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What is big data and why 

• Big data a la 

Gartner  

– Volume, velocity, 

variety 

• Other 

characteristics 

– Veracity, v... 

A practical definition 

“More than you know 

how to handle” 

• Why big data? 

– Can collect cheaply, 

due to automation 

– Can store cheaply, 

due to falling media 

prices 

– Many success 

stories, where useful 

predictions were 

made with the data 
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Challenges 

in big data 

• Much emphasis is on scaling issues 
 

• But there are non-scaling-related issues that 

affect fundamental assumptions in analysis 

methods & systems 
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Talk outline 

• Forgotten assumptions 

– Normal distribution 

– I.I.D. 

– Proper design of experiment 

– Domain-specific laws 
 

• Overlooked information 

– Non-associations 

– Context 
 

• More may not be better 

– Protein complexes 
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NORMAL DISTRIBUTION 

Forgotten assumptions 
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Wisdom of the crowd 

• Estimates not normally distributed 

• They are lognormally distributed 

Subjects had problems choosing the right order 

of magnitude 

Lorenz et al., PNAS, 108(22):9020-9025, 2011 
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and what held yesterday may not hold today 
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2007 Financial Crisis 

• All of them religiously 

check VaR (Value at Risk) 

everyday 

• VaR measures the expected loss 

over a horizon assuming normality 

 

• “When you realize that VaR is using 

tame historical data to model a 

wildly different environment, the 

total losses of Bear Stearns’ hedge 

funds become easier to understand. 

It’s like the historic data only has 

rainstorms and then a tornado 

hits.” – New York Times, 2 Jan 2009 

 

• You can still turn things into your 

advantage if you are alert:  When VaR 

numbers start to miss, either there is 

something wrong with the way VaR is 

being calculated, or the market is no 

longer normal 
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I.I.D. 

Forgotten assumptions 
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Experiments on social influence 

• 12 groups, 12 subjects each 

 

• Each subject solves 6 

different estimation tasks 

regarding geographical facts 

and crime statistics 

 

• Each subject responds to 1st 

question on his own 

 

• After all 12 group members 

made estimates, everyone 

gives another estimate, 5 

consecutive times 

 

• Different groups based their 

2nd, 3rd, 4th, 5th estimates on 

– Aggregated info of others’ 

from the previous round 

– Full info of others’ estimates 

from all earlier rounds 

– Control, i.e. no info  

 

• Two questions posed for 

each of the three treatments 

 

• Each declares his confidence 

after the 1st and final 

estimates 

Lorenz et al., PNAS, 108(22):9020-9025, 2011 
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Social influence effect 

• Social influence diminishes diversity in groups  

Groups potentially get into “group think”! 
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Range reduction effect 

• Group zooms into wrong estimate 

• Truth may even be outside all estimates 
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Social  influence diminishes wisdom 

of the crowd 

• Social influence triggers convergence of 

individual estimates 
 

• The remaining diversity is so small that the 

correct value shifts from the center to the outer 

range of estimates 
 

An expert group exposed to social influence may 

result in a set of predictions that does not even 

enclose the correct value any more! 
 

• Conjecture:  Negative effect of social influence is 

more severe for difficult questions 
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Related issue: 

People do not say 

what they really 

want to say 

“In fact, the evidence is 
very strong that there is a 
genuine difference 
between people's private 
opinions and their public 
opinions.”  

Stephen King, “Conflict between public and 

private opinion”, Long Range Planning, 

14(4):90-105, August 1981 
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PROPER DESIGN OF EXPT 

Forgotten assumptions 
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Design of experiments  

• In clinical testing, we carefully choose the sample 

to ensure the test is valid 

– Independent: Patients are not related  

– Identical: Similar # of male/female, young/old, … in cases 

and controls  

 

 

 

 

 

• In big data analysis, and in many datamining works, people 

hardly ever do this! 

– Is this sound? 

