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Background
Protein-protein interactions play a critical role in most 
cellular processes and form the basis of biological 
mechanisms.

High-throughput experimental techniques enable the study 
of protein-protein interactions at the proteome scale.

However, high-throughput protein interaction data are often 
associated with high false positive and false negative rates

limitations of the associated experimental techniques
dynamic nature of protein interaction maps
…
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Computational methods
A weight is assigned to each interaction such that the higher 
the weight is, the more likely the interaction is true
Various Information have been used

3D protein structures
co-evolution
co-localization
gene fusion
literature
network topology
protein domains/motifs
…
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Methods based on network topology
Represents PPI networks as undirected graphs, where vertices are proteins, and edges 
represent interactions between proteins. 
IG1 [Saito et al. 2002]

The first one on evaluating the reliability of PPIs using solely PPI network topology
Mainly for PPI data generated by yeast-two-hybrid experiments
Based on the number of non-mutually interacting partners  

IG2 [Saito et al. 2002]
Uses 5 local network motifs
Performs better than IG1

IRAP [Chen et al. 2005]
the collective reliability of the strongest alternative path between two proteins
Expensive to compute

CD-distance [Brun et al. 2003] and FSWeight [Chua et al. 2006]
Based on the number of common neighbors of two proteins
Easy to compute 
Outperforms the previous three methods on large PPI networks [Chen et al. 2006]
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CD-distance
Given a pair of proteins (u, v) in a PPI network G=(V, E)

Nu: the set of neighbors of u in G
Nv: the set of neighbors of  v in G

CD (u,v) = 

Consider relative interaction size, not absolute interaction 
size

Case 1: |Nu| = 1, |Nu |= 1, |Nu∩Nv|=1, CD(u,v)=1

Case 2:  |Nu| = 10, |Nu |= 10, |Nu∩Nv|=10, CD(u,v)=1

||||
||2

vu

vu

NN
NN

+
∩

6



FSWeight
Try to overcome the weaknesses of CD-distance

FS(u,v) =

Where  λu and λv are used to penalize those proteins with very 
few neighbors

λu = max{0,                       },  λv = max{0,                        }
Suppose the average degree is 4, then

Case 1: |Nu| = 1, |Nu |= 1, |Nu∩Nv|=1, FS(u,v)=4/25=0.16

Case 2:  |Nu| = 10, |Nu |= 10, |Nu∩Nv|=10, FS(u,v)=1
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Differences between CD-distance and 
FSWeight

Two differences between CD-distance and FSWeight
FSWeight penalizes those proteins with few neighbors
FSWeight assigns separate weight for each protein, and then 
takes the product of the two weights

We consider another weighting method, which only penalize 
proteins with few neighbors

AdjustCD(u,v) =

Suppose the average degree is 4, then
Case 1: |Nu| = 1, |Nu |= 1, |Nu∩Nv|=1, AdjustCD(u,v)=2/8=0.25

Case 2:  |Nu| = 10, |Nu |= 10, |Nu∩Nv|=10, AdjustCD(u,v)=1 
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The iterative weighting approach
Basic idea

The weight of an interaction reflects its reliability, so can we
get better results if we use this weight to re-calculate the score 
of other interactions? 

Iterate CD-distance

wk (u,v) =

w0(u,v) = 1 if (u,v)∈G, otherwise w0(u,v)=0

w1 (u,v) =                                           = CD(u,v)
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Iterate AdjustCD

wk (u,v) =

λk
u = max{0,                                                    }  

λk
v = max{0,                                                  }

w0(u,v) = 1 if (u,v)∈G, otherwise w0(u,v)=0

w1 (u,v) =                                           =AdjustCD(u,v)
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Experiments
PPI dataset: DIP yeast (dated 07-Oct-2007)

4932 proteins and 17491 interactions
Core dataset: 6459 interactions

Evaluation methods:
Functional homogeneity

Use Gene Ontology (GO) annotations 

Localization coherence
use Gene Ontology (GO) annotations

5-fold cross validation
DIP core dataset
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GO annotations
Select only informative GO terms.

A GO term is informative if no less than 30 proteins are 
annotated with that term, and none of its descendant terms has 
at least 30 proteins

50 molecular function terms and 110 biological process 
terms

3251 proteins and 11229 interactions have functional 
annotations.

