Identifying Protein Complexes from Protein Interactome Maps

Limsoon Wong

(Joint work with Kenny Chua & Guimei Liu)

Motivation

- Nature of high-throughput PPI expts
 - Proteins are taken out of their natural context!

- Can a protein interact with so many proteins simultaneously?
- A big "hub" and its "spokes" should probably be decomposed into subclusters
 - Each subcluster is a set proteins that interact in the same space and time
 - Viz., a protein complex

Plan

- Motivation and Approaches
- PPI Network Cleansing based on PPI Topology
 CD-Distance, FS-Weight
- Impact of Cleansing on PPI-based Protein Complex Prediction Methods
- Recent Improvement to PPI Network Cleansing and PPI-Based Protein Complex Prediction

Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong

Approaches

Approaches to PPI-Based Protein Complex Prediction

	RNSC	MCODE	MCL
Туре	Clustering, local search cost based	Local neighborhood density search	Flow simulation
Multiple assignment of protein	No	Yes	No
Weighted edge	No	No	Yes

- Recall vs precision is poor
 - Noise in PPI network?
 - Non-ball-like complexes?

Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong

Possible Cause of Low Recall/Precision

Experimental method category ^a	Number of interacting pairs	Co-localization ^b (%)	Co-cellular-role ^b (%)
All: All methods	9347	64	49
A: Small scale Y2H	1861	73	62
A0: GY2H Uetz et al. (published results)	956	66	45
A1: GY2H Uetz et al. (unpublished results)	516	53	33
A2: GY2H Ito et al. (core)	798	64	40
A3: GY2H Ito et al. (all)	3655	41	15
B: Physical methods	71	98	95
C: Genetic methods	1052	77	75
D1: Biochemical, in vitro	614	87	79
D2: Biochemical, chromatography	648	93	88
E1: Immunological, direct	1025	90	90
E2: Immunological, indirect	34	100	93
2M: Two different methods	2360	87	85
3M: Three different methods	1212	92	94
4M: Four different methods	570	95	93

Sprinzak et al., *JMB*, 327:919-923, 2003

Large disagreement betw methods

- · High level of noise
- ⇒ Need to clean up before protein complex prediction

PPI Network Cleansing based on PPI Topology

Measures that correlate with function homogeneity and localization coherence

- Two proteins participating in same biological process are more likely to interact
- Two proteins in the same cellular compartments are more likely to interact

CD-distance & FS-Weight: Based on concept that two proteins with many interaction partners in common are likely to be in same biological process & localize to the same compartment

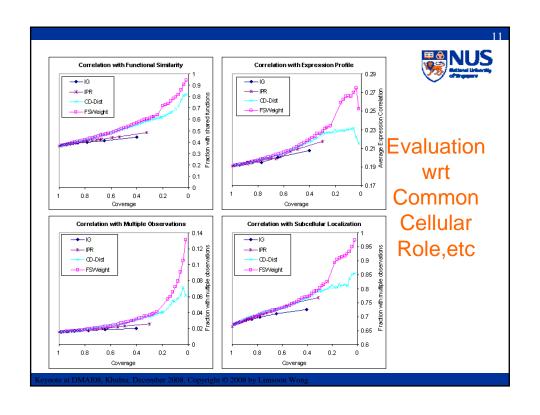
Czekanowski-Dice Distance (Brun et al, 2

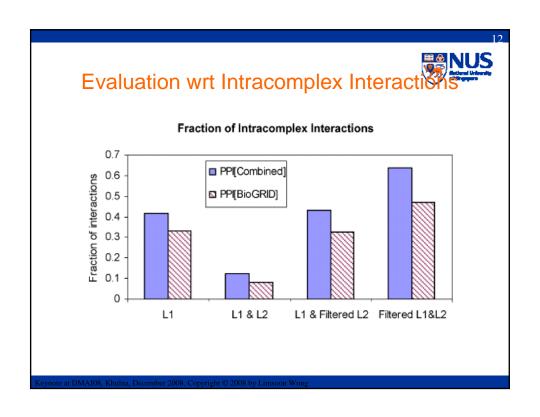
- · Given a pair of proteins (u, v) in a PPI network
 - $-N_u$ = the set of neighbors of u
 - $-N_v =$ the set of neighbors of v

