Corollary 5

Every function from flat relations to flat relations is expressible in NRC(Q,+,•,-, \div , Σ ,=, \geq ^Q) iff it is also expressible in SQL

Bounded Degree Property

A language \mathcal{L} has bounded degree property if

for every function $_{\ell}$, on graphs, definable in \mathcal{L} , and for any number $_{\ell}$,

there is a number c such that for any graph \mathcal{G} with deg(\mathcal{G}) \in { 0, 1, ..., k}, it is the case that $c \ge \operatorname{card}(\operatorname{deg}(\mathcal{G}))$)

That is, \mathcal{L} cannot define a function that produces complex graphs from simple graphs

Expressive Power of NRC(Q,+,•,-,÷, Σ ,=, \geq^Q)

• Theorem 6 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,-, \div , Σ ,=, \geq^{Q}) has the bounded degree property

- Corollary 7
 - Transitive closure of unordered graphs cannot be expressed in SQL
 - Parity test on cardinality of unordered graphs cannot be expressed in SQL
 - Transitive closure of linear chains cannot be expressed in SQL

Engineering Data Integration Systems

Integration: What are the problems in US

A US DOE "impossible query", circa 1993: For each gene on a given cytogenetic band, find its non-human homologs.

source	type	location	remarks
GDB	Sybase	Baltimore	Flat tables SQL joins Location info
Entrez	ASN.1	Bethesda	Nested tables Keywords Homolog info

Integration Solution: Kleisli

Nested relational data model

- Thin wrappers & lots of them
- High-level query languages
 - **Powerful query optimizer**
- Open "database" connectivity & API
- Nested relational data store

Buneman, Davidson, Hart, Overton, Wong, VLDB95 • Wong, ICFP00

Self-Describing Data Exchange Format

- Logical & lexical layers are important aspects
- "Print" & "parse" to move between layers
- "Transmit" to move between systems
- Clear separation ⇒ generic parsers & "printers"

GenPept: E.g. of Poor Format

LOCUS	T41727	577 aa	PLN	03-DEC-19	99	
DEFINITION	F-box do	main protein P	of3p - fissio	n yeast	٠	Deeply nested
ACCESSION	T41727					structuro
PID	g7490551					Suuciure
VERSION	T41727	GI:7490551			•	No separation of
DBSOURCE	pir: loc	us T41727;				
	summary:	#length 577 #	weight 66238			logical vs. lexical
KEYWORDS						lavers
SOURCE	fission	yeast.				
ORGANISM	Schizosa	ccharomyces po	mbe		٠	Specialized parser
	Eukaryot	a; Fungi; Asco	mycota;			is a must
REFERENCE	1 (resi	dues 1 to 577)				is a must
AUTHORS	Lyne,M.,	Wood,V., Raja	ndream,M.A.,			
TITLE	Direct S	ubmission				
JOURNAL	Submitte	d (??-JUN-1998) to the EMBL	Data Librar	У	
FEATURES		Location/Qual	ifiers			
source		1577				
		/organism="Sc	hizosaccharom	yces pombe"		
		/db_xref="tax	on:4896"			
Protei	n	1577				
		/product="F-b	ox domain pro	tein Pof3p"		
ORIGIN						

1 mnnyqvkaik ektqqylskr kfedaltfit ktieqepnpt ...

Kleisli's Data Exchange Format

logical layer	lexical layer	remarks
Booleans	True, false	
Numbers	123, 123.123	Positive numbers
	~123, ~123,123	Negative numbers
strings	"a string"	String is inside double quotes
records	$(\#l_1: v_1, \ldots, \#l_n: v_n)$	Record is inside round brackets
sets	$\{v_1, \ldots, v_n\}$	Set is inside curly brackets

- Lexical layer matches logical layer
- Mirrors nested relational data model
- Avoids impedance mismatch
- Easier to write wrappers

