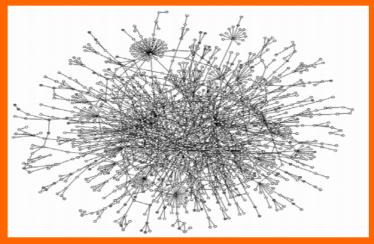
Increasing Confidence of Protein-Protein Interactomes

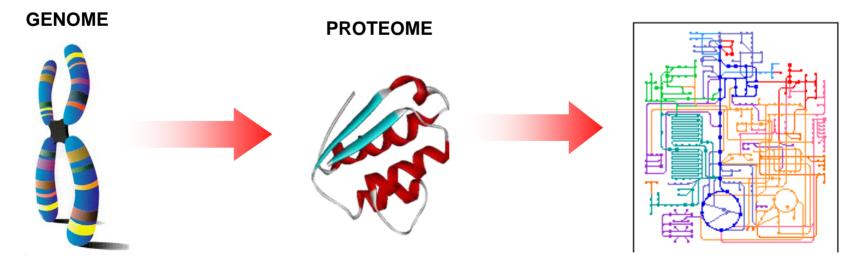
Limsoon Wong (Based on work of/with Jin Chen, Kenny Chua, Wynne Hsu, Mong Li Lee, See-Kiong Ng, Rintaro Saito, Wing-Kin Sung)

Outline

- Reliability of experimental protein-protein interaction data
- Identification of false positives
 - Interaction generality
 - Interaction generality 2
 - Interaction pathway reliability
 - FS Weight
 - Meso-scale network motifs
- Identification of false negatives

How Reliable are Experimental Protein-Protein Interaction Data?




Figure credit: Jeong et al. 2001

Why Protein Interactions?

- Complete genomes are now available
- Knowing the genes is not enough to understand how biology functions
- **Proteins**, not genes, are responsible for many cellular activities
- Proteins function by interacting w/ other proteins and biomolecules

"INTERACTOME"

Slide credit: See-Kiong Ng

Keynote at GIW2006, Yokohama

Copyright 2006 © Limsoon Wong

High-Tech Expt PPI Detection Methods

- Yeast two-hybrid assays
- Mass spec of purified complexes (e.g., TAP)
- Correlated mRNA expression
- Genetic interactions (e.g., synthetic lethality)

FACT: Generating <u>large amounts of</u> <u>experimental data</u> about protein-protein interactions can be done with ease.

Slide credit: See-Kiong Ng

Key Bottleneck

- Many high-throughput expt detection methods for protein-protein interactions have been devised
- But ...

Slide credit: See-Kiong Ng

Some Protein Interaction Data Set Singapore

Sprinzak et al., *JMB*, 327:919-923, 2003

Experimental method category*	Number of interacting pairs	Co-localization ^b (%)	Co-cellular-role ^b (%)
All: All methods	9347	64	49
A: Small scale Y2H	1861	73	62
A0: GY2H Uetz et al. (published results)	956	66	45
A1: GY2H Uetz et al. (unpublished results)	516	53	33
A2: GY2H Ito et al. (core)	798	64	40
A3: GY2H Ito et al. (all)	3655	41	15
B: Physical methods	71	98	95
C: Genetic methods	1052	77	75
D1: Biochemical, in vitro	614	87	79
D2: Biochemical, chromatography	648	93	88
E1: Immunological, direct	1025	90	90
E2: Immunological, indirect	34	100	93
2M: Two different methods	2360	87	85
3M: Three different methods	1212	92	94
4M: Four different methods	570	95	93

Large disagreement betw methods

- GY2H: genome-scale Y2H
- 2M, 3M, 4M: intersection of 2, 3, 4 methods

Quantitative EstimatesSprinzak et al, JMB, 327:919-923, 2003Expected proportion of co-localized
pairs among true interacting pairsLetD = TP * I + (1 - TP) * R

where

- D = fraction of pairs with co-localized pair mates in data set studied
- R = fraction of pairs with co-localised pair mates in random data set
- I = fraction of pairs with co-localised pair mates in true interacting pairs
- TP = fraction of true interacting pairs in data set studied


Then

$$TP = \frac{D-R}{I-R}$$

Ditto wrt co-cellular-role

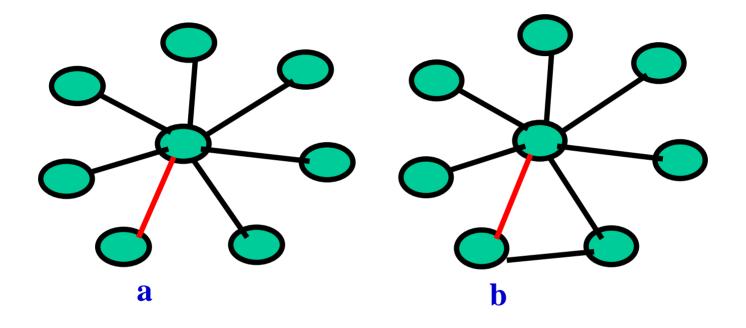
Reliability of Protein Interaction D

Sprinzak et al, JMB, 327:919-923, 2003

Are We There Yet?

