Exploratory Hypothesis Testing & Analysis

Limsoon Wong 27 February 2013

Project Outline

Objectives

- Help users understand their data
- Find actionable knowledge

Scope

- Hypothesis mining algo
- GUI for visualization and summarization
- Real-life applications

Novelty

- Focus on hypothesis
 - i.e., a comparison of two samples
- More informative than patterns and rules
 - Users not only get to know what is happening but also when or why it is happening

Project Achievement #1

- Algo's for mining, testing, & analyzing hypothesis
 - Novel formulation of a hypothesis into context, comparing attribute, and target attribute
 - E.g., ({Race=Chinese}, Drug=A|B, Response=positive)
 - Novel algo for exploratory hypothesis testing
 - Novel algo for hypothesis analysis
- Implemented these algo's into the EHTA system, the mining engine of iDIG in I2R, which can help users
 - Identify significant hypotheses
 - Isolate reasons behind significant hypotheses
 - Find confounding factors that form Simpson's
 Paradoxes with discovered significant hypotheses

Liu, et al. Towards exploratory hypothesis testing and analysis. *Proc ICDE 2011*, pages 745-756

Outline

Δ

- Background
- Problem definition
- Algorithms
- Experiments
- Related work
- Summary and discussion

Background

- A hypothesis compares two or more groups
 - Do smokers have higher cancer rates than nonsmokers?
 - Are children more vulnerable to H1N1 flu than adults?
- Statistical hypothesis testing
 - Test whether a hypothesis is supported by data using statistical methods

Conventional Hypothesis Generation

Postulate a hypothesis

- Is drug A more effective than drug B?

- How?
 - Collect data and eye ball a pattern!

PID	Race	Sex	Age	Smoke	Stage	Drug	Response
1	Caucasian	Μ	45	Yes	1	А	positive
2	Chinese	Μ	40	No	2	А	positive
3	African	F	50	Yes	2	В	negative
Ν	Caucasian	Μ	60	No	2	В	negative

of Singapore

P-Value

 Use statistical methods to decide whether a hypothesis "Is drug A more effective than drug B?" is supported by data

- E.g., χ 2-test

	Response= positive	Response= Negative	Proportion of positive responses
Drug=A	890	110	89%
Drug=B	830	170	83%

- p-value = 0.0001
 - Prob of observed diff betw the two drugs given assumption that the they have same effect

Limitations of Conventional Approach

- Hypothesis-driven
 - Scientist has to think of a hypothesis first
 - Allow just a few hypotheses to be tested at a time
- So much data have been collected ...
 - No clue on what to look for
 - Know something; but do not know all
 - Impossible to inspect so much data manually

⇒ Exploratory hypothesis testing in a data-driven manner

Exploratory Hypothesis Testing

- Data-driven hypothesis testing
 - Have a dataset but dunno what hypotheses to test
 - Use computational methods to automatically formulate and test hypotheses from data
- Problems to be solved:
 - How to formulate hypotheses?
 - How to automatically generate & test hypotheses?

- Background
- Problem definition
- Algorithms
- Experiments
- Related work
- Summary and discussion

Formulation of a Hypothesis

- "For Chinese, is drug A better than drug B?"
- Three components of a hypothesis:
 - Context (under which the hypothesis is tested)
 - Race: Chinese
 - Comparing attribute
 - Drug: A or B
 - Target attribute/target value
 - Response: positive
- {{Race=Chinese}, Drug=A|B, Response=positive}

NUS National University of Singapore

12

Testing a Hypothesis

- {{Race=Chinese}, Drug=A|B, Response=positive}
- To test this hypothesis we need info:
 - N^A =support({Race=Chinese, Drug=A})
 - N^A_{pos} =support({Race=Chinese, Drug=A, Res=positive})
 - N^B =support({Race=Chinese, Drug=B})
 - N^B_{pos} =support({Race=Chinese, Drug=B, Res=positive})

context	Comparing attribute	response= positive	response= negative
(Paga-Chinaga)	Drug=A	N ^A _{pos}	$N^A - N^A_{pos}$
{Race=Chinese}	Drug=B	N ^B _{pos}	$N^B - N^B_{pos}$

\Rightarrow Frequent pattern mining

Significance of Observed Diff

- When a single hypothesis is tested, a p-value of 0.05 is recognized as low enough
 - If we test 1000 hypotheses, ~50 hypotheses will pass the 0.05 threshold by random chance!
- Control false positives
 - Bonferroni's correction
 - Family-Wise Error Rate: Prob of making one or more false discoveries
 - Benjamini and Hochberg's method
 - False Discovery Rate: Proportion of false discoveries
 - Permutation method