GenPept: In a Better Format

```
(#uid: 7490551,
#title: "F-box domain protein Pof3p - fission yeast",
#accession: "T41727",
#common: "fission yeast.",
#organism: (#genus: "Schizosaccharomyces",
#species: "pombe",
#lineage: ["Eukaryota", "Fungi", "Ascomycota", ...]),
#feature: {(#name: "source", #start: 0, #end: 576,
#anno: [(#anno_name: "organism",
#descr: "Schizosaccharomyces pombe"),
(#anno_name:"db_xref", #descr:"taxon:4896")]),
(#name: "Protein", #start: 0, #end: 576,
#anno: [(#anno_name: "product",
#descr: "F-box domain protein Pof3p")])},
#sequence: "MNNYQVKAIKEKTQQYLSKRKFEDALTFITKTIEQEPNPTID...")
```

- Boundaries of different nested structures are explicit
- Logical vs. lexical layers no longer mixed up
- Specialized parser no longer needed

Data Integration Results

- Using Kleisli:
 - Clear
 - Succinct
 - Efficient

• Handles

- heterogeneity
- complexity

sybase-add (#name:"GDB", ...);

create view L from locus_cyto_location using GDB; create view E from object_genbank_eref using GDB; select

#accn: g.#genbank_ref, #nonhuman-homologs: H
from

Lasc, Easg,

{select u

from g.#genbank_ref.na-get-homolog-summary as u
where not(u.#title string-islike ''%Human%'') &
 not(u.#title string-islike ''%H.sapien%'')} as H
where

c.#chrom_num = ''22'' &
g.#object_id = c.#locus_id &
not (H = { });

Optimising Disease Treatments

Childhood ALL

- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCR-ABL, MLL genome rearrangements, Hyperdiploid>50,
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
 - Development of secondary cancers
 - Reduction of IQ
- Under-intensiveTx
 - Relapse

The subtypes look similar

- Conventional diagnosis
 - Immunophenotyping
 - Cytogenetics
 - Molecular diagnostics
- Unavailable in most ASEAN countries

Single-Test Platform of Microarray & Knowledge Discovery

Image credit: Affymetrix

SYNASC2006, Timisoara, Romania, 26-29 Sept 2006

Copyright 2006 © Limsoon Wong

Signal Selection Basic Idea

- Choose a signal w/ low intra-class distance
- Choose a signal w/ high inter-class distance
- \Rightarrow An invariant of a disease subtype!

Multidimensional Scaling Plot for ALL Subtype Diagnosis

Obtained by performing PCA on the 20 genes chosen for each level

Gene Expression Profiles for ALL Subtype Diagnosis

 $\sigma =$ std deviation from mean

Impact

Copyright 2006 © Limsoon Wong

Recognizing DNA Feature Sites

A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens	
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCC <u>ATG</u> GCTGAACACTGACTCCCAGCTGTG	80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGC <u>ATG</u> GCTTTTGGCTGTCAGGGCAGCTGTA	160
GGAGGCAG <mark>ATG</mark> AGAAGAGGGAG <mark>ATG</mark> GCCTTGGAGGAAGGGGAAGGGGCCTGGTGCCGAGGA	240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCCAACAAGGACTCCCCT	
	80
ieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	

• What makes the second ATG the TIS?

Approach

- Training data gathering
- Signal generation
 - k-grams, distance, domain know-how, ...
- Signal selection
 - Entropy, χ 2, CFS, t-test, domain know-how...
- Signal integration
 - SVM, ANN, PCL, CART, C4.5, kNN, ...

mRNA->protein

How about using k-grams from the translation?

