Adventures of a Logician-Engineer:
 A Journey Through Logic, Engineering, Medicine, Biology, and Statistics

Limsoon Wong

- Understanding query languages
- Engineering data integration systems
- Optimising disease treatments
- Recognizing DNA feature sites
- Discovering reliable patterns

Understanding Query Languages

Nested Relational Calculus (NRC)

The complex object types are:

$$
s, t::=\mid \text { bool }|b| s \times t \mid\{s\}
$$

The expression constructs are:

$$
\begin{aligned}
& \overline{x^{s}: s} \quad \frac{e_{1}: s e_{2}: t}{\left(e_{1}, e_{2}\right): s \times t} \quad \frac{e: s \times t}{\pi_{1} e: s \pi_{2} e: t} \\
& \overline{\text { true }: \text { bool }} \quad \overline{\text { false : bool }} \quad \frac{e_{1}: \text { bool } e_{2}: s e_{3}: s}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: s} \\
& \overline{\left\}^{s}:\{s\}\right.} \quad \frac{e: s}{\{e\}:\{s\}} \quad \frac{e_{1}:\{s\} \quad e_{2}:\{s\}}{e_{1} \bigcup e_{2}:\{s\}} \\
& \frac{e_{1}:\{s\} \quad e_{2}:\{t\}}{\cup\left\{e_{1} \mid x^{t} \in e_{2}\right\}:\{s\}} \quad \frac{e:\{s\}}{\text { empty } e: \text { bool }} \quad \frac{e_{1}: s e_{2}: s}{e_{1}=e_{2}: \text { bool }}
\end{aligned}
$$

Explanation

- π_{1} e stands for the first component of the pair e Eg: $\pi_{1}\left(o_{1}, o_{2}\right)=o_{1}$
- $\cup\left\{e_{1} \mid x \in e_{2}\right\}$ stands for the set obtained by combining the results of applying the function $f(x)=e_{1}$ to each element of e_{2}

Eg: $\cup\{\{x, x+1\} \mid x \in\{1,2,3\}\}=\{1,2,3,4\}$

Examples

- Relational projection

$$
\Pi_{2}(R):=\cup\left\{\left\{\pi_{2} x\right\} \mid x \in R\right\}
$$

- Relational selection

$$
\sigma(p)(R):=\cup\{\text { if } p(x) \text { then }\{x\} \text { else }\{ \} \mid x \in R\}
$$

- Cartesian product

$$
\otimes(R, S):=\cup\{\cup\{\{(x, y)\} \mid x \in R\} \mid y \in S\}
$$

Conservative Extension Property

A language \swarrow has conservative extension property if
for every function \mathfrak{f} definable in \mathcal{L}, there is an implementation of $\mathfrak{f i n} \mathfrak{L}$ such that
for any input i and corresponding output a. each intermediate data item created in the course of executing f on i to produce a has nesting complexity less than that of i and e

Expressive Power of NRC

- Proposition 1 (Tannen, Buneman, wong, (cctor2)

NRC has the same expressive power as
Schek\&Scholl, Thomas\&Fischer, etc.

- Theorem 2 (Wong, poos93)

NRC has the conservative extension property at all input/output types

- Corollary 3

Every function from flat relations to flat relations expressible in NRC is expressible in FO(=)

Theoretical Reconstruction of SQ

Expressions of $\mathcal{N} \mathcal{R} \mathcal{C}\left(\mathbb{Q},+, \cdot,-, \div, \Sigma,=, \leq{ }^{\mathbb{Q}}\right)$ are those of $\mathcal{N} \mathcal{R} \mathcal{C}$ plus the following