Note that sex, age, … don’t 

need to appear in the 

contingency table 
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Looks like treatment A is better 

Looks like treatment B is better 

Looks like treatment A is better 

What is happening here? 
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A/B sample not identical  

in other attributes 

• Taking A 

– Men = 100 (63%) 

– Women = 60 (37%) 

• Taking B 

– Men = 210 (91%) 

– Women = 20 (9%) 

 

• Men taking A 

– History = 80 (80%) 

– No history = 20 (20%) 

• Men taking B 

– History = 55 (26%) 

– No history = 155 (74%) 
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Simpson’s paradox in an Australian 

population census 

• Craft-repair/Adm-clerical sample not identical in 

other aspects 

Context Comparing Groups  sup Pclass=>50K  p-value 

Race =White 
Occupation = Craft-repair  3694  22.84% 

1.00  10-19 

Occupation = Adm-clerical 3084  14.23% 

Context Extra 

attribute 

Comparing Groups  sup Pclass=>50K  

Race =White 

Sex = Male 
Occupation = Craft-repair  3524 23.5% 

Occupation = Adm-clerical 1038 24.2% 

Sex = Female 
Occupation = Craft-repair  107 8.8% 

Occupation = Adm-clerical 2046 9.2% 
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Stratification 

• Cannot test “Men earn more than women” directly 

– Different distributions of men & women wrt occupation 
 

• Test instead 

– “S1: For craftsmen, men earn more than women” 

– “S2: For admin clerks, men earn more than women” 

– … 

where craftsmen, admin clerks, … form an 

exhaustive list of disjoint occupations, provided 

each of S1, S2, … is valid 
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Related issue: Sampling bias 

The reason the Tribune was mistaken is that their editor trusted the results 

of a phone survey… Telephones were not yet widespread, and those who 

had them tended to be prosperous and have stable addresses. 
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DOMAIN-SPECIFIC LAWS 

Forgotten assumptions 
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A basic rule of human genetics 
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A suspicious contingency table 

• AG = 38 + 79 = 117, 

Controls + cases = 189; so 

~62% of population is AG 

 ~10% of population is AA, 

unless AA is fatal 
 

• Big data check shows AA 

is non-fatal for this SNP 

 Sample is biased 

Lessons learned 
 

• Need to check for domain-

specific rules to ensure 

test validity 
 

• Big data can be helpful 

rs?????? 
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NON-ASSOCIATIONS 

Overlooked information 
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We tend to ignore non-associations 

• We have many technologies to look for 

associations and correlations 

– Frequent patterns 

– Association rules 

– … 
 

• We tend to ignore non-associations 

– We think they are not interesting / informative 

– There are too many of them 
 

• We also tend to ignore relationship between 

associations 
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We love to find correlations like this… 

• Dietary fat intake correlates with breast cancer 
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And like this… 

• Animal fat intake correlates with breast cancer 
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But not non-correlations like this… 

• Plant fat intake doesn’t correlate with breast cancer 
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Yet there is much to be gained when 

we take both into our analysis 

A: Dietary fat intake 

correlates with breast 

cancer 

 

B: Animal fat intake 

correlates with breast 

cancer 

 

C: Plant fat intake 

doesn’t correlate with 

breast cancer 

Given C, we can 

eliminate A from 

consideration, and 

focus on B! 

The power 

of negative 

space! 
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CONTEXT 

Overlooked information 
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We tend to ignore context 

• We have many technologies to look for 

associations and correlations 

– Frequent patterns 

– Association rules 

– … 

 

• We tend to assume the same context for all 

patterns and set the same global threshold 

– This works for a focused dataset 

– But for big data where you union many things, this 

spells trouble 
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Formulation of a Hypothesis  

• “For Chinese, is drug A better than drug B?” 

