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Plan

• Protein Function Prediction
– Guilt by Association of Seq Similarity

• Guilt by Association of Common Friends

• Guilt by Association of Multiple Types of Info
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Protein Function Prediction: 
Motivation & Challenges
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• A protein is a large 
complex molecule 
made up of one or 
more chains of amino 
acids

• Protein performs a 
wide variety of 
activities in the cell
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Function Assignment to Protein Seq

• How do we attempt to assign a function to a new 
protein sequence?

SPSTNRKYPPLPVDKLEEEINRRMADDNKLFREEFNALPACPIQATCEAASKEENKEKNR
YVNILPYDHSRVHLTPVEGVPDSDYINASFINGYQEKNKFIAAQGPKEETVNDFWRMIWE
QNTATIVMVTNLKERKECKCAQYWPDQGCWTYGNVRVSVEDVTVLVDYTVRKFCIQQVGD
VTNRKPQRLITQFHFTSWPDFGVPFTPIGMLKFLKKVKACNPQYAGAIVVHCSAGVGRTG
TFVVIDAMLDMMHSERKVDVYGFVSRIRAQRCQMVQTDMQYVFIYQALLEHYLYGDTELE
VT
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An Early Example of Seq Analysis

• Doolittle et al. (Science, July 1983) searched for 
platelet-derived growth factor (PDGF) in his own 
DB. He found that PDGF is similar to v-sis 
oncogene
PDGF-2  1       SLGSLTIAEPAMIAECKTREEVFCICRRL?DR?? 34
p28sis 61 LARGKRSLGSLSVAEPAMIAECKTRTEVFEISRRLIDRTN 100

⇒“Guilt by association” of sequence similarity!

Source: Ken Sung
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Important Unsolved Challenges

• What if there is no useful seq homolog?
• Guilt by other types of association!

– Domain modeling (e.g., HMMPFAM)
– Similarity of dissimilarities (e.g., SVM-PAIRWISE)
– Similarity of phylogenetic profiles
– Similarity of subcellular co-localization & other 

physico-chemico properties(e.g., PROTFUN)
– Similarity of gene expression profiles
– Similarity of protein-protein interaction partners
– Fusion of multiple types of info

Edinburgh, October 2007

Guilt by Association of 
Common Friends:

Protein Function Prediction
from Protein Interactions

Level-2 neighbour
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Protein Interaction Based Approaches
• Neighbour counting 

(Schwikowski et al, 2000)

• Rank function based on freq 
in interaction partners

• Chi-square (Hishigaki et al, 2001)

• Chi square statistics using 
expected freq of functions in 
interaction partners

• Markov Random Fields (Deng 
et al, 2003; Letovsky et al, 2003)

• Belief propagation exploit 
unannotated proteins for 
prediction

• Simulated Annealing (Vazquez et 
al, 2003)

• Global optimization by 
simulated annealing 

• Exploit unannotated proteins 
for prediction

• Clustering (Brun et al, 2003; Samanta et al, 
2003)

• Functional distance derived 
from shared interaction 
partners

• Clusters based on functional 
distance represent proteins 
with similar functions

• Functional Flow (Nabieva et al, 2004)

• Assign reliability to various 
expt sources

• Function “flows” to 
neighbour based on 
reliability of interaction and 
“potential”

• Indirect Functional Assoc 
(Chua et al, 2006)

• Identification of reliable 
common interaction partners
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Functional Association Thru Interactions
• Direct functional association:

– Interaction partners of a protein 
are likely to share functions w/ it

– Proteins from the same 
pathways are likely to interact

• Indirect functional association
– Proteins that share interaction 

partners with a protein may also 
likely to share functions w/ it

– Proteins that have common 
biochemical, physical properties 
and/or subcellular localization 
are likely to bind to the same 
proteins

Level-1 neighbour

Level-2 neighbour
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An Illustrative Case of 
Indirect Functional Association?

• Is indirect functional association plausible?
• Is it found often in real interaction data?
• Can it be used to improve protein function 

prediction from protein interaction data?