First	U	С	Α	G	Last
U	Phe 🗖	Ser 🧧	Tyr 🗸	Cys	U
	Phe	Ser	Tyr	Суз	С
	Leu T.	Ser	Stop (Ochre)	Stop (Umber)	Α
	Leu	Ser	Stop (Amber)	Trp W	G
С	Leu	Pro P	His H	Arg R	U
	Leu	Pro	His	Arg	С
	Leu	Pro	Gln O	Arg	Α
	Leu	Pro	Gln	Arg	G
А	Ile 🗕	Thr 🛖	Asn N	Ser	U
	Ile 📕	Thr	Asn	Ser	С
	Ile	Thr	Lys K	Arg	Α
	Met M	Thr	Lys	Arg	G
G	Val V	Ala 🔼	Asp D	Gly G	U
	Val	Ala	Asp	Gly	С
	Val	Ala	Glu 🖪	Gly	Α
	Val	Ala	Glu	Gly	G

Amino-Acid Features

New feature space (total of 927 features + class label)					
42 1-gram amino acid patterns	882 2-gram amino acid patterns 3 bio-know- ledge patterns		class label		
UP-A, UP-R, ,UP-N, DOWN- A, DOWN-R,, DOWN-N (numeric type)	UP-AA, UP-AR,, UP-NN, DOWN-AA, DOWN-AR ,, DOWN-NN (numeric type)	DOWN4-G UP3-AorG, UP-ATG (boolean type, Y or N)	True, False		
Frequency as values					
1, 3, 5, 0, 4, 6, 5, 7, 9, 0,	6, 2, 7, 0, 5, 2, 0, 3, 10, 0,	N, N, N, V, Y, Y,	False True		

Amino Acid K-grams Discovered By Entropy

Validation Results on Chr X and Chr 21

• Using top 100 features selected by entropy and trained on Pedersen & Nielsen's

of Singapore

Discovering Reliable Patterns

Discovering Invariants

- Conservative extension
 property
- Bounded degree property
- Logical layer of selfdescribing exchange formats

Insights of an expert

- Diagnosis patterns of ALL subtypes
- Signals for protein translation initiation

Identified using existing machine learning methods

 Next Goal: Improve capability of machines to discover useful invariants

Going Beyond Frequent Patterns

- Statisticians use a battery of "interestingness" measures to decide if a feature/factor is relevant
- Odds ratio $OR(P,D) = \frac{\frac{P_{D,ed}}{P_{D,-d}}}{\frac{P_{D,e-}}{P_{D,--}}}$

- Examples:
 - Odds ratio
 - Relative risk
 - Gini index
 - Yule's Q & Y
 - etc

Smoking and lung cancer in US hospitals [Stellman etc 2001]

	Cases	Controls
Total	371	373
Smokers	355	220
Non-smokers	16	153
Odds	22.18	1.44
-	D - 00 40 (4 44 - 44 5	•

OR = 22.18 / 1.44 = 14.56

SYNASC2006, Timisoara, Romania, 26-29 Sept 2006

Copyright 2006 © Limsoon Wong

Going Beyond Frequent Patterns

- Given a data set, such as those related to human health, it is interesting to determine impt cohorts and impt factors causing transition betw cohorts
- \Rightarrow Tipping events
- ⇒ Tipping factors are "action items" for causing transitions

- "Tipping event" is two or more population cohorts that are significantly different from each other
- "Tipping factors" (TF) are small patterns whose presence or absence causes significant difference in population cohorts
- "Tipping base" (TB) is the pattern shared by the cohorts in a tipping event
- "Tipping point" (TP) is the combination of TB and a TF

Acknowledgements

- Understanding query languages
 - Peter Buneman, Val Tannen, Leonid Libkin, Dan Suciu, Guozhu Dong
- Engineering data integration systems
 - Chris Overton, Susan Davidson, Kyle Hart, Jing Chen, Hao Han

- Optimising disease treatments
 - Huiqing Liu, Jinyan Li, Allen Yeoh
- Recognizing DNA feature sites
 - Huiqing Liu, Fanfan
 Zeng, Roland Yap, Hao
 Han, Vlad Bajic
- Discovering reliable patterns
 - Jinyan Li, Haiquan Li, Mengling Feng, Guozhu Dong, Pei Jian