	Coverage	Data quality
DNA genome sequence	99% of genome sequence	99.9% correct
mRNA profiling	80-90% of transcripts represented	90% of spots are good data
Protein interaction data	<u>10-30%</u> of interactions catalogued	50-70% of interactions are spurious

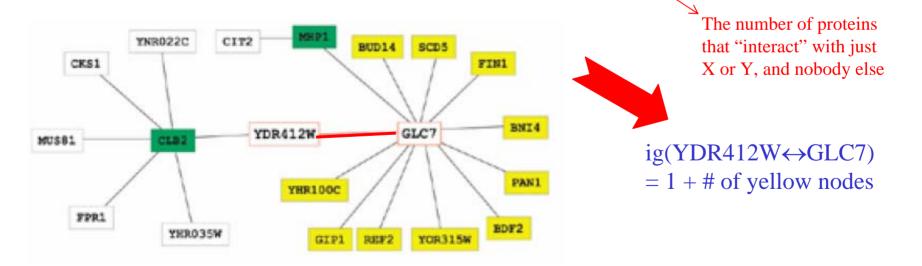
Slide credit: See-Kiong Ng


- Some high-throughput protein interaction expts have as much as 50% false positives
- Can we find a way to rank candidate interaction pairs according to their reliability?
- How do we do this?
 - Would knowing their neighbours help?
 - Would knowing their local topology help?
 - Would knowing their global topology help?

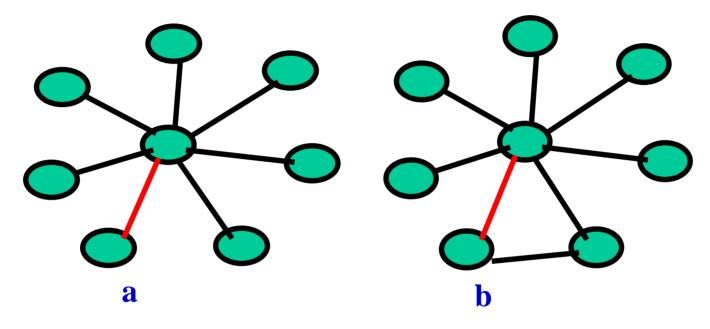
Would knowing their neighbours help? The story of interaction generality

An Observation

- It seems that configuration a is less likely than b in protein interaction networks
- Can we exploit this?


Interaction Generality Saito et al., *NAR*, 30:1163-1168, 2002

Given an edge $X \leftrightarrow Y$ connecting two proteins, X and Y, the "interaction generality" measure $ig^{\mathcal{G}}(X \leftrightarrow Y)$ of this edge as defined as

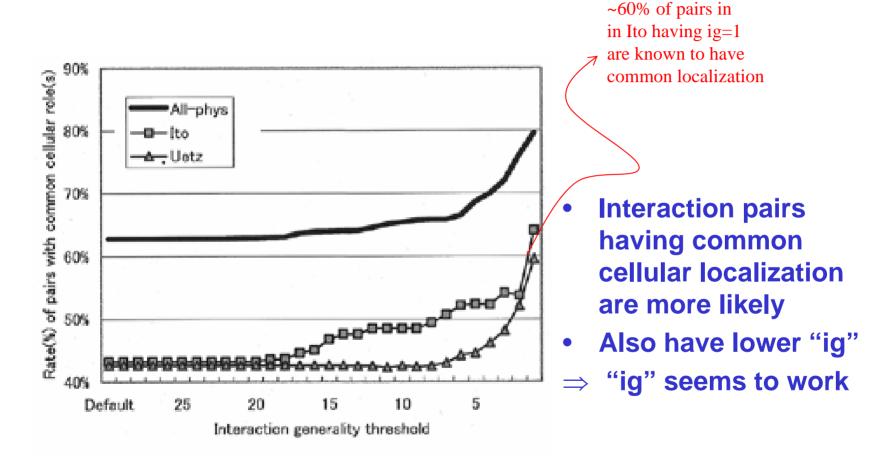

$$ig^{\mathcal{G}}(X \leftrightarrow Y) = 1 + |\{X' \leftrightarrow Y' \in \mathcal{G} \mid X' \in \{X,Y\}, \ deg^{\mathcal{G}}(Y') = 1\}|$$

where $deg^{\mathcal{G}}(U) = |\{V | U \leftrightarrow V \in \mathcal{G}\}|$ is the degree of the node U in the undirected graph \mathcal{G} .

Assessing Reliability Using Interaction Generality

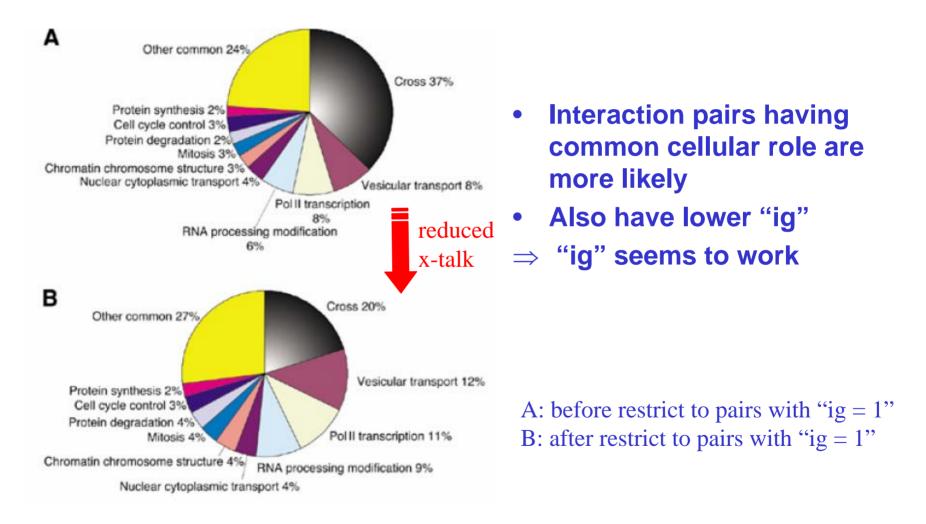
- Recall configuration a is less likely than b in protein interaction networks
- The smaller the "ig" value of a candidate interaction pair is, the more likely that interaction is

Evaluation wrt Intersection of Ito et al. & Uetz et al.