SH3 Proteins SH3-Binding
Proteins
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Materials

• Protein interaction data from General Repository 
for Interaction Datasets (GRID)
– Data from published large-scale interaction 

datasets and curated interactions from literature 
– 13,830 unique and 21,839 total interactions
– Includes most interactions from the Biomolecular 

Interaction Network (BIND) and the Munich 
Information Center for Protein Sequences (MIPS)

• Functional annotation (FunCat 2.0) from Compre-
hensive Yeast Genome Database (CYGD) at MIPS
– 473 Functional Classes in hierarchical order
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Validation Methods
• Informative Functional Classes

– Adopted from Zhou et al, 1999
– Select functional classes w/

• at least 30 members
• no child functional class w/ 

at least 30 members

• Leave-One-Out Cross Validation
– Each protein with annotated 

function is predicted using all 
other proteins in the dataset
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YBR055C
|11.4.3.1

YDR158W
|1.1.6.5
|1.1.9

YJR091C
|1.3.16.1
|16.3.3

YMR101C
|42.1

YPL149W
|14.4
|20.9.13
|42.25
|14.7.11

YPL088W
|2.16
|1.1.9

YMR300C
|1.3.1

YBL072C
|12.1.1

YOR312C
|12.1.1

YBL061C
|1.5.4
|10.3.3
|18.2.1.1
|32.1.3
|42.1
|43.1.3.5
|1.5.1.3.2

YBR023C
|10.3.3
|32.1.3
|34.11.3.7
|42.1
|43.1.3.5
|43.1.3.9
|1.5.1.3.2

YKL006W
|12.1.1
|16.3.3 YPL193W

|12.1.1

YAL012W
|1.1.6.5
|1.1.9

YBR293W
|16.19.3
|42.25
|1.1.3
|1.1.9

YLR330W
|1.5.4
|34.11.3.7
|41.1.1
|43.1.3.5
|43.1.3.9

YLR140W

YDL081C
|12.1.1

YDR091C
|1.4.1
|12.1.1
|12.4.1
|16.19.3

YPL013C
|12.1.1
|42.16

YMR047C
|11.4.2
|14.4
|16.7
|20.1.10
|20.1.21
|20.9.1

Freq of Indirect Functional Association

Source: Kenny Chua
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Prediction Power By Majority Voting
• Remove overlaps in level-1 

and level-2 neighbours to 
study predictive power of 
“level-1 only” and “level-2 
only” neighbours

• Sensitivity vs Precision 
analysis

• ni is no. of fn of protein i
• mi is no. of fn predicted for 

protein i
• ki is no. of fn predicted 

correctly for protein i

⇒ “level-2 only” neighbours
performs better

⇒ L1 ∩ L2 neighbours has 
greatest prediction power
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• Functional distance between two proteins (Brun et al, 2003)

• Nk is the set of interacting partners of k
• X Δ Y is symmetric diff betw two sets X and Y 
• Greater weight given to similarity

⇒Similarity can be defined as 

Functional Similarity Estimate:
Czekanowski-Dice Distance
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Is this a good 
measure if u 
and v have very 
diff number of 
neighbours?
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Functional Similarity Estimate:
FS-Weighted Measure
• FS-weighted measure

• Nk is the set of interacting partners of k
• Greater weight given to similarity

⇒Rewriting this as
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Correlation w/ Functional Similarity 

• Correlation betw functional similarity & estimates

• Equiv measure slightly better in correlation w/ 
similarity for L1 & L2 neighbours

Source: Kenny Chua
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Reliability of Expt Sources
• Diff Expt Sources have diff 

reliabilities
– Assign reliability to an 

interaction based on its 
expt sources (Nabieva et al, 2004)

• Reliability betw u and v 
computed by:

• ri is reliability of expt
source i,

• Eu,v is the set of expt
sources in which 
interaction betw u and v is 
observed

ReliabilitySource

0.265407Two Hybrid

1Synthetic Rescue

0.37386Synthetic Lethality

0.5Reconstituted Complex

0.891473Purified Complex

0.5Dosage Lethality

0.666667Biochemical Assay

0.455904Affinity Precipitation

0.823077Affinity Chromatography
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Functional Similarity Estimate:
FS-Weighted Measure with Reliability
• Take reliability into consideration when 

computing FS-weighted measure:

• Nk is the set of interacting partners of k
• ru,w is reliability weight of interaction betw u and v

⇒ Rewriting
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Integrating Reliability

• Equiv measure shows improved correlation w/ 
functional similarity when reliability of 
interactions is considered:
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Improvement to 
Prediction Power by Majority Voting

Considering only 
neighbours w/ FS 
weight > 0.2
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Improvement to 
Over-Rep of Functions in Neighbours

Source: Kenny Chua
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Use L1 & L2 Neighbours for Prediction

• FS-weighted Average

• rint is fraction of all interaction pairs sharing function
• λ is weight of contribution of background freq
• δ(k, x) = 1 if k has function x, 0 otherwise
• Nk is the set of interacting partners of k
• πx is freq of function x in the dataset
• Z is sum of all weights
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Performance of FS-Weighted Averaging