42 cellular component terms 
1615 proteins and 4246 interactions have cellular component 
annotations 
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Functional Homogeneity
Given a set of protein pairs, its functional homogeneity is 
defined as

Similarly,  localization coherence is defined as 
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sannotationfunction  have that pairsprotein #
annotationfunction  same sharing pairsprotein #

sannotationon localizati have that pairsprotein #
annotationon localizati same sharing pairsprotein #

Experiment 1: the effect of k
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CD-distance

Assessing the reliability of PPIs in DIP dataset
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The effect of k
CD-distance

Predicting new PPIs
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The effect of k
AdjustCD

Assessing the reliability of PPIs in DIP dataset
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The effect of k
AdjustCD

Predicting new PPIs

17

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000 5000

Fu
nc

tio
na

l h
om

og
en

ei
ty

#interactions

AdjustCD
k=1
k=2

k=10
k=50

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000

Lo
ca

liz
at

io
n 

co
he

re
nc

e

#interactions

AdjustCD
k=1
k=2

k=10
k=50

The effect of k
FSWeight

Assessing the reliability of PPIs in DIP dataset
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The effect of k
FSWeight

Predicting new PPIs
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Experiment 2: comparing different 
scoring methods

Assessing the reliability of PPIs in DIP dataset
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Comparing different scoring 
methods

Predicting new PPIs
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Experiment 3: 5-fold cross-
validation

Use the DIP core dataset as the golden standard

Divide the proteins in the DIP full yeast dataset into 5 
disjoint groups. 

For each group of proteins
Training data: remove the interactions between proteins in the 
group, and use the remaining interactions as training data
Testing data: all the protein pairs within this group
Correct answer PPIs: the pairs of proteins in the group that are 
in the core dataset
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5-fold cross-validation
Average number of proteins in 5 groups: 986

Average number of interactions in 5 training datasets: 16723

Average number of interactions in 5 testing datasets: 486591

Average number of correct answer interactions: 307

Measures:
sensitivity =TP/(TP + FN)
specificity =TN/(TN + FP)

#negatives >> #positives, specificity is always very high
>97.8% for all scoring methods

precision =TP/(TP + FP)
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5-fold cross-validation
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Roadmap
An iterative weighting approach to identifying false positives 
and false negatives from high-throughput interaction data

Background
Existing weighting methods
The iterative weighting approach
Experiments

Complex discovery from weighted PPI networks
Complex discovery method: maximal cliques
Experiments 

25

Protein complexes
Protein complexes are fundamental for understanding the 
organization of PPI networks

With more and more PPI data available, it is possible to 
predict protein complexes from PPI networks. 

However, PPI networks are often noisy and incomplete, 
which makes it difficult to predict complexes accurately

⇒Predicting complexes from cleaned and weighted PPI 
networks (Chua et al. 2008, JBCB)

Our objective:
Study whether the iterative weighting approach can improve 
the performance of complex prediction algorithms
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Predicting complexes using 
maximal cliques

Given a PPI network G, we first generate all the maximal 
cliques from G using the CLIQUES algorithm (Tomita et al. 
2006)

Calculate the score of each clique generated and rank cliques 
in descending order of their score

Score(C) = Σu,v∈Cw(u,v)/(|C|⋅(|C|-1)/2)

Remove and merge highly overlapped cliques
Given two cliques C1,C2 and score(C1)≥score(C2), if 
|C1∩C2|/|C2| ≥ overlap_thres

Case 1: InterConnect(C1,C2) ≥merge_thres, then merge C1 and C2

Case 2: InterConnect(C1,C2) <merge_thres, then remove C2
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Inter-connectivity score
The inter-connectivity score of C1 and C2 measures the 
connectivity between the non-overlapping part of C1 and C2

InterConnec (C1,C2) = 

where w(x,y) is the weight of the edge between x and y
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Experiments
PPI  dataset: union of six datasets

Gavin et al. 2002
Gavin et al. 2006
Ho et al. 2002
Krogan et al. 2006
Ito et al. 2001
Uetz et al. 2000

#proteins: 4673

#interactions: 20461

#interactions with common neighbors: 11487

We select the top 6000 interactions 
29

Reference complex sets
Reference complex set (consider only size≥4)