• CD(u,v) =
$$\frac{2 |N_u \cap N_v|}{|N_u| + |N_v|}$$

- Consider relative intersection size of the two neighbor sets, not absolute intersection size
 - Case 1: $|N_u| = 1$, $|N_v| = 1$, $|N_u \cap N_v| = 1$, $|N_u \cap N_v| = 1$
 - Case 2: $|N_{u}| = 10$, $|N_{v}| = 10$, $|N_{u} \cap N_{v}| = 10$, CD(u,v) = 1

Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong



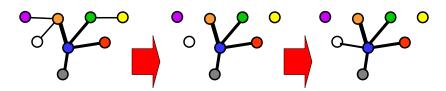

FSWeight (Chua et al, 2006)

- Try to overcome weakness of CD-distance
- FS(u,v) = $\frac{2 |N_u \cap N_v|}{|N_u| + |N_u \cap N_v| + \lambda_u} \times \frac{2 |N_u \cap N_v|}{|N_v| + |N_u \cap N_v| + \lambda_v}$
- λ_u and λ_v penalize proteins with few neighbors

$$- \lambda u = \max\{0, \frac{\sum_{x \in G} |N_x|}{|V|} - |N_u|^2\}, \ \lambda v = \max\{0, \frac{\sum_{x \in G} |N_x|}{|V|} - |N_v|^2\}$$

- Suppose average degree is 4, then
 - Case 1: $|N_{ij}| = 1$, $|N_{ij}| = 1$, $|N_{ij} \cap N_{ij}| = 1$, FS(u,v)=4/25=0.16
 - Case 2: $|N_u| = 10$, $|N_v| = 10$, $|N_u \cap N_v| = 10$, FS(u,v)=1

Impact of Cleansing on PPI-Based Protein Complex Prediction Methods



PPI-Based Complex Prediction Algorithm

	RNSC	MCODE	MCL
Туре	Clustering, local search cost based	Local neighborhood density search	Flow simulation
Multiple assignment of protein	No	Yes	No
Weighted edge	No	No	Yes

- Issue: recall vs precision has to be improved
- Does a "cleaner" PPI network help?
- How to capture non-ball-like complexes?

- Modify existing PPI network as follow
 - Remove level-1 interactions with low FS-weight
 - Add level-2 interactions with high FS-weight
- Then run RNSC, MCODE, MCL, & PCP

Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong

PCP Algorithm:

Dealing w/ Non-Ball-like Complexes?

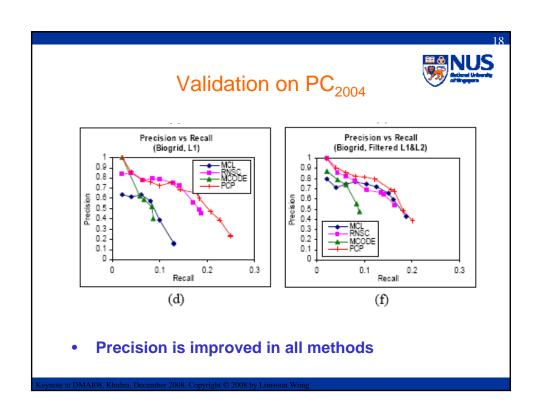
- Find all max cliques in the modified PPI network
- Merge resulting (partial) cliques with good intercluster density

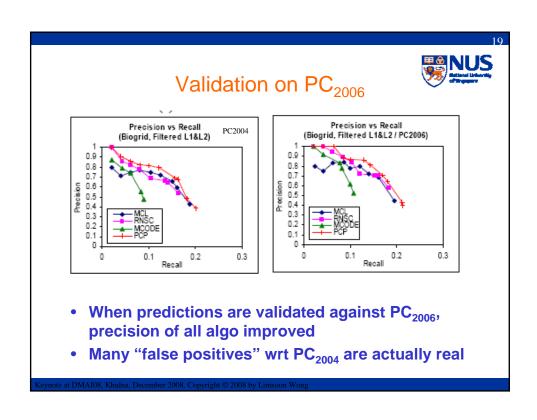
$$ICD(S_a, S_b) = \frac{\sum FS(i, j) | i \in (V_a - V_b), j \in (V_b - V_a), (i, j) \in E}{\left|V_a - V_b\right| \cdot \left|V_b - V_a\right|}$$