$$
\begin{array}{cll}
\frac{e_{1}: \mathbb{Q} e_{2}: \mathbb{Q}}{e_{1}+e_{2}: \mathbb{Q}} & \frac{e_{1}: \mathbb{Q} e_{2}: \mathbb{Q}}{e_{1} \cdot e_{2}: \mathbb{Q}} & \frac{e_{1}: \mathbb{Q} e_{2}: \mathbb{Q}}{e_{1} \div e_{2}: \mathbb{Q}} \\
\frac{e_{1}: \mathbb{Q} e_{2}: \mathbb{Q}}{e_{1}-e_{2}: \mathbb{Q}} & \frac{e_{1}: \mathbb{Q} e_{2}:\{s\}}{\Sigma\left\{\left|e_{1}\right| x^{s} \in e_{2}\right\}: \mathbb{Q}} & \frac{e_{1}: \mathbb{Q} e_{2}: \mathbb{Q}}{e_{1} \leq e_{2}: \text { bool }}
\end{array}
$$

Semantics. $\Sigma\left\{\left|e_{1}\right| x \in e_{2}\right\}=f\left(o_{1}\right)+\ldots+f\left(o_{n}\right)$, where f is the function $f(x)=e_{1}$ $\left\{o_{1}, \ldots, o_{n}\right\}$ is the set e_{2}.

Example Aggregate Functions

- Count the number of records

$$
\operatorname{count}(R):=\Sigma\{|1| x \in R \mid\}
$$

- Total the first column

$$
\operatorname{total}_{1}(R):=\Sigma\left\{\left|\pi_{1} x\right| x \in R \mid\right\}
$$

- Average of the first column

$$
\operatorname{ave}_{1}(R):=\operatorname{total}_{1}(R) \div \operatorname{count}(R)
$$

- A totally generic query expressible in SQL but inexpressible in FO(=)
eqcard $(R, S):=\operatorname{count}(R)=\operatorname{count}(S)$

Expressive Power of $\operatorname{NRC}(\mathrm{Q},+, \bullet,-, \div, \Sigma,=, \geq \mathrm{Q})$

- Proposition (Libkin, Wong, Db\&ㄴ3)

NRC(Q,+, $\left.,--, \div, \Sigma,=, \geq^{Q}\right)$ captures "standard" SQL

- Theorem 4 (Lbibki, Wong, poos94)

NRC(Q,+, $\left.,--, \div, \Sigma,=, \geq^{Q}\right)$ has the conservative extension property at all input/output types

- Corollary 5

Every function from flat relations to flat relations is expressible in NRC(Q,+, $\left.,-,, \div, \Sigma,=, \geq^{Q}\right)$ iff it is also expressible in SQL

Bounded Degree Property

A language \mathfrak{L} has bounded degree property if
for every function \mathfrak{f}, on graphs, definable in \mathcal{L}, and for any number k,
there is a number e such that for any graph q with $\operatorname{deg}(\mathscr{G}) \in\{0,1, \ldots, k\}$, it is the case that $c \geq \operatorname{card}(\operatorname{deg}(f(g)))$

That is, \mathscr{L} cannot define a function that produces complex graphs from simple graphs

Expressive Power of $\operatorname{NRC}\left(\mathrm{Q},+, \bullet,-, \div, \Sigma,=, \geq^{\bar{Q}}\right)$

- Theorem 6 (Dong, Libkin, Wong, ICDT97)

NRC(Q,+,•,-,, $\left.\div, \Sigma,=, \geq^{Q}\right)$ has the bounded degree property

- Corollary 7
- Transitive closure of unordered graphs cannot be expressed in SQL
- Parity test on cardinality of unordered graphs cannot be expressed in SQL
- Transitive closure of linear chains cannot be expressed in SQL
- ...