MIPS  (dated 18-May-2006)
Aloy

P.  Aloy, B. Bottcher, H. Ceulemans, C. Leutwein, C. Mellwig, S. 
Fischer, A.-C. Gavin, P. Bork, G. Superti-Furga, L. Serrano, and R. B. 
Russell. Structure-based assembly of protein complexes in yeast.  Science, 
303(5666): 2026–2029, 2004.
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#cmplxes #proteins max 
size

avg
size

median 
size

avg
density

median
density

MIPS 162 1171 95 14.93 9 0.408 0.318

Aloy 63 544 34 9.22 7 0.747 0.833



Recall & precision at complex level
Given a true complex C and a predicted complex S

score(S, C)=|S∩C|/|S∪C| (Jaccard index)
If score(S, C)≥ match_thres, then we say S matches C

Given a set of complexes {C1, C2, … , Cn} and a set 
predicted complexes {S1, S2, … , Sm}, recall and precision 
at complex level are defined as

RecallCmplx = 

Precisioncmplx = 

31

n
CSSC ijji } matches |{ ,∃

m
CCS jiij }S matches |{ ,∃

Recall & precision at protein level
Given a set of complexes {C1, C2, … , Cn} and a set 
predicted complexes {S1, S2, … , Sm}, recall and precision 
at protein level are defined as

Recallprtn=

Precisionprtn =
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Localization coherence
Complexes can be formed only if its proteins have the same 
location in the cell

Let {L1,L2, · · · ,Lk} be a set of localization groups, where 
each location group contains proteins at the same location. 

The co-localization score of a complex C is defined as the 
maximal fraction of proteins in C that are in the same location.
The co-localization score of a set of complexes {C1, C2, … , 
Cn} is defined as

loc_score({C1, C2, … , Cn}) =

Use informative localization GO terms33
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Experiment 1: the effect of 
overlap_thres and merge_thres

AdjustCD k=1

Recall & precision at complex level: match_thres=0.33
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The effect of overlap_thres and 
merge_thres

AdjustCD k=1

Recall & precision at protein level
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The effect of overlap_thres and 
merge_thres

AdjustCD k=1

Localization coherence
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The effect of overlap_thres and 
merge_thres

AdjustCD k=2

Recall & precision at complex level: match_thres=0.33
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The effect of overlap_thres and 
merge_thres

AdjustCD k=2

Recall & precision at protein level
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The effect of overlap_thres and 
merge_thres

AdjustCD k=2

Localization coherence
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Experiment 2: comparing different 
PPI weighting methods

All maximal cliques (without removing and merging 
overlapped cliques)

Recall & precision at complex level: match_thres=0.33
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Comparing different PPI weighting 
methods

All maximal cliques (no removing and merging overlapped 
cliques)

Recall & precision at complex level: match_thres=0.50
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Comparing different PPI weighting 
methods

All maximal cliques (no removing and merging overlapped 
cliques)

Recall & precision at protein level
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Comparing different PPI weighting 
methods

overlap_thres=0.50,  merge_thres=0.25

Recall & precision at complex level: match_thres=0.33
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Comparing different PPI weighting 
methods

overlap_thres=0.50,  merge_thres=0.25

Recall & precision at complex level: match_thres=0.50
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Comparing different PPI weighting 
methods

overlap_thres=0.50,  merge_thres=0.25

Recall & precision at protein level
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Experiment 3: Robustness
AdjustCD

overlap_thres=0.50,  merge_thres=0.25

Random removal of interactions

Reference complex set: Aloy

Recall & precision at complex level: match_thres=0.33
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Robustness: random removal
AdjustCD

overlap_thres=0.50,  merge_thres=0.25

Reference complex set: Aloy

Recall & precision at protein level
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Robustness: random addition
AdjustCD

overlap_thres=0.50,  merge_thres=0.25

Reference complex set: Aloy

Recall & precision at complex level: match_thres=0.33
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Robustness: random addition
AdjustCD

overlap_thres=0.50,  merge_thres=0.25

Reference complex set: Aloy

Recall & precision at protein level
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Experiment 4: Impact of PPI 
weighting methods on MCL

MCL (Stijn van Dongen, 2000)
Flow simulation
Do not allow overlap among clusters
Parameter setting: 

Inflation: 1.8
Other parameters: default
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Impact of PPI weighting methods to 
MCL

Top 6000 interactions

Recall & precision at complex level: match_thres=0.33
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Impact of PPI weighting methods to 
MCL

Recall & precision at protein level
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Impact of PPI weighting methods to 
MCL

Localization coherence
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Experiment 5: comparing different 
clustering methods

Recall & precision at complex level: match_thres=0.33
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Comparing different clustering 
methods

Recall & precision at complex level: match_thres=0.50
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Comparing different clustering 
methods

Recall & precision at protein level
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Comparing different clustering 
methods