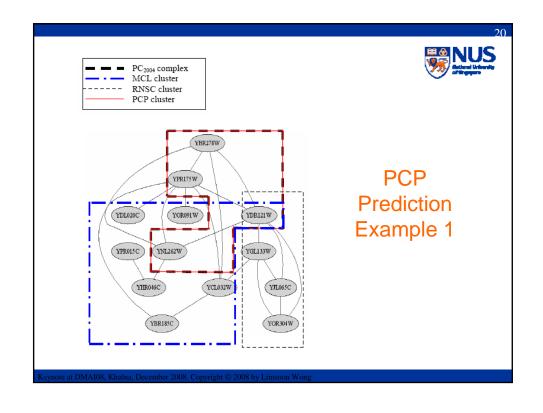
- Modify the PPI network by treating the merged partial cliques as vertices
- Iterate the steps above

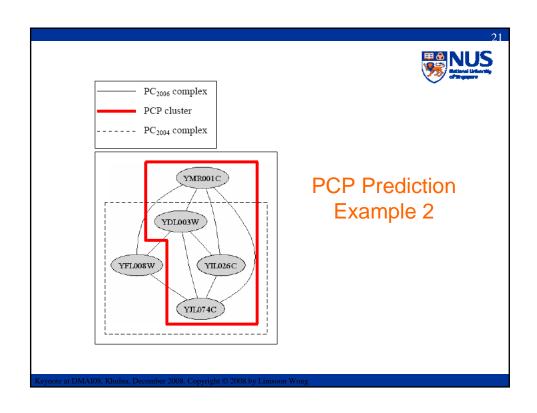
Chua et al, JBCB, 6:435-466, 2008

Experiments


- PPI datasets
 - PPI[BioGRID], BioGRID db from Stark et al., 2006
- Gold standards
 - PC₂₀₀₄, Protein complexes from MIPS 03/30/2004
 - PC₂₀₀₆, Protein complexes from MIPS 05/18/2006


Validation criteria


$$overlap(S,C) = \frac{|V_s \cap V_c|^2}{|V_s| \cdot |V_c|}$$


where

- S = predicted cluster
- C = true complex
- V_x = vertices of subgraph defined by X
- Overlap(S,C) ≥ 0.25 is considered a correct prediction

Conclusions

- Precision of protein complex prediction can be improved by
 - PPI network augmented with level-2 interactions
 - PPI network cleansed by FS-weight
- Clique merging may capture more possibly nonball-like complexes

Recent Improvement to PPI Network Cleansing & PPI-Based Protein Complex Prediction

Local Topological Metric

 Variant of CD-distance that penalizes proteins with few neighbors

$$wL(u,v) = \frac{2 |N_{u} \cap N_{v}|}{|N_{u}| + \lambda_{u} + |N_{v}| + \lambda_{v}}$$

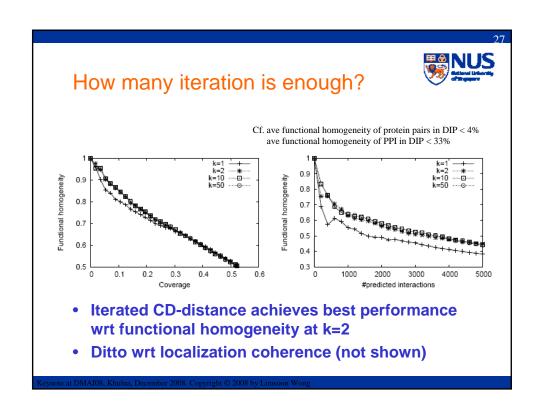
$$\lambda_{u} = \max\{0, \frac{\sum_{x \in G} |N_{x}|}{|V|} - |N_{u}|\}, \lambda_{v} = \max\{0, \frac{\sum_{x \in G} |N_{x}|}{|V|} - |N_{v}|\}$$