	-							
LG.	lto ol.	ovlap			Uetz ol.	ovlap		
1	229	66	34%	50%	236	58	29%	44
2	137	34	54%	75%	226	37	57%	719
3	57	16	63%	87%	113	16	71%	83
4	43	6	69%	92%	66	6	79%	88
5	24	4	73%	95%	38	5	83%	92
6	16	1	75%	95%	37	2	88%	93
7	27	0	79%	95%	20	3	90%	95
8	23	1	83%	96%	16	2	92%	97
9	9	1	84%	97%	4	0	93%	97
10	2	0	84%	97%	44	0	98%	97
11	0	0	84%	97%	9	2	99%	98
12	1	0	84%	97%	4	0	100%	98
13	13	0	86%	97%	0	1	100%	99
14		0	89%	97%	1	1	100%	100
15	16	0	91%	97%	0	0	100%	100
16	30	3	95%	99%	1	0	100%	100
17			96%	100%	0	0	100%	100
18	20	0	99%	100%	0	0	100%	100
19	2	0	100%	100%	0	0	100%	100
20	3	0	100%	100%	0	0	100%	100
21	0		100%	100%	0	0	100%	100
22	0	0	100%	100%	0	0	100%	100
23	0	0	100%	100%	0	0	100%	100
24	0	0	100%	100%	0	0	100%	100
25	0	0	100%	100%	0	0	100%	100
26-	0	0	100%	100%	0	0	100%	100
Total	673	133			815	133		

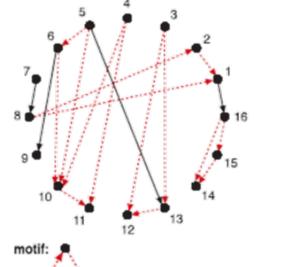
There are 229 pairs
in Ito having ig = 1.
Of these, 66 (or 34%) are also reported by Uetz

- Interacting pairs c'mon to Ito et al. & Uetz et al. are more reliable
- Also have smaller "ig"
- \Rightarrow "ig" seems to work



Evaluation wrt Co-localization

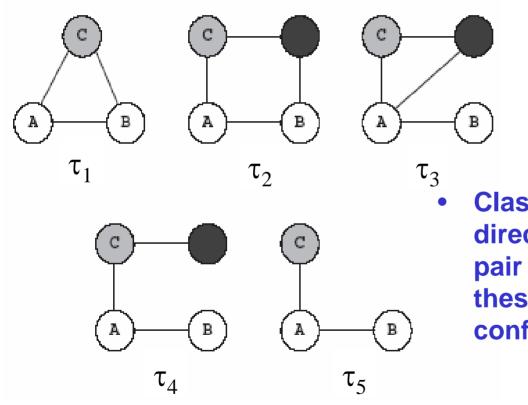
Evaluation wrt Co-cellular Role


Would knowing their local topology help? The story of interaction generality 2

Existence of Network Motifs

Milo et al., Science, 298:824-827, 2002

- A network motif is just a local topological configuration of the network
- "Detected" in gene regulation networks, WWW links, etc.


N	etwork	Nodes	Edges	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score	N _{real}	$N_{\text{rand}} \pm \text{SD}$	Z score
	ene regulatio anscription)				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X Z	Y W	Bi-fan
<i>E. a</i>	coli	424	519	40	7 ± 3	10	203	47 ± 12	13
S. c	cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41

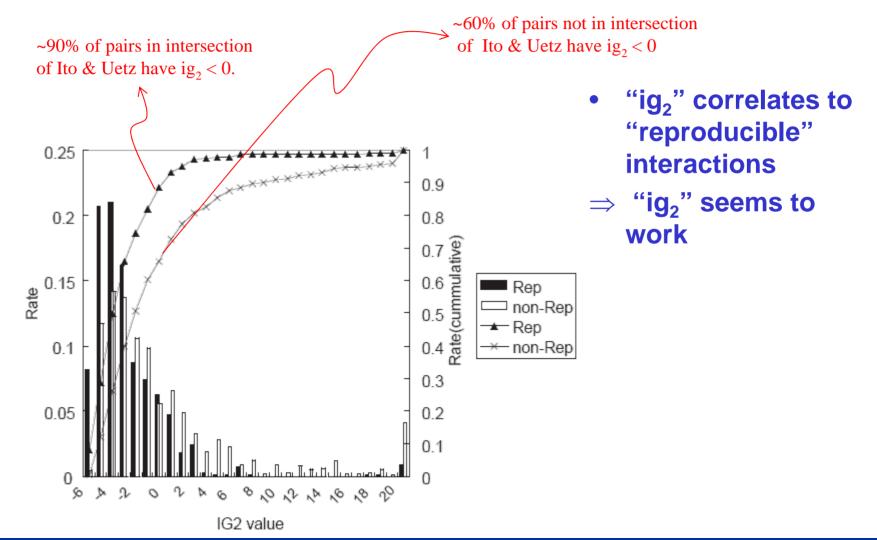
Keynote at GIW2006, Yokohama

Copyright 2006 © Limsoon Wong

5 Possible Network Motifs

Classify a protein C that directly interacts with the pair A↔B according to these 5 topological configurations