Need for Hypothesis Analysis

- Exploration is not guided by domain knowledge
 ⇒Spurious hypotheses has to be eliminated
- Reasons behind significant hypotheses
 - Find attribute-value pairs that change the diff a lot
 - DiffLift: How much diff betw the two groups is lifted
 - Contribution: Freq of attribute-value pairs

DEFINITION 3 (DiffLift(A=v|H)). Let $H = \langle P, A_{diff} = \{v_1, v_2\}, A_{target}, v_{target} \rangle$ be a hypothesis, A_{target} be categorical, $P_1 = P \cup \{A_{diff} = v_1\}$ and $P_2 = P \cup \{A_{diff} = v_2\}$ be the two sub-populations of H, A = v be an item not in H, that is, $A \neq A_{diff}, A \neq A_{target}$ and $A = v \notin P$. After adding item A = v to H, we get two new sub-populations: $P'_1 = P_1 \cup \{A = v\}$ and $P'_2 = P_2 \cup \{A = v\}$. The lift of difference after adding A = v to H is defined as DiffLift($A = v|H) = \frac{p'_1 - p'_2}{p_1 - p_2}$, where p_i is the proportion of v_{target} in sub-population P'_i , i = 1, 2.

DEFINITION 6 (Contribution(A = v|H)). Let H be a hypothesis, A = v be an attribute value not in H, P_1 and P_2 be the two sub-populations of H, P'_1 and P'_2 be the two sub-populations after adding A = v to H. The contribution of A = v to H is defined as $Contribution(A = v|H) = \frac{n'_1(p'_1 - p_1) - \frac{n'_2}{n_2}(p'_2 - p_2)}{p_1 - p_2}$, where p_i is the proportion of v_{target} in sub-population P_i , and p'_i is the proportion of v_{target} in sub-population P'_i , i = 1, 2.

Spurious Hypotheses

	response= positive	response= negative	proportion of positive response
Drug=A	890	110	89.0%
Drug=B	830	170	83.0%
Drug=A, Stage=1	800	80	90.9%
Drug=B, Stage=1	190	10	95%
Drug=A, Stage=2	90	30	75%
Drug=B, Stage=2	640	160	80%

Simpson's Paradox

- "Stage" has assoc w/ both "drug" & "response":
 - Doc's tend to give drug A to patients at stage 1, & drug B to patients at stage 2
 - Patients at stage 1 are easier to cure than patients at stage 2
- Attribute "stage" is called a confounding factor

Reasons Behind Significant Hypotheses

	Failure rates
Product A	4%
Product B	2%
Product A, time-of-failure=loading	6.0%
Product B, time-of-failure=loading	1.9%
Product A, time-of-failure=in-operation	2.1%
Product B, time-of-failure=in-operation	2.1%
Product A, time-of-failure=output	2.0%
Product B, time-of-failure=output	1.9%

Problem is narrowed down

 Product A has exceptionally higher drop rate than product B only at the loading phase

Exploratory Hypothesis Testing

Problem Statement:

- Given
 - Dataset D, min_sup, max_pvalue, min_diff
 - $A_{target} = v_{target}$
 - $A_{grouping}$: context/comparing attributes
- Find all $H = \langle P, A_{diff} = v_1 | v_2, A_{target} = v_{target} \rangle$
 - $-A_{\text{diff}} \in \mathcal{A}_{grouping} \& \forall (A=\nu) \text{ in } P, A \in \mathcal{A}_{grouping}$
 - $sup(P_i) \ge min_sup$, where $P_i = P \cup \{A_{diff} = v_i\}$, i=1, 2
 - p-value(H) $\leq max_p$ value
 - $|p_1 p_2| \ge \min_diff$, where p_i is proportion of v_{target} in sub-population P_i , i=1, 2

Problem Statement: Hypothesis Analysis

- Given a significant hypothesis H, generate the following info for further analysis
 - Simpson's Paradoxes formed by H with attributes not in H
 - List of attribute-value pairs not in H ranked in descending order of DiffLift(A=v|H) and Contribution(A=v|H)
 - List of attributes not in H ranked in descending order of DiffLift(A|H) and Contribution(A|H)

- Background
- Problem definition
- Algorithms
- Experiments
- Related work
- Summary and discussion

Algo for Exploratory Hypothesis Testing

- A hypothesis is a comparison betw two or more sub-populations, and each sub-populations is defined by a pattern
- Step 1: Use freq pattern mining to enumerate large sub-populations and collect their statistics
 - Stored in the CFP-tree structure, which supports efficient subset/superset/exact search
- Step 2: Pair sub-populations up to form hypotheses, and then calculate their p-values
 - Use each freq pattern as a context
 - Search for immediate supersets of the context patterns, and then pair these supersets up to form hypotheses

