Protein Function Inference Enhanced by Text Mining

Limsoon Wong (Based on work w/ Kenny Chua & Ken Sung)

Plan

• Motivation

- Can text mining association help?
- Can fusion of multiple types of info help?
- Info fusion framework
- Effect of co-occurences of protein Names in MEDLINE abstracts

Motivation

Protein Function Prediction

- Protein function prediction is a key problem
- It is solved using "guilt by association"
 - Compare the target sequence T with sequences $S_1, ..., S_n$ of known function in a database
 - Determine which ones amongst $S_1, ..., S_n$ are the mostly likely homologs of T
 - Then assign to T the same function as these homologs
 - Finally, confirm with suitable wet experiments

Guilt by Association of Seq Similarity

5

Important Unsolved Challenges

- What if there is no useful seq homolog?
- Guilt by other types of association!
 - Domain modeling (e.g., HMMPFAM)
 - Similarity of dissimilarities (e.g., SVM-PAIRWISE)
 - Similarity of phylogenetic profiles
 - Similarity of subcellular co-localization & other physico-chemico properties(e.g., PROTFUN)
 - Similarity of gene expression profiles
 - Similarity of protein-protein interaction partners
- Can text mining association help?
- Can fusion of multiple types of info help?

Information Fusion Framework

Strategy – Step 1

- Model a data source as undirected graph G = (V,E)
 - V is a set of vertices; each vertex reps a protein

 E is a set of edges; each edge (u, v) reps a relationship (e.g. seq similarity, interaction) betw proteins u and v

Strategy – Step 2

• Combine graphs from different data sources to form a larger graph

Strategy – Step 3

- Estimate edge confidence from contributing data sources
- Predict function by observing which functions occur frequently in the highconfidence neighbours

Unified Confidence Evaluation

- Subdivide each data source into subtypes to improve precision (e.g., expt sources, sub-ranges of existing scores like E-scores)
- In general, estimate confidence of subtype k for sharing function f by:

$$p(k,f) = \frac{\sum_{(u,v)\in E_k, f} S_f(u,v)}{\left|E_{k,f}\right| + 1}$$

- E_{k,f} is subset of edges of subtype k where each edge has either one or both of its vertices annotated with function f
- $S_f(u,v) = 1$ if u and v shares function f, 0 otherwise

Discretization of Existing Scores

- Scores may come in many forms
 - E.g., Blast e-values, Pearson's correlation
- A simple approach to discretization
 - Split ranges into n equal intervals
 - Each interval becomes a new subtype
 - Assume linearity in range
 - Other strategies possible

Combination of Confidence

• Combine confidence of data sources contributing to each edge:

$$r_{u,v,f} = 1 - \prod_{k \in D_{u,v}} (1 - p(k, f))$$

- P(k.f) is confidence of edges of subtype k sharing function f
- D_{u,v} is the set of subtypes of data sources which contains the edge (u,v)

Function Prediction

 $\{\mathsf{F}_{\Lambda}, \mathsf{F}_{\mathsf{P}}\}$

- S_f(u) is score of function f for protein u
- $e_f(v)$ is 1 if protein v has function f, 0 otherwise
- N₁₁ is set of neighbours of u
- r_{u.v.f} is confidence of edge (u, v)

Level-2 Neighbours

5

• Increase coverage of Protein-Protein interactions

- Indirect function association (Chua et al. 2006)
- Topological weight applied to PPI
- Divide into 3 subtypes:

Level-1 Neighbours

Level-2 Neighbours

Level-1&2 Neighbours

 A threshold of 0.01 is applied on L2 neighbours to limit false positives

Topological Weight Applied to PPI: FS-Weighted Measure with Reliability

• Take reliability into consideration when computing FS-weighted measure:

$$S_{R}(u,v) = \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{u}} r_{u,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{u,w}(1-r_{v,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}} \times \frac{2\sum_{w \in (N_{u} \cap N_{v})} r_{u,w}r_{v,w}}{\left(\sum_{w \in N_{v}} r_{v,w} + \sum_{w \in (N_{u} \cap N_{v})} r_{v,w}(1-r_{u,w})\right) + 2\sum_{w \in (N_{u} \cap N_{v})} r_{v,w}r_{v,w}}}$$