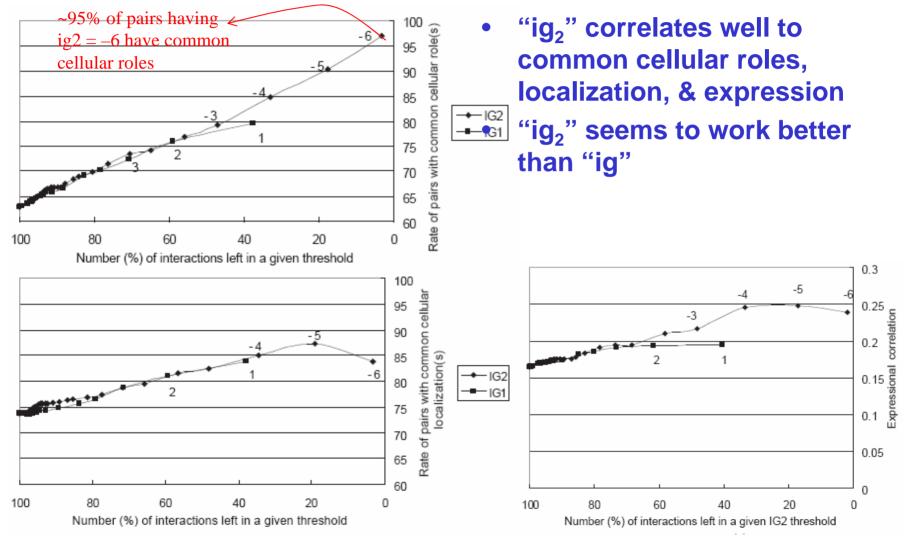
A New Interaction Generality Saito et al., *Bioinformatics*, 19:756--763, 2003


The improved interaction generality measure $ig_2^{\mathcal{G}}(X \leftrightarrow Y)$ is defined as a weighted sum of the 5 local topological configurations $\tau_1, ..., \tau_5$ as

$$ig_2^{\mathcal{G}}(X \leftrightarrow Y) = \sum_{i=1}^5 \lambda_i * |\{X' \mid X' \leftrightarrow Y' \in \mathcal{G}, \ Y' \in \{X,Y\}, \ \tau_i^{\mathcal{G}}(X',X \leftrightarrow Y)\}|$$

where λ_i is the weight for configuration τ_i , and $\tau_i^{\mathcal{G}}(X', X \leftrightarrow Y)$ means X' is in configuration τ_i in graph \mathcal{G} wrt $X \leftrightarrow Y$.

Evaluation wrt Reproducible Interactions



Keynote at GIW2006, Yokohama

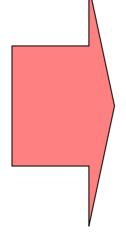
Copyright 2006 © Limsoon Wong

Evaluation wrt Common Cellular Role, etc.

Copyright 2006 © Limsoon Wong

Would knowing their global topology help? The story of interaction pathway reliability

Some "Reasonable" Speculations


- A true interacting pair is often connected by at least one alternative path (reason: a biological function is performed by a highly interconnected network of interactions)
- The shorter the alternative path, the more likely the interaction (reason: evolution of life is through "add-on" interactions of other or newer folds onto existing ones)

Therefore...

Conjecture:

"An interaction that is associated with an alternate path of reliable interactions is likely to be reliable."

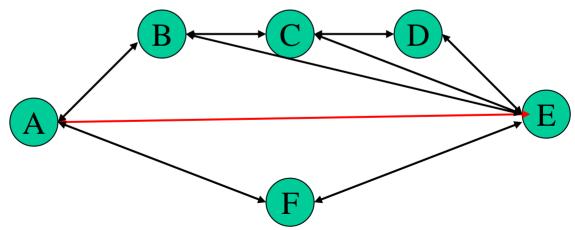
Idea: Use alternative interaction paths as a measure to indicate functional linkage between the two proteins

Slide credit: See-Kiong Ng

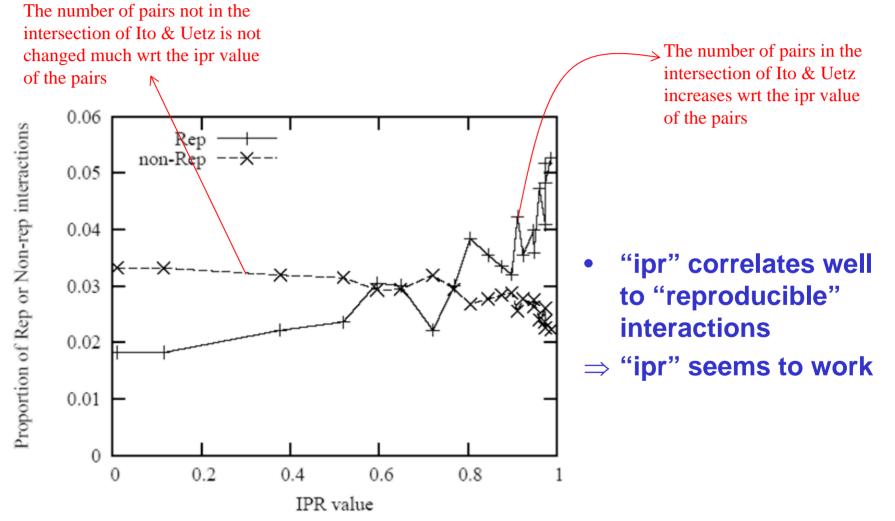
Interaction Pathway Reliability

The "interaction pathway reliability" measure $ipr^{\mathcal{G}}(X \leftrightarrow Y)$ is defined as

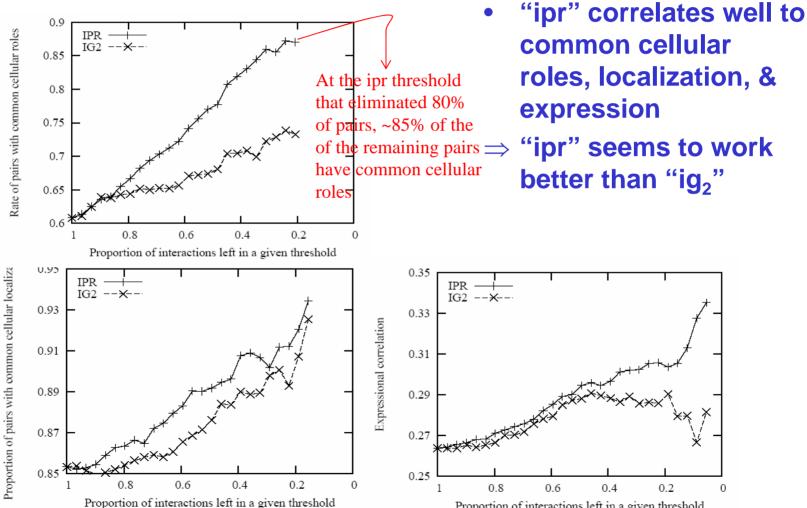
$$ipr^{\mathcal{G}}(X \leftrightarrow Y) = \max_{\phi \in \Phi^{\mathcal{G}}(X,Y)} \prod_{(U \leftrightarrow V) \in \phi} \left(1 - \frac{ig^{\mathcal{G}}(U \leftrightarrow V)}{ig_{\max}^{\mathcal{G}}}\right)$$