 

• Three components of a hypothesis: 

– Context (under which the hypothesis is tested) 

• Race: Chinese 

– Comparing attribute 

• Drug:  A or B 

– Target attribute/target value 

• Response: positive 

 

•  {Race=Chinese},  Drug=A|B,  Response=positive 
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The right support threshold 

• {Race=Chinese},  Drug=A|B,  Response=positive 
 

 

 

 

 

 

• To test this hypothesis we need info: 

– NA      =support({Race=Chinese, Drug=A}) 

– NA
pos   =support({Race=Chinese, Drug=A, Res=positive}) 

– NB      =support({Race=Chinese, Drug=B}) 

– NB
pos   =support({Race=Chinese, Drug=B , Res=positive}) 

 

Frequent pattern mining, but be careful with 

support threshold, need to relativize to context 

Context 
Comparing 

attribute 

response= 

positive 

response= 

negative 

{Race=Chinese}  
Drug=A NA

pos NA   NA
pos 

Drug=B NB
pos NB   NB

pos 
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Relativizing to context 

• Most people cannot set support threshold 

correctly when relativizing to context 
 

 

 

• Suppose a test of a disease presents a rate of 5% 

false positives, and the disease strikes 1/1000 of 

the population 
 

• Let’s say people are tested randomly and a 

particular patient’s test is positive 
 

• What’s the probability that he is stricken with the 

disease?  

 

A quick test! 
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Answer 

• P(d) = 0.1% 

• P(pos| ~d) = 5% 

• P(pos| d) = 100%, assuming 100% sensitivity 

 

• P(pos) = P(pos| d) P(d) + P(pos| ~d) P(~d)  5% 

 

• P(d| pos) = P(pos| d) P(d) / P(pos) = 0.1% / 5% = 2% 

 

• I.e., the answer is 2% 

• Did you guess 95% as the answer? 
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The right context 

• {Race=Chinese},  Drug=A|B,  Response=positive 

 

 

 

 

• If A/B treat the same single disease, this is ok 
 

• If B treats two diseases, this is not sensible 
 

• The disease has to go into the context 

 

Context 
Comparing 

attribute 

response= 

positive 

response= 

negative 

{Race=Chinese}  
Drug=A NA

pos NA   NA
pos 

Drug=B NB
pos NB   NB

pos 
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PROTEIN COMPLEXES 

More may not be better 
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Protein Interaction Network 

Protein-protein interaction networks 

• Proteins come 

together & interact 

• The collection of 

these interactions 

form a Protein 

Interaction Network 

or PPIN 

Collection of such 

interactions in an 

organism 

Individual proteins come together  

and interact 

PPIN 

Valuable 

source of 

knowledge 
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Difficulties 

• Cytochrome BC1 

complex 

– Involved in electron-

transport chain in 

mitochondrial inner 

membrane 

 

• Discovery of BC1 from 

PPI data is difficult 

– Sparseness of its PPI 

subnetwork 

• Only 19 out of 45 

possible interactions 

were detected between 

the complex’s proteins 

– Extraneous interactions 

with other proteins outside 

the complex 

• E.g., UBI4 is involved in 

protein ubiquitination, 

and binds to many 

proteins to perform its 

function  
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Perhaps “big data” can help? 

• Composite network 

– Vertices represent proteins, edges represent relationships 

between proteins. Put an edge betw proteins u, v, iff u and v are 

related according to any of the data sources 

 

Yong, et al. Supervised maximum-likelihood weighting of composite protein 

networks for complex prediction. BMC Systems Biology, 6(Suppl 2):S13, 2012 



44 

Invited talk at UM Symp on Data Science, 25 Oct 2016 Copyright 2016 © Limsoon Wong 

More is not always better, unless.. 

 

 

While proteins in BC1 become fully connected 

in the composite network, there is a blow-up 

in extraneous proteins. So clustering won’t 

discover the complex, unless you know how 

to remove the extraneous proteins 
 

 

Yong, et al. Supervised maximum-likelihood weighting of composite protein 

networks for complex prediction. BMC Systems Biology, 6(Suppl 2):S13, 2012 
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What have we learned? 

• More data can offer a 

more complete picture, 

fill in gaps, etc. 
 

• More data can also 

introduce noise into an 

analysis 
 

• Unless you know how 

to tame this noise, more 

data may not lead to a 

better analysis 

• Mechanical application 

of statistical and data 

mining techniques often 

does not work 
 

• Must understand 

statistical and data 

mining tools & the 

problem domain 

– Must know how to logically 

exploit both 