Localization coherence
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Summary and Conclusion
Assessing the reliability of PPIs

CD-distance, FSWeight, and AdjustCD show similar 
performance
The iterative approach can improve the performance slightly

Predicting new interactions
FSWeight and AdjustCD perform much better than CD-
distance
The iterative approach can improve the performance 
significantly
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Summary and Conclusion
Complex discovery

Dense complexes are easier to detect than sparse complexes
For the maximal clique based algorithm, the iterative approach 
improves the performance considerably
For the MCL algorithm, the iterative approach has no obvious 
improvement
The iterative approach is more robust to random noise

59

References
1. P.  Aloy, B. Bottcher, H. Ceulemans, C. Leutwein, C. Mellwig, S. Fischer, A.-C. Gavin, P. Bork, 

G. Superti-Furga, L. Serrano, and R. B. Russell. Structure-based assembly of protein complexes in yeast.
Science, 303(5666):2026–2029, 2004.

2. Brun C, Chevenet F, Martin D, Wojcik J, Guenoche A, and Jacq B, Functional classification of 
proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biology, 
5(1):R6, 2003.

3. Chen J, Hsu W, Lee ML, and Ng SK, Discovering reliable protein interactions from high-throughput 
experimental data using network topology. Artificial Intelligence in Medicine, 35(1-2):37–47, 2005.

4. Chen J, Chua HN, Hsu W, Lee ML, Ng SK, Saito R, SungWK, andWong L, Increasing confidence of 
protein-protein inteactomes.  In Proc. of 17th International Conference on Genome Informatics, pp. 
284–297, 2006.

5. Chua HN., Sung WK., and Wong L., Exploiting indirect neighbours and topological weight to predict
protein function from protein-protein interactions. Bioinformatics, 22(13):1623-30, 2006.

6. Chua HN, Ning K, Sung WK, Leong HW, Wong L. Using indirect protein-protein interactions for 
protein complex predication. Journal of Bioinformatics and Computational Biology, 6(3):435--466, 
June 2008.

60



7. Stijn van Dongen, Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht, May 
2000.

8. A.-C. Gavin, P. Aloy, P. Grandi, R. Krause,M. Boesche,M.Marzioch, C. Rau, L. J. Jensen, S. 
Bastuck, B. Dumpelfeld, and et al. Proteome survey reveals modularity of the yeast cell machinery. 
Nature, 440:631–636, 2006.

9. A.-C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, 
A.-M. Michon, C.-M. Cruciat, and et al. Functional organization of the yeast proteome by systematic 
analysis of protein complexes. Nature, 415:141–147, 2002.

10. Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore, S.-L. Adams, A. Millar, P. Taylor, K. 
Bennett, K. Boutilier, and et al. Systematic identification of protein complexes in saccharomyces cerevisiae 
by mass spectrometry. Nature, 415:180–183, 2002.

11. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid 
analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of 
the United States of America, 98(8):4569–4574, 2001.

12. N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. 
Tikuisis, and et al.. Nature, 440:637–643, 2006. Global landscape of protein complexes in the yeast 
saccharomyces cerevisiae

61

13. Saito R, Suzuki H, and Hayashizaki Y, Interaction generality, a measurement to assess the reliability of a 
protein-protein interaction. Nucleic Acids Research, 30(5):1163–1168, 2002.

14. Saito R, Suzuki H, and Hayashizaki Y, Construction of reliable protein-protein interaction networks with a 
new interaction generality measure. Bioinformatics, 19(6):756–763, 2002.

15. E. Tomita, A  Tanaka, H Takahashi.  The worst-case time complexity for generating all maximal cliques 
and computational experiments. Theoretical Computer Science 363(1) (2006) 28–42

16. P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. 
Narayan, M. Srinivasan, P. Pochart, and et al. A comprehensive analysis of proteincprotein interactions in 
saccharomyces cerevisiae. Nature, 403:623–627, 1999.

62



Q&A

Thank you for your attention ☺
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Rank difference and score 
difference

Given an interaction (u,v), the rank difference of (u,v) at     
k-th iteration is 

rank_diff k(u,v) = |rankk(u,v)-rankk-1(u,v)|

Given a set of interactions E, the average ranking difference 
of all the interactions in E at k-th iteration is defined as

avg_rank_diff k(E) = 

Similarly, we can define average score difference of all the 
interactions in E at k-th iteration

avg_score_diff k(E) = 
64
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Results on the DIP dataset
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