N_k is the set of interacting partners of k

r_{u,w} is reliability weight of interaction betw u and v

 \Rightarrow Rewriting

$$S(u,v) = \frac{2X}{2X+Y} \times \frac{2X}{2X+Z}$$

Comparison w/ Existing Approaches

- Datasets of Deng et al, '04
- 4 data sets (S. cerevisiae)
 - Protein-Protein
 Interactions
 - 2,448 edges
 - Protein Complexes
 - 30,731 edges
 - Pfam Domains
 - 28,616 edges
 - Expression Correlation
 - 1,366 edges

• 12 functional classes

	Category	Size
1	Metabolism	1048
2	Energy	242
3	Cell cycle & DNA processing	600
4	Transcription	753
5	Protein synthesis	335
6	Protein fate	578
7	Cellular transport & transport mechanism	479
8	Cell rescue, defense & virulence	264
9	Interaction with cellular env	193
10	Cell fate	411
11	Control of cellular organization	192
12	Transport facilitation	306

Comparison w/ Existing Approaches

- Validation Method (Lanckriet et al, 2004)
 - Receiver Operating Characteristics (ROC)
 - True Positives vs False Positives
 - Area under ROC curve for each function
 - Averaged over 3 repetitions of 5-fold cross validation

Effect of Co-occurences of Protein Names in MEDLINE Abstracts

GO Terms Prediction for Yeast Protein

- Proteins from S. Cerevesiae
 - 5448 proteins from GO Annotation (SGD)
- Functional Annotation
 - Gene Ontology
 - Hierarchical
 - 3 Namespaces (molecular function, biological process, cellular component)

- Informative GO Terms (for evaluation)
 - Zhou et al. (2002)
 - FC associated with at least 30 proteins and no subclass associated with at least 30 proteins

Data Sources

- Protein Sequences
 - Seqs from GO database
 - Each yeast seq is aligned w/ rest using BLAST (cutoff E-Score = 1)
 - -log(e-score) used as score
 - Top 5 results w/ known annotations
 - 19,808 unique pairs involving yeast proteins
- Pfam Domains (SwissPfam)
 - Precomputed Pfam domains for SwissProt and TrEMBL proteins w/ E-value threshold 0.01
 - No. of common domains as score
 - 15,220 unique pairs involving yeast proteins
- PPI (BIND)
 - 12,967 unique interactions betw yeast proteins
 - FS weight used as score

Pubmed Abstracts

- Pubmed abstracts obtained by searching protein's name and aliases on Pubmed
- Limit to first 1000 abstracts returned
- Fraction of abstracts w/ cooccurrence used as score
- 61,786 unique pairs involving yeast proteins

Advanced NLP and Text Mining Forum, Tokyo, 11-13 March 2007

Copyright 2007 © Limsoon Wong

22

Can literature co-occurrence info help?

• Need comparisons of

- PPI info w/ & w/o literature occurrence info,
- BLAST info w/ & w/o literature occurrence info,
- Pfam info w/ & w/o literature occurrence info,
- "combined" w/ & w/o literature occurrence info,
- Top-blast info w/ & w/o literature occurrence info

Diff in Recall-Precision by Literature Co-Occurrence

Diff in No. of Terms w/ Better RO

Advanced NLP and Text Mining Forum, Tokyo, 11-13 March 2007

25

Literature cooccurrence seems to contribute especially well to cellular component

Advanced NLP and Text Mining Forum, Tokyo, 11-13 March 2007

Copyright 2007 © Limsoon Wong

26

_27

- Weighted Averaging predicts w/ better precision than transferring function from top blast hit
- Using all data sources outperforms topblast in both sensitivity and precision

Conclusions

- A simple graph-based method that combines multiple sources of data sources for function prediction
- Even simple co-occurrence count can give reasonable sensitivity & precision for function prediction
- Combining multiple info sources outperforms any single info source

References

- Hon Nian Chua, Wing-Kin Sung, Limsoon Wong. Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions. *Bioinformatics*, 22:1623--1630, 2006 [PPI]
- H.N. Chua, W.K. Sung, & L. Wong. A graph-based approach to integrating multiple data sources for protein function prediction. In preparation, 2007
- M. Deng, T. Chen, & F. Sun. An integrated probabilistic model for functional prediction of proteins. *JCB*, 11(2-3):463-75, 2004 [MRF]
- G.R. Lanckriet et al. Kernel-based data fusion and its application to protein function prediction in yeast. Proc. PSB 2004, pp. 300-311 [Kernel]

Any Question?