Algo for Hypothesis Analysis

- Given a hypothesis H
 - To check whether H forms a Simpson's Paradox with an attribute A,
 - add values of A to context of H
 - re-calculate the diff betw the two sub-populations
 - To calculate DiffLift and Contribution of an attribute-value pair A=v,
 - add A=v to context of H
 - re-calculate the diff
- All can be done via immediate superset search

- Background
- Problem definition
- Algorithms
- Experiments
- Related work
- Summary and discussion

Experiment Settings

- PC configurations
 - 2.33Ghz CPU, 3.25GB memory, Windows XP
- Datasets:
 - mushroom, adult: UCI repository
 - DrugTestI, DrugTestII: study assoc betw SNPs in several genes & drug responses.

Datasets	#instances	#continuous attributes	#categorical attributes	A _{target} /v _{target}
adult	48842	6	9	class=>50K (nominal)
mushroom	8124	0	23	class=poisonous (nominal)
DrugTestl	141	13	74	logAUCT (continuous)
DrugTestII	138	13	74	logAUCT (continuous)

Copyright © 2013 by Limsoon Wong

Running Time

- Three phases
 - Frequent pattern mining
 - Hypothesis generation
 - Hypothesis analysis

Datasets	min_sup	min_diff	GenH	AnalyzeH	AvgAnalyzeT	#tests	#signH
adult	500	0.05	0.42 s	6.30 s	0.0015 s	5593	4258
adult	100	0.05	2.69 s	37.39 s	0.0014 s	41738	26095
mushroom	500	0.1	0.67 s	19.00 s	0.0020 s	16400	9323
mushroom	200	0.1	5.45 s	123.47 s	0.0020 s	103025	61429
DrugTestl	20	0.5	0.06 s	0.06 s	0.0031 s	3627	20
DrugTestII	20	0.5	0.08 s	0.30 s	0.0031 s	4441	97

max_pvalue = 0.05

Case Study: Adult Dataset

Context	Comparing Groups	sup	P _{class=>50K}	p-value
Race =White	Occupation = Craft-repair	n = Craft-repair 3694 22.84%		1 00 × 10-19
	White Occupation = Adm-clerical		14.23%	1.00 × 10 ¹³

Simpson's Paradox

Context	Extra attribute	Comparing Groups	sup	P _{class=>50K}
	Say Mala	Occupation = Craft-repair	3524	23.5%
Deee White	Sex = Male	Occupation = Adm-clerical	1038	24.2%
Race =vvnite	Sex = Female	Occupation = Craft-repair	107	8.8%
		Occupation = Adm-clerical	2046	9.2%

Summary

- Formulated the exploratory hypothesis testing and analysis problem
 - Complementary to conventional hypothesis testing
 - Overcome human oversights & limitations
 - Further analysis:
 - Narrow down the problem
 - Find Simpson's Paradox
- Proposed a data mining approach for this
 - Efficient

What's next?

- Controlling false positive rate
 - Bonferroni's correction
 - Benjamini and Hochberg's method
 - Permutation test
- Concise representations of hypotheses
 - freq patterns & hypotheses have lots of redundancy
- Organization & presentation of hypotheses
 - Visualization
 - Summarization

Project Achievement #2

28

- Control false positives in class-association rule mining
 - Large # of rules being tested. Rules not representing real effect can satisfy the constraints purely by random chance
- Three approaches to control false positives
 - Direct adjustment, e.g., Bonferroni's
 - Permutation-based p-value
 - Holdout approach
- We show that
 - Many spurious rules are produced if no correction is made
 - These approaches can control false positives effectively
 - Permutation-based approach is most effective, but costly
 - Techniques to make permutation-based approach efficient

Liu, et al. Controlling false positives in Proc VLDB Endowment, 5(2):145-156, 2011

Speeding up permutation test

(i) Mine rules only once. (ii) Diffsets. (iii) Buffer p-

Running Time

0.6

0.58

Power

power when controlling FWER

0.8

0.6

0.4

0.2

0

0.56

Copyright © 2013 by Limsoon Wong

Project Achievement #3

30

- Finding minimum representative rule sets
 - Freq pattern mining often produces many freq patterns
 - Difficult to understand the generated patterns
- Challenges
 - Produce a minimum # of representative patterns
 - Can restore the support of all patterns with error guarantee
 - Do the above efficiently
- We develop MinRPset and FlexRPset
 - MinRPset always efficiently produces the smallest solution
 - FlexRPset can trade solution size for even higher speed

Liu, et al. Finding minimum representative rule sets. *Proc KDD2012*, pages 51-59

 $(D(X_1, X_2))$. Given two patterns X_1 and DEFINITION 1 X_2 , the distance between them is defined as $D(X_1, X_2) =$ $1 - \frac{|T(X_1) \cap T(X_2)|}{|T(X_1) \cup T(X_2)|}$

Definition 2 (ϵ -covered). Given a real number $\epsilon \in$ [0,1] and two patterns X_1 and X_2 , we say X_1 is ϵ -covered by X_2 if $X_1 \subseteq X_2$ and $D(X_1, X_2) \leq \epsilon$.