where $ig_{\max}^{\mathcal{G}} = \max\{ig^{\mathcal{G}}(X \leftrightarrow Y) \mid (X \leftrightarrow Y) \in \mathcal{G}\}\$ is the maximum interaction generality value in \mathcal{G} ; and $\Phi^{\mathcal{G}}(X, Y)$ is the set of all possible non-reducible paths between X and Y, but excluding the direct path $X \leftrightarrow Y$. Here, a path ϕ connecting X and Y is non-reducible if there is no shorter path ϕ' connecting X and Y that shares some common intermediate nodes with the path ϕ .

IPR is also called IRAP, "Interaction Reliability by Alternate Pathways"


Non-reducible Paths

- Non-reducible paths are
 - $A {\longleftrightarrow} F {\longleftrightarrow} E$
 - $A \leftrightarrow B \leftrightarrow E$
- Reducible paths are
 - $A {\longleftrightarrow} B {\longleftrightarrow} C {\longleftrightarrow} D {\longleftrightarrow} E$
 - $A {\longleftrightarrow} B {\longleftrightarrow} C {\longleftrightarrow} E$

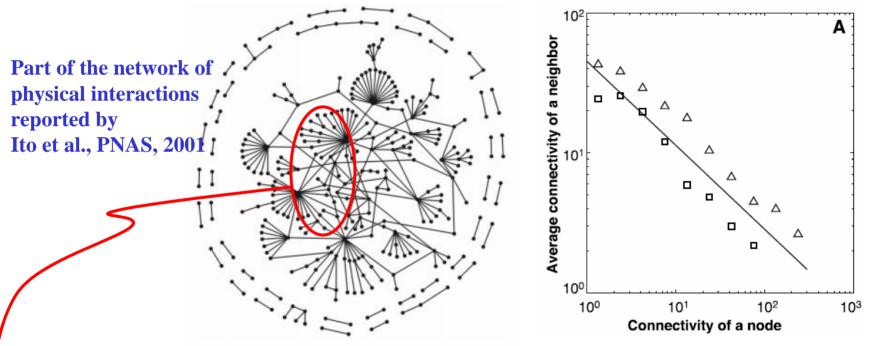


Evaluation wrt Reproducible Interactions

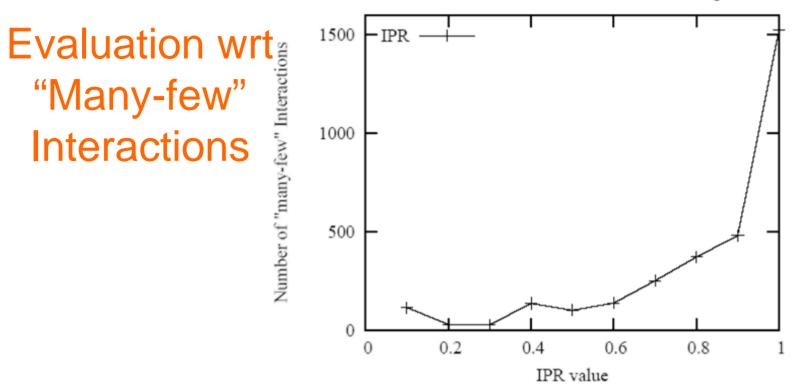
Evaluation wrt Common Cellular Role, etc

Proportion of interactions left in a given threshold

Keynote at GIW2006, Yokohama


Copyright 2006 © Limsoon Wong

of Singapore


Stability in Protein Networks

Maslov & Sneppen, Science, 296:910-913, 2002

- According to Maslov & Sneppen
 - Links betw high-connected proteins are suppressed
 - Links betw high- & low-connected proteins are favoured
- This decreases cross talks & increases robustness

- Number of "Many-few" interactions increases when more "reliable" IPR threshold is used to filter interactions
- Consistent with the Maslov-Sneppen prediction

Evaluation wrt "Cross-Talkers"

• A MIPS functional cat:

- |02 |ENERGY
- | 02.01 | glycolysis and gluconeogenesis
- | 02.01.01 | glycolysis methylglyoxal bypass
- | 02.01.03 | regulation of glycolysis & gluconeogenesis
- First 2 digits is top cat
- Other digits add more granularity to the cat
- ⇒ Compare high- & low- IPR pairs that are not colocalised to determine number of pairs that fall into same cat. If more high-IPR pairs are in same cat, then IPR works

Evaluation wrt "Cross-Talkers"

- For top cat
 - 148/257 high-IPR pairs are in same cat
 - 65/260 low-IPR pairs are in same cat
- For fine-granularity cat
 - 135/257 high-IPR pairs are in same cat.
 37/260 low-IPR pairs are in same cat
- \Rightarrow IPR works
- ⇒ IPR pairs that are not co-localized are real crosstalkers!