Engineering Data Integration Systems

Integration: What are the prob US DOE "impossible query", circa 1993:

For each gene on a given cytogenetic band, find its non-human homologs.
source type location remarks
$\begin{array}{lll}\text { GDB } \quad \text { Sybase } & \text { Baltimore } & \text { Flat tables } \\ & & \text { SQL joins } \\ & & \text { Location info }\end{array}$
Entrez ASN. 1 Bethesda Nested tables
Keywords Homolog info

Integration Solution: Kleisli

- Nested relational data model

Buneman, Davidson, Hart, Overton, Wong, VLDB95 ${ }^{\circ}$
Wong, ICFP00

- Self-describing data exchange format
- Thin wrappers \& lots of them
- High-level query languages Powerful query optimizer
- Open "database" connectivity \& API
- Nested relational data store

Self-Describing Data Exchange Format

- Logical \& lexical layers are important aspects
- "Print" \& "parse" to move between layers
- "Transmit" to move between systems
- Clear separation \Rightarrow generic parsers \& "printers"

GenPept: E.g. of Poor Format

Kleisli's Data Exchange Format

logical layer	lexical layer	remarks
Booleans	True, false	
Numbers	$123,123.123$	Positive numbers
	$\sim 123, \sim 123,123$	Negative numbers
strings	"a string"	String is inside double quotes
records	$\left(\# l_{1}: \mathrm{v}_{1}, \ldots, \# l_{\mathrm{n}}: \mathrm{v}_{\mathrm{n}}\right)$	Record is inside round brackets
sets	$\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$	Set is inside curly brackets

- Lexical layer matches logical layer
- Mirrors nested relational data model
- Avoids impedance mismatch
- Easier to write wrappers

GenPept: In a Better Format

```
(#uid: 7490551,
    #title: "F-box domain protein Pof3p - fission yeast",
    #accession: "T41727",
    #common: "fission yeast.",
    #organism: (#genus: "Schizosaccharomyces",
        #species: "pombe",
        #lineage: ["Eukaryota", "Fungi", "Ascomycota", ...]),
    #feature: {(#name: "source", #start: 0, #end: 576,
        #anno: [(#anno_name: "organism",
                #descr: "Schizosaccharomyces pombe"),
                (#anno_name:"db_xref", #descr:"taxon:4896")]),
        (#name: "Protein", #start: 0, #end: 576,
        #anno: [(#anno_name: "product",
                #descr: "F-box domain protein Pof3p")])},
    #sequence: "MNNYQVKAIKEKTQQYLSKRKFEDALTFITKTIEQEPNPTID...")
```

- Boundaries of different nested structures are explicit
- Logical vs. lexical layers no longer mixed up
- Specialized parser no longer needed

Data Integration Results

- Using Kleisli:
- Clear
- Succinct
- Efficient
- Handles
- heterogeneity
- complexity
sybase-add (\#name:"GDB", ...);
create view L from locus_cyto_location using GDB; create view \mathbf{E} from object_genbank_eref using GDB; select
\#accn: g.\#genbank_ref, \#nonhuman-homologs: H from \mathbf{L} as \mathbf{c}, \mathbf{E} as \mathbf{g}, \{select u
from g.\#genbank_ref.na-get-homolog-summary as u where not(u.\#title string-islike "\%Human\%") \& not(u.\#title string-islike "\%H.sapien\%")\} as H
where
c.\#chrom_num = "22" \&
g.\#object_id = c.\#locus_id \&
not ($\mathrm{H}=\{$ \});

Optimising Disease Treatments

Image credit: Yeoh et al, 2002

Childhood ALL

- Major subtypes: T-ALL, E2A-PBX, TEL-AML, BCRABL, MLL genome rearrangements, Hyperdiploid>50,
- Diff subtypes respond differently to same Tx
- Over-intensive Tx
- Development of secondary cancers
- Reduction of IQ
- Under-intensiveTx
- Relapse
- The subtypes look similar

- Conventional diagnosis
- Immunophenotyping
- Cytogenetics
- Molecular diagnostics
- Unavailable in most ASEAN countries

Single-Test Platform of Microarray \& Knowledge Discovery

Image credit: Affymetrix

Signal Selection Basic Idea

- Choose a signal wl low intra-class distance
- Choose a signal w/ high inter-class distance
\Rightarrow An invariant of a disease subtype!

