

3

8

10

Better Subnetwork Overlap

%NI

Copyright 2011 © Limsoon Wor

Table 1. Table showing the percentage overlap significant subnetworks between the datasets. Each row refers to a separate disease (as indicated in the first column). Each disease is tested against two datasets depicted in the second and third column. The overlap percentages refer to the pathway overlaps obtained from running SNet (column 4) and GSEA (column 5) The actual number of overlaps are parenthesized in the same columns.

Disease	Dataset 1	Dataset 2	SNet	GSEA
Leuk	Golub	Armstrong	83.3% (20)	0.0% (0)
Subtype	Ross	Yeoh	47.6% (10)	23.1% (6)
DMD	Haslett	Pescatori	58.3% (7)	55.6% (10)
Lung	Bhatt	Garber	90.9% (9)	0.0% (0)

• For each disease, take significant subnetworks from one dataset and see if it is also significant in the other dataset

Microarray Workshop for Gene Expression Profiling, NUH, 23/9/2011

	Bet	ter	Gene	e Ove	erlaps		
Table 2	2. Table sh	lowing	the nu to the r	mber and	percenta	ge of si	gnificant vingt and
is the nu	imber of uni	ique g	enes withi	n all the si	ignificant :	subnetworl	ks of the
disease (latasets. The	eperce	ntages ref	er to the pe	rcentage g	;ene ove r la	p fo r the
correspo	nding algor:	ithms.	-	_			-
	Disease	γ	SNet	GSEA	SAM	t-test	I
	Leuk	84	91.3%	2.4%	22.6%	14.3%	1
	Subtype	75	93.0%	4.0%	49.3%	57.3%	
	DMD	45	69.2%	28.9%	42.2%	20.0%	
	Lung	65	51.2%	4.0%	24.6%	26.2%	
_	ch disea	ise,	take s	ignifica	ant suk	onetwo	orks

Larger Subnetworks

Table 3. Table comparing the size of the subnetworks obtained from the t-test and from SNet. The first column shows the disease and the second column shows the number of genes which comprised of the subnetworks. The third and fourth column depicts the number of genes present within each subnetwork for the t-test and SNet respectively. So for instance in the leukemia dataset, we have 8 subnetworks with size 2 genes, 1 subnetwork with size 3 genes for the t-test. For SNet, we have 2 subnetworks with size 5 genes, 3 subnetworks with size 6 genes, 2 subnetworks with size 7 genes and 1 subnetwork with a size of ≥ 8 genes

Disease	γ	Num Genes (t-test)			Num Genes (SNet)				
		2	3	4	5	5	6	7	≥ 8
Leuk	84	8	1	0	0	2	3	2	1
Subtype	e 75	5	1	1	1	1	0	1	6
DMD	45	3	1	0	0	1	0	0	5
Lung	65	3	2	1	0	5	3	0	1
on for Cono Evo	roccion Dr	ofiling		2/0/204	4			Copy	right 2011

Microarray Works