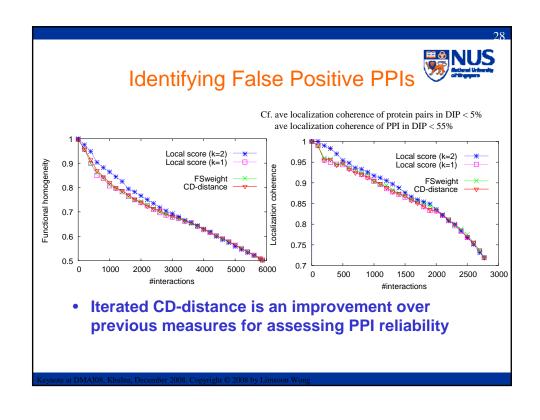
- Iterate local topological metric
 - Weight of interaction reflects its reliability
 - Can get better results if we use this weight to recalculate the score of other interactions?

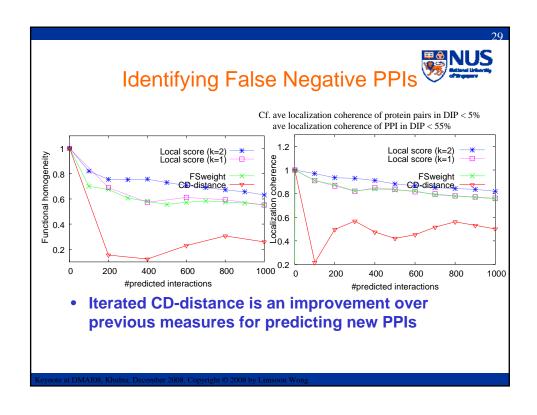
wL⁰(u,v) = 1 if (u,v)∈G, otherwise wL⁰(u,v)=0

•
$$\mathbf{wL^1(u,v)} = \frac{|N_u \cap N_v| + |N_u \cap N_v|}{|N_u| + \lambda_u + |N_v| + \lambda_v}$$

• wL^k(u,v) =
$$\frac{\sum_{x \in Nu \cap Nv} wL^{k-1}(u,x) + \sum_{x \in Nu \cap Nv} wL^{k-1}(v,x)}{\sum_{x \in Nu} wL^{k-1}(u,x) + \lambda^{k} u + \sum_{x \in Nv} wL^{k-1}(v,x) + \lambda^{k} v}$$

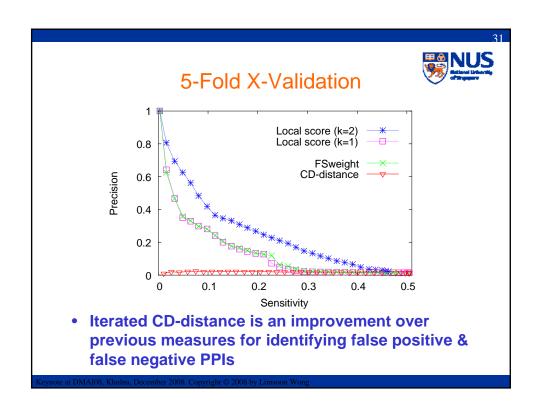

•
$$\lambda_{u}^{k} = \max\{0, \frac{\sum_{x \in V} \sum_{y \in Nx} w_{L}^{k-1}(x, y)}{|V|} - \sum_{x \in Nu} w_{L}^{k-1}(u, x)$$


•
$$\lambda_{v}^{k} = \max\{0, \frac{\sum_{x \in V} \sum_{y \in Nx} wL^{k-1}(x, y)}{|V|} - \sum_{x \in Nv} wL^{k-1}(v, x)$$
 }


Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong

Validation of Iterated CD-Distance

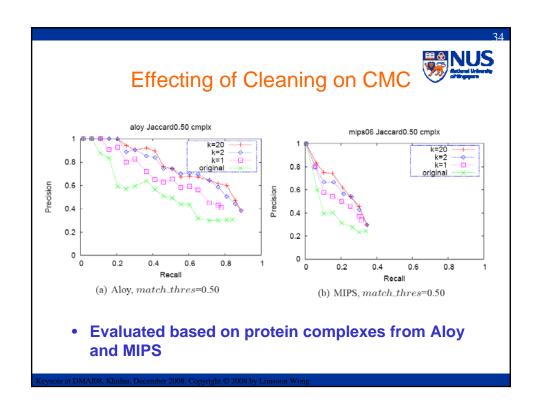
- DIP yeast dataset
 - Functional homogeneity is 32.6% for PPIs where both proteins have functional annotations and 3.4% over all possible PPIs
 - Localization coherence is 54.7% for PPIs where both proteins have localization annotations and 4.9% over all possible PPIs
- Let's see how much better iterated CD-distance is over the baseline above, as well as over the original CD-distance/FS-weight

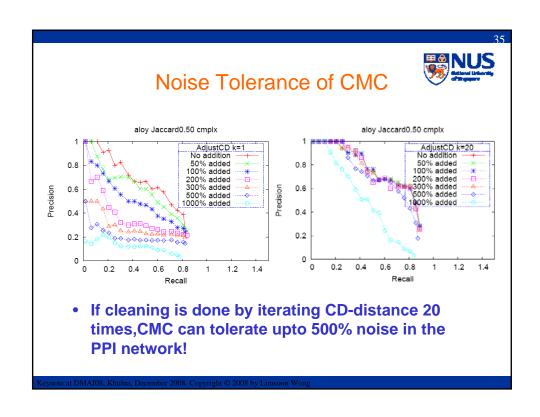


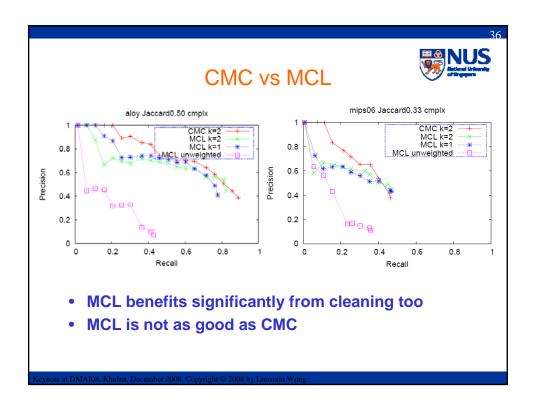
5-Fold Cross-Validation

- DIP core dataset
 - Ave # of proteins in 5 groups: 986
 - Ave # of interactions in 5 training datasets: 16723
 - Ave # of interactions in 5 testing datasets: 486591
 - Ave # of correct answer interactions: 307
- Measures:
 - sensitivity =TP/(TP + FN)
 - specificity =TN/(TN + FP)
 - #negatives >> #positives, specificity is always high
 - >97.8% for all scoring methods
 - precision =TP/(TP + FP)

Now we can make protein complex prediction as follows...


- Remove noise edges in the input PPI network by discarding edges having low iterated CD-distance score
- Augment the input PPI network by addition of missing edges having high iterated CD-distance score
- Predict protein complex by finding and merging maximal cliques


CMC --- Clustering based on Maximal Cliques



Validation Experiments

- Matching a predicted complex S with a true complex C
 - Vs: set of proteins in S
 - Vc: set of proteins in C
 - Overlap(S, C) = $|Vs \cap Vc| / |Vs \cup Vc|$
 - Overlap(S, C) \geq 0. 5
- Evaluation
 - Precision = matched predictions / total predictions
 - Recall = matched complexes / total complexes
- Datasets: BioGrid yeast
 - #interactions: 38555
 - #interactions with >0 common neighbor: 27940

What have we learned?


- Guilt by association of common interaction partners is useful for predicting
 - PPI cellular localization
 - Missing PPIs
 - Protein complexes
- Acknowledgement
 - Kenny Chua, Guimei Liu

Keynote at DMAI08, Khulna, December 2008. Copyright © 2008 by Limsoon Wong

Readings

- H.N. Chua, et al. Using Indirect Protein-Protein Interactions for Protein Complex Prediction. Journal of Bioinformatics and Computational Biology, 6(3):435--466, 2008
- G. Liu, J. Li, L. Wong. "Assessing and predicting protein interactions using both local and global network topological metrics", *Proc GIW2008*

