Topology of PPI Networks:
Applications and Questions

Plan

» Past works of my group on PPI networks
— PPI network cleansing based on PPI topology
— PPI-based protein complex prediction
— PPI-based protein function prediction

* New directions?
— Application to lipid biology
— Application to drug response/escape




PPI Network Cleansing
Based on PPI Topology

Noise in PPl Networks

Experimental method category* Number of interacting pairs Co-localization® (%) Co-cellular-role® (%)
All: All methods 9347 64 49
A Small scale Y2ZH 1861 73 62
Al GY2H Uetz et al. (published results) 956 66 45
Al: GYZH Uetz et al. (unpublished results) 516 53 33
A2: GY2H Ito et al. (core) 798 64 40
A3 GY2H Ito et al. (all) 3655 11 15
B: Physical methods 71 98 95
C: Genetic methods 1052 77 75
D1: Biochemical, in vitro 614 87 79
D2: Biochemical, chromatography 648 93 88
El: Immunological, direct 1025 90 90
E2: Immunological, indirect 34 100 93
2M: Two different methods 2360 87 85
3M: Three different methods 1212 92 94
4M: Four different methods 570 95 93

Sprinzak et al., JMB, 327:919-923, 2003 I}rge disagreement betw methods

* High level of noise
= Need to clean up before making inference on PPl networks




Measures that correlate with function @ E_Eé

homogeneity and localization coherence

e Two proteins participating
in same biological process
are more likely to interact ]
» CD-distance

« Two proteins in the same * FS-Weight
cellular compartments are
more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with many
interaction partners in common are likely to be in same biological process &
localize to the same compartment
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lterated CD-Distance (i et al, 2008) ———

» Variant of CD-distance that penalizes proteins with
few neighbors
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* Suppose average degree is 4, then
— Case 1: IN,| =1, [N, |= 1, IN,nN,|=1, wL(u,v)=0.25
— Case 2: |N,| =10, [N,|= 10, [N,nN,|=10, wL(u,v)=1




EEINUS
A thought... ==
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» Weight of interaction reflects its reliability

— Can we get better results if we use this weight to re-
calculate the score of other interactions?
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e wLOu,v)=1if (u,v)eG, otherwise wL°u,v)=0
L |NuﬁNv|+|NuﬁNv|
* wlL (U,V)— |Nu|+lu+| Nv|+ﬂv
° WLk(u 7V) = xg[%:ﬂ\\l,gl-k_l(u’ X) + X ’\%:\’\\II:IILK_]-(V’ X)
DU, x) + A D W (v, x) + A
XxeNu XeNv
D> W (x,y)
o AK,=max{0, xvyNx YENXW' - > Wi (u, x) }
xeNu
D> WX, )
o M, =max{0, i@ym 7§k }
’ T N




ZENUS
|dentifying False Positive PPIs """":'""

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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» Iterated CD-distance is an improvement over
previous measures for assessing PPI reliability
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ldentifying False Negative PPIs -"":':-*'

Cf. ave localization coherence of protein pairs in DIP < 5%
ave localization coherence of PPI in DIP < 55%
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» Iterated CD-distance is an improvement over
previous measures for predicting new PPIs




PPI-Based Protein Complex Prediction

PPI-Based Complex Prediction

e Recall & precision of
protein complex prediction —

algo have lots to be /\\ B

improved

+ Does a“cleaner” PPI W
network help?

e How to capture non-ball-
like complexes?
= Clique merging?
= Relative density?
= Core-n-attachment?




SINUS
Cleaning PPl Network -

() O @ @)
* Modify existing PPl network as follow

— Remove interactions with low weight
— Add interactions with high weight

e Then run RNSC, MCODE, MCL, ..., as well as our
own method CMC

/

TINUS
CMC: Clustering of Maximal Cquu""'"""""'

« Remove noise edges in input PPl network by
discarding edges having low iterated CD-distance

 Augment input PPI network by addition of
missing edges having high iterated CD-distance

* Predict protein complex by finding overlapping
maximal cliques, and merging/removing them

» Score predicted complexes using cluster density
weighted by iterated CD-distance
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Noise Tolerance of CMC =
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» If cleaning is done by iterating CD-distance 20
times, CMC can tolerate up to 500% noise in the
PPI network!
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Mol Uslabraley

Effect of Cleansing on MCL Y=
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 MCL benefits significantly from cleaning too

» Ditto for other protein complex prediction
methods




Characteristics of Unmatched Clusts?

o Atk=2...