Example Cross Talkers

ProteinA	Cellular Localization	ProteinB	Cellular Localization	Functional Pathway
YDR299w	nucleolus-protein	$\rm YLR208w$	cytoplasm-release of	Vesicular transport
	transport		transport vesicles from ER	(Golgi network)
YOL018c	endosome, ER-	YMR117c	spindle pole body-	Cellular import
	syntaxin SNARE		spindle pole component	
YDL154w	nucleus-recombination	YBR133c	cytoplasm- neg.	Meiosis
			regulator of kinase	and budding
YGL192w	nucleus-put. Adenosine	$\rm YBR057c$	cytoplasm-meiosis	Development of
	methyltransferase		potentially in premeiosis	asco-basido
	for sporulation		DNA synth	-zygo spore
$\rm YDR299w$	nucleolous- protein	YPL085w	cytoplasm,ER-veiscle coat	both in vesicular
	transport		protein interacts cytoplasm,	transport
			with sec23p	
YEL013w	vacuole-phosphorylated	YFL039c	cytoskeleton-actin	Protein targeting
	protein which interacts with			and budding
	Atg13p for cyto to vacuole			
	targeting vacuole targeting			

 $_{1able 2}$

Examples of interactions with high IRAP values (≥ 0.95) between non-co-localized proteins ("cross-talkers") involved in the same cellular pathway

Can local topology do better? The story of FS Weight

Keynote at GIW2006, Yokohama

Guilt by Association of Common Interaction Partners

- Two proteins that have a large proportion of their interaction partners in common are likely to directly interact also
- In fact, this is a special case of the "alternative paths" used in the IPR index, because length-1 alternative paths = shared interaction partners

Czekanowski-Dice Distance

• Functional distance between two proteins (Brun et al, 2003)

$$D(u,v) = \frac{|N_u \Delta N_v|}{|N_u \cup N_v| + |N_u \cap N_v|}$$

- N_k is the set of interacting partners of k
- X \triangle Y is symmetric diff betw two sets X and Y
- Greater weight given to similarity

 \Rightarrow Similarity can be defined as

$$S(u,v) = 1 - D(u,v) = \frac{2X}{2X + (Y+Z)}$$

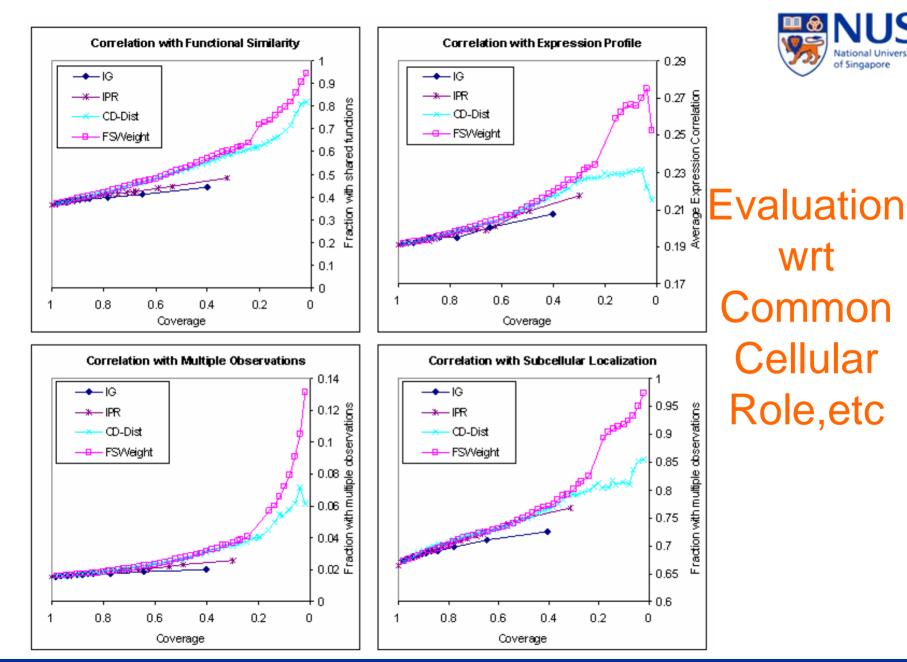
Is this a good

and v have very diff number of

measure if u

neighbours?

Functional Similarity Estimate: FS-Weighted Measure


FS-weighted measure

$$S(u,v) = \frac{2|N_u \cap N_v|}{|N_u - N_v| + 2|N_u \cap N_v|} \times \frac{2|N_u \cap N_v|}{|N_v - N_u| + 2|N_u \cap N_v|}$$

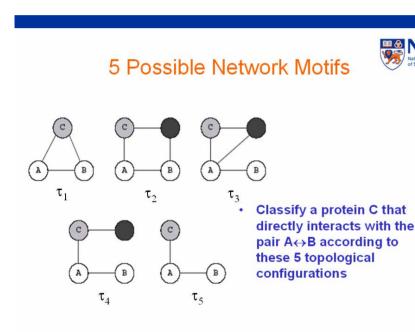
- N_k is the set of interacting partners of k
- Greater weight given to similarity

\Rightarrow Rewriting this as

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Keynote at GIW2006, Yokohama

Copyright 2006 © Limsoon Wong


Another way to improve using local topology information The story of meso-scale network motifs

Keynote at GIW2006, Yokohama

Motivation for "Meso Scale"

- These motifs are very local and very small
- Many processes in biological network are ``meso-scale'' (5-25 proteins)
- ⇒ May be we should also use meso-scale motifs?

Copyright 2006 © Lim

What is a network motif?

- A network motif g in a PPI network G is a connected unlabelled undirected topological pattern of inter-connections that is repeated and unique in G
- Repeated: f_g, the number of occurrences of g in G, is more than threshold F
- Unique: s_g, the number of times f_g exceeds f_{g,rand,i} over total number of randomized networks considered, is more than threshold S

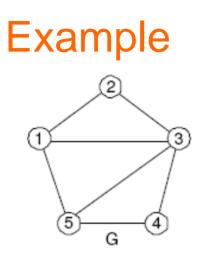


Figure 1: Example graph G.