Class 1 Class 2

Class $1 \quad$ Class 2

Class 1 Class 2

Multidimensional Scaling Plot for ALL Subtype Diagnosis

Gene Expression Profiles for ALL Subtype Diagnosis

Diagnostic ALL BM samples ($\mathrm{n}=327$)

Impact

Childhood ALL in ASEAN Countries ${ }_{\text {a }}=$ (2000 new cases per year)

Conventional Tx:

- intermediate intensity to all

$\Rightarrow 10 \%$ suffers relapse
$\Rightarrow 50 \%$ suffers side effects
\Rightarrow costs US\$150m/yr

Our optimized Tx:

- high intensity to 10\%
- intermediate intensity to 40\%
- low intensity to 50\%
- costs US\$100m/yr

Recognizing DNA Feature Sites

A Sample cDNA

299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGCAGCCTGCAGCTGCCCCAAGCCATGGCTGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATGGCTTTTGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGATGAGAAGAGGGAGATGGCCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
ССТСТССТGGССАGGAGСТТССТССАGGACAAGACCTTССАСССААСААGGAСТССССТ
 80
iEEEEEEEEEEEEEEEEEEEEEEEEEEE 160
EEE 240
EEE

- What makes the second ATG the TIS?

Approach

- Training data gathering
- Signal generation
- k-grams, distance, domain know-how, ...
- Signal selection
- Entropy, $\chi 2$, CFS, t-test, domain know-how...
- Signal integration
- SVM, ANN, PCL, CART, C4.5, kNN, ...

mRNA \rightarrow protein

RNA
Ribonucleic acid

First	U	C	A	G	Last
U	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Stop (Ochre)	Stop (Umber)	A
	Leu	Ser	Stop (Amber)	$\operatorname{Trp} \quad W$	G
C	Leu	Pro D	His -	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
A	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met M	Thr	Lys	Arg	G
G	Val V	Ala \triangle	Asp D	Gly G	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu E	Gly	A
	Val	Ala	Glu	Gly	G

Amino-Acid Features

cDNA sequence

Amino Acid K-grams Discovered By Entropy

Validation Results on Chr X and Chr 21

- Using top 100 features selected by entropy and trained on Pedersen \& Nielsen's

Discovering Reliable Patterns

Discovering Invariants

- Conservative extension property
- Bounded degree property
- Logical layer of selfdescribing exchange formats
- Diagnosis patterns of ALL subtypes
- Signals for protein translation initiation
- Next Goal: Improve capability of machines to discover useful invariants

Identified using existing machine learning methods

Marrying Statisticians and Data Miners

- Statisticians use a battery of "interestingness" measures to decide if a feature/factor is relevant
- Examples:
- Odds ratio
- Relative risk
- Gini index
- Yule's Q \& Y
- etc

Going Beyond Frequent Paterns men Experimenting With Tipping Events

- "Tipping event" is two or more population cohorts that are significantly different from each other
- "Tipping factors" (TF) are small patterns whose presence or absence causes significant difference in population cohorts
- "Tipping base" (TB) is the pattern shared by the cohorts in a tipping event
- "Tipping point" (TP) is the combination of TB and a TF

Acknowledgements

- Understanding query languages
- Peter Buneman, Val Tannen, Leonid Libkin, Dan Suciu, Guozhu Dong
- Engineering data integration systems
- Chris Overton, Susan Davidson, Kyle Hart, Jing Chen, Hao Han
- Optimising disease treatments
- Huiqing Liu, Jinyan Li, Allen Yeoh
- Recognizing DNA feature sites
- Huiqing Liu, Fanfan Zeng, Roland Yap, Hao Han, Vlad Bajic
- Discovering reliable patterns
- Jinyan Li, Haiquan Li, Mengling Feng, Guozhu Dong, Pei Jian