In the above definition, condition $X_1 \subseteq X_2$ ensures that the two patterns have similar items, and condition $D(X_1, X_2) \leq$ ϵ ensures that the two patterns have similar supporting transaction sets and similar support. Based on the definition, a pattern ϵ -covers itself.

LEMMA 1. Given two patterns X_1 and X_2 , if pattern X_1 is ϵ -covered by pattern X_2 and we use $supp(X_2)$ to approximate supp(X₁), then the relative error $\frac{supp(X_1)-supp(X_2)}{supp(X_1)}$ is no larger than ϵ .

Table 4:	Running	time of	MinRPset	with	and	with-
out the e	early tern	nination	technique.			

dataset	min_sup	e	W/O(sec)	With(sec)	ratio
accidents	0.2	0.1	12.139	2.406	19.8%
accidents	0.2	0.05	10.280	1.640	16.0%
chess	0.3	0.1	323.964	48.107	14.8%
chess	0.3	0.05	240.312	22.392	9.3%
connect	0.2	0.1	104.444	15.014	14.4%
connect	0.2	0.05	88.492	5.625	6.4%
mushroom	0.001	0.2	3.312	0.312	9.4%
mushroom	0.001	0.1	0.281	3.266	8.6%
mushroom	0.001	0.05	0.265	3.266	8.1%
pumsb	0.6	0.1	160.670	242.33	66.3%
pumsb	0.6	0.05	34.687	106.388	32.6%
pumsb_star	0.1	0.1	109.796	24.904	22.7%
pumsb_star	0.1	0.05	88.148	13.934	15.8%

1.1

0.9

0.8

0.7

0.6

0.5 0.4

0.3

0.9

0.8

min_sup

0.7

rato

Copyright © 2013 by Limsoon Wong

Project Achievement #4

32

- Association rule visualization system for exploratory data analysis
- Relationship among rules reveal deep info of the data
- Summarize this, with visualization, to help users understand the data and to suggest hypotheses to test

Main Features

- 1. Visual information-seeking mantra: overview first, zoom and filter, details on demand.
- 2. Use coloring to deliver information effectively.
- If users find a rule interesting, they can explore related rules to have a deeper understanding of the rule.
- 4. Rules with similar item composition but very different statistics may represent inexpensive actions that we can take to make a big change. Our system allow users to inspect such rules under various contexts to isolate the key factors that contribute to the difference.
- Techniques implemented in AssocExplorer, the visualization engine of iDIG in I²R

Liu, et al. AssocExplorer: An association rule ... *Proc KDD2012*, pages 1536-1539

Examples

ID	Gender	Education	Occupation	Income
1	F	Bachelor	Adm-clerical	>50K
2	М	High-School	Sales	≤50K

An example dataset

Typical questions:

- 1. Which groups of people are more likely to have a high income?
- 2. Which attributes are important to income?
- 3. What is the effect of "Education" on income with respect to other attributes?
- 4. Women earn less than men in general. How can women have a high income?

Comparative analysis

System Overview

Copyright © 2013 by Limsoon Wong

Summary of Project Results

- Deliverables achieved:
 - Algorithms for
 - Exploratory hypothesis testing and analysis (EHTA)
 - Selecting minimum representative rules
 - Efficiently controlling false positives
 - Visualization system for exploratory data analysis (AssocExplorer)
 - EHTA & AssocExplorer put into iDIG at I²R
- Capabilities developed:
 - Expertise in a novel aspect of analytics

Acknowledgements

- Liu Guimei
- Zhang Hao Jun
- Andre Suchitra
- Feng Mengling

Publications

- Liu, et al. Towards Exploratory Hypothesis Testing and Analysis. ICDE2011, pages 745-756
- Liu, et al. Controlling False Positives in Association Rule Mining. Proc VLDB Endow, 5(2):145-156, 2011
- Liu, et al. Finding Minimum Representative Pattern Sets. KDD2012, pages 51-59
- Liu, et al. AssocExplorer: An association rule visualization system for exploratory data analysis. KDD2012, pages 1536-1539
- Liu, et al. A flexible approach to finding representative pattern sets. IEEE Trans Knowledge and Data Eng, accepted.