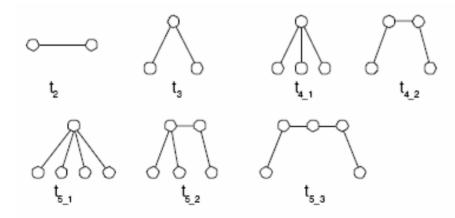
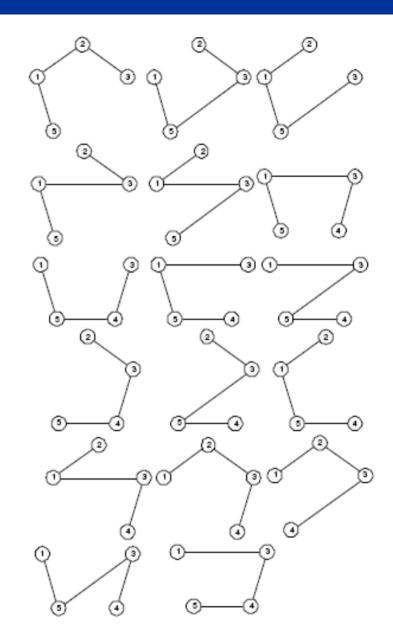
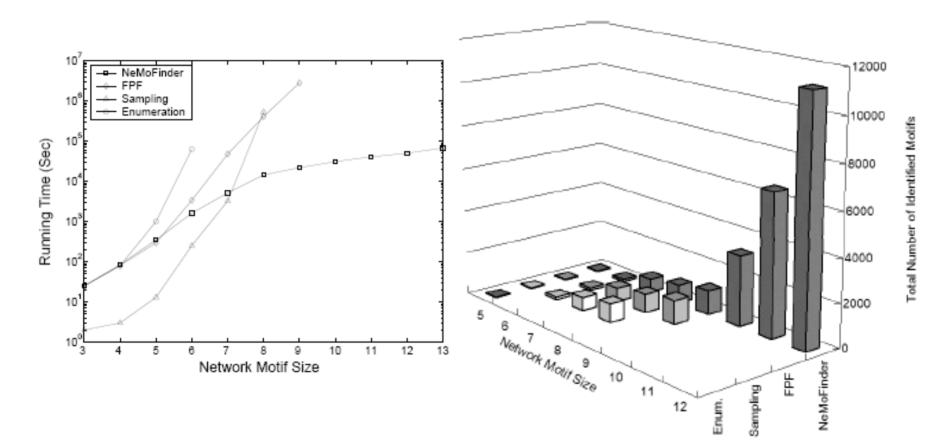


Figure 2: Size 2 to size 5 trees.




Figure 4: Occurrences of t_{4_2} in G.

Keynote at GIW2006, Yokohama

Copyright 2006 © Limsoon Wong

NeMoFinder: Discovery of Meso-Scale Motifs

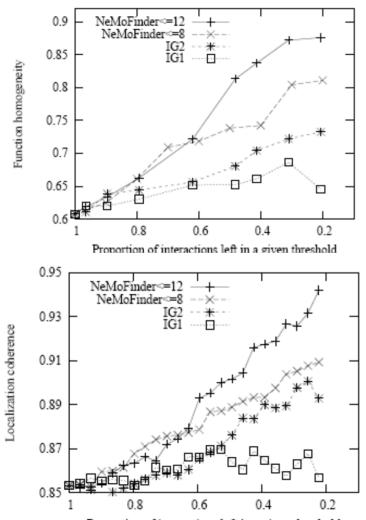
Keynote at GIW2006, Yokohama

Copyright 2006 © Limsoon Wong

Motif Strength and PPI Reliability

Strength of a size k motif g is

$$MS^{k}(g) = \frac{s_{g} \times f_{g}}{\max_{k}}$$

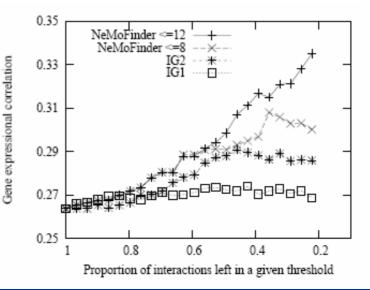

 Motif-strength PPI reliability index is an pair of possibly interacting protein X ↔Y is

$$I(X \leftrightarrow Y) = \sum_{k=2}^{K} \sum_{i=0}^{n} MS^{k}(g_{i}) \times k$$

where max_k is max value of $s_g x f_g$ over all size-k motifs

where g_i are motifs involving the edge $X \leftrightarrow Y$, and k is size of g_i

Evaluation wrt Common Cellular Role, etc



Proportion of interactions left in a given threshold

Keynote at GIW2006, Yokohama

• Motif-strength PPI reliability index correlates well to common cellular roles, localization, & expression

 \Rightarrow works as well as "ipr"