» 85 clusters predicted by CMC do not match
complexes in Aloy and MIPS

¢ Localization coherence score ~90%

* 65/85 have the same informative GO term
annotated to > 50% of proteins in the cluster

= Likely to be real complexes

PPI-Based Protein Function Prediction




Functional Association Thru Interactist

¢ Direct functional association:

— Interaction partners of a protein
are likely to share functions w/ it

— Proteins from the same
pathways are likely to interact

¢ Indirect functional association

— Proteins that share interaction
partners with a protein may also
likely to share functions w/ it

— Proteins that have common
biochemical, physical properties
and/or subcellular localization
are likely to bind to the same
proteins

Freq of Indirect Functional Associat
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Functional Similarity Estimate: E_Eé

FS-Weighted Measure

* FS-weighted measure

2N, "N, 2N, "N,|
IN, =N,[+2N, "N,| \N —N,[+2N, "N,|

S(u,v)=

* N, is the set of interacting partners of k
» Greater weight given to similarity

= Rewriting this as

S(,): 2X y 2X
2X+Y 2X+Z

LT at Barbados Workshop, Bellirs, 10-25 April 2009, Copyright © 2009 by Limsoonworg |
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Functional Similarity Estimate: NUS

FS-Weighted Measure with Rellablllty

» Take reliability into consideration when
computing FS-weighted measure:

2 b 2 3l

Se(u,v)= <(NyON,) y welfgry)

[ Zhe Zru.w@—rv.w)}z Srcte | Toer Trbonrz S

weN,-N, we(N, NN, ) we(N, NN, ) weN, -N, we(N, NN, ) we(N, NN, )

* N, is the set of interacting partners of k
r.w is reliability weight of interaction betw u and v

= Rewriting

S( ,V) 2X 2X

= X
2X+Y 2X+Z
Ll arados worshop, B, 1925 Apr 2009 Copyrghu 2009 by Limsoonworg |
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Improvement to E_Eé
Prediction Power by Majority Voting
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% NUS
Use L1 & L2 Neighbours for Predictiefr™

* FS-weighted Average

o)=L { ) A

+ Y Sk (u,w)é(w,x)ﬂ
veN weN,
rine 1S fraction of all interaction pairs sharing function
» Ais weight of contribution of background freq
* 8(k, x) =1if k has function x, O otherwise
* N, is the set of interacting partners of k
» 7, is freq of function x in the dataset

e Zis sum of all weights

Z=1+ ] Sr(u,v)+ > S (u,w)

veN, weN,
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Future Directions

What we are planning next...

* Lipid biology
— How to expand PPI networks with more info?

— How to use it to infer proteins & complexes
involved in lipid metabolism?

* Drug response & escape
— How to augment PPI networks of microbacteria?
— How to infer drug-response/escape routes?
— How to cut off drug-escape routes?
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Readings ==

e H.N. Chua, et al. ”Exploiting indirect neighbours and topological
weight to predict protein function from protein-protein
interactions”, Bioinformatics, 22:1623-1630, 2006

¢ H.N. Chua, et al. “Using Indirect Protein-Protein Interactions for
Protein Complex Prediction”, JBCB, 6(3):435--466, 2008

e H.N. Chua, L. Wong. “Increasing the Reliability of Protein
Interactomes”, Drug Discovery Today, 13(15/16):652--658, 2008

e G.Liu,etal. “Assessing and predicting protein interactions using
both local and global network topological metrics”, Proc GIW2008

e G.Liu,etal “Complex Discovery from Weighted PPI Networks”,
submitted.

o0
E&

NUS
=

Any Question?