Copyright 2006 © Limsoon Wong

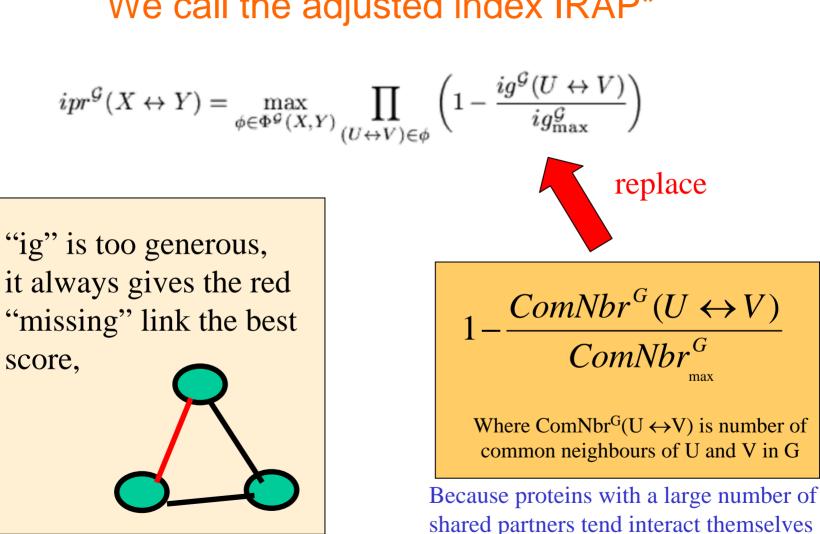
of Singapore

Some Observations

- Meso-scale motifs are more reliable than small local motifs (c.f. "ig₂")
- Similar performance to "ipr", but may have advantages if network is sparse (i.e., where few alternate paths are present)
- Btw, this is the first time size-12 network motifs are known to be extracted from yeast PPI network

How about discovering false negatives? The story of detecting missing information

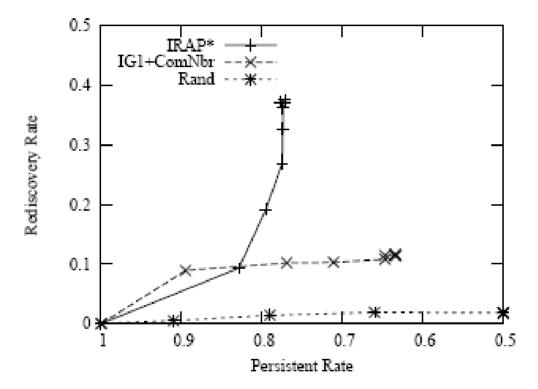
Keynote at GIW2006, Yokohama


False Negatives

• A "false negative" is a failure to detect a real protein-protein interaction

IPR Detects False Negatives

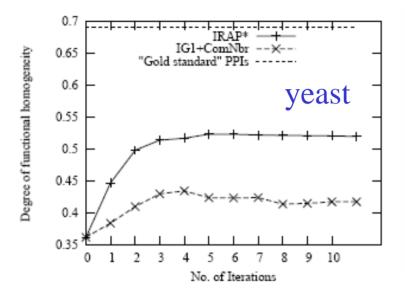
- To find out if there is a "missing" interaction between X and Y, we do:
 - compute ipr value of $X \leftrightarrow Y$ in $G \cup \{X \leftrightarrow Y\}$
 - predict if $X \leftrightarrow Y$ as false negative if "ipr" is high



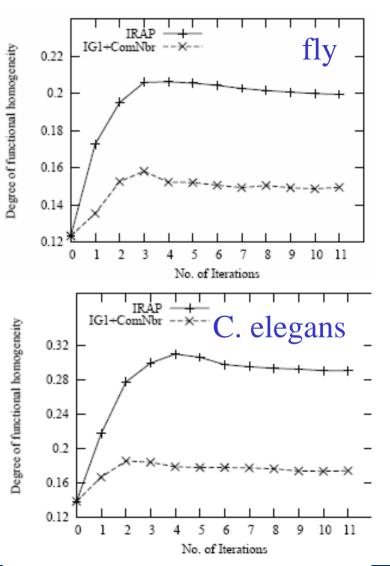
How do we test if this works?

- To test this, we mimic false negatives by random removal of 50% of high-quality known interactions. Then we check:
 - how many removed interactions are rediscovered?
 - is there diff in rediscovery rates of false negative vs random links?
 - Is there support in terms of gene expression correlation, common cellular roles, & common cellular locations?

• IRAP*: we iterate "ipr" and "irap*" 10 times to remove worst 5% of "false positives" and add best 5% of "false negatives"


• IG1+ComNbr: we use "ig" to remove "false positives" and "ComNbr" to add "false negatives", iterated 10 times

• Rand: randomly add and remove


About 40% of the high-quality "missing" interactions are rediscovered

IRAP* Functional Coherence

The "false negatives" detected are functionally coherent. I.e., IRAP* works

Copyright 2006 © Limsoon Wong

Conclusions

- There are latent local & global network "motifs" that indicate likelihood of protein interactions
- These network "motifs" can be exploited in computational elimination of false positives & false negatives from highthroughput Y2H expt & possibly other highly erroneous interaction data
- IPR & meso-scale motifs are the most effective topologically-based computational measure for assessing the reliability (false positives) of proteinprotein interactions detected by highthroughput methods
- IPR/IRAP* can discover new interactions (false negatives) not detected in the expt PPI network

References

- J. Chen et al, "Systematic assessment of high-throughput protein interaction data using alternative path approach", *Proc. ICTAI 2004*, pages 368—372
- J. Chen et al, "Towards discovering reliable protein interactions from high-throughput experimental data using network topology", *Artificial Intelligence in Medicine*, 35:37—47, 2005
- J. Chen et al, "Increasing confidence of protein interactomes using network topological metrics", *Bioinformatics*, to appear
- J. Chen et al, "NeMoFinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs", *Proc. KDD 2006*
- **H.N. Chua et al.** "Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions", *Bioinformatics*, 22:1623—1630, 2006
- **R. Saito et al,** "Interaction generality, a measurement to assess the reliability of a proteinprotein interaction", *NAR* 30:1163--1168, 2002
- **R. Saito et al,** "Construction of reliable protein-protein interaction networks with a new interaction generality measure", *Bioinformatics* 19:756--763, 2003
- S. Maslov & K. Sneppen, "Specificity and stability in topology of protein networks", Science 296:910--913, 2002
- E. Sprinzak et al, "How reliable are experimental protein-protein interaction data?", JMB 327:919--923, 2003