• LOOCV comparison with Neighbour Counting, 
Chi-Square, PRODISTIN
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Performance of FS-Weighted Averaging

• Dataset from Deng et al, 2003
– Gene Ontology (GO) Annotations
– MIPS interaction dataset

• Comparison w/ Neighbour Counting, Chi-Square, 
PRODISTIN, Markov Random Field, FunctionalFlow
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Freq of Indirect Functional 
Association in Other Genomes

D. melanogaster
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Effectiveness of FS Weighted 
Averaging in Other Genomes
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Conclusions

• Indirect functional association is plausible

• It is found often in real interaction data 

• It can be used to improve protein function 
prediction from protein interaction data

• It should be possible to incorporate interaction 
networks extracted by literature in the inference 
process within our framework for good benefit

Edinburgh, October 2007

Guilt by Association of 
Multiple Type of Information:
Protein Function Prediction

by Information Fusion
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Information Fusion

• Markov Random Fields (Deng et al., JCB, 2004)
– Maximum Likelihood
– Model data sources as binary relation betw

proteins

• Kernel Fusion (Lanckriet et al., PSB, 2004)
– Discriminative approach
– Models each data source w/ diff feature vectors
– Weighted linear combination of kernels via semi-

definite programming
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Difficulties w/ Information Fusion

• Differences in nature
– E.g., sequence homology vs PPI are very different 

relationships

• Differences in reliability
– E.g., noisy datasets such as Y2H PPI and gene 

expression

• Differences in scoring metrices
– E.g., E-Score from BLAST vs Pearson correlation 

between expression profiles
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Motivation
• Problems:

– Complex models such as MRF and Kernel Fusion 
are computationally expensive

– Difficult or not possible to identify contributing 
sources in a prediction

⇒A simple, flexible, and effective way to integrate 
data sources in predictions to allow users to 
exercise judgment
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Strategy – Step 1

• Model a data source as 
undirected graph G = 〈V,E〉

– V is a set of vertices; 
each vertex reps a 
protein

– E is a set of edges; each 
edge (u , v) reps a 
relationship (e.g. seq
similarity, interaction) 
betw proteins u and v

CDC34

CDC4

CDC53

CLN2

MET30
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Strategy – Step 2

• Combine graphs from 
different data sources 
to form a larger graph
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Strategy – Step 3

• Estimate edge 
confidence from 
contributing data 
sources

• Predict function by 
observing which 
functions occur 
frequently in the high-
confidence neighbours

{FA, FB}{FB, FC}

{FA, FD}

?
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Unified Confidence Evaluation

• Subdivide each data source into subtypes to 
improve precision (e.g., expt sources, sub-ranges 
of existing scores like E-scores)

• Estimate confidence of subtype k for sharing 
function f by:

• Ek,f is subset of edges of subtype k where each edge has 
either one or both of its vertices annotated with function f

• Sf(u,v) = 1 if u and v shares function f, 0 otherwise
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Discretization of Existing Scores

• Scores may come in many forms
– E.g., Blast e-values, Pearson’s correlation

• A simple approach to discretization
– Split ranges into n equal intervals
– Each interval becomes a new subtype
– Assume linearity in range
– Other strategies possible
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Combination of Confidence

• Combine confidence of data sources contributing 
to each edge:

• P(k.f) is confidence of edges of subtype k sharing function f
• Du,v is the set of subtypes of data sources which contains 

the edge (u,v)
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Function Prediction

• Weighted Average

• Sf(u) is score of function f for protein u
• ef(v) is 1 if protein v has function f, 0 otherwise
• Nu is set of neighbours of u
• ru,v,f is confidence of edge (u, v)
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An Expt on Multiple Data Sources
FSWeight

Neg log of E-score
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Comparison w/ Existing Approaches

ROC Scores for Functional Classes
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Comparison w/ Existing Approaches

Based on datasets from 2007
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Precision vs Recall
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Molecular Function

Biological Process Cellular Component

Combining all data 
sources outperforms 
any individual data 

source
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Precision vs Recall
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• Weighted Averaging 
predicts w/ better precision 
than transferring function 
from top blast hit

• Using all data sources 
outperforms topblast in both 
sensitivity and precisionMolecular Function

Biological Process Cellular Component

46

Edinburgh, October 2007 Copyright 2007 © Limsoon Wong

Conclusions

• We developed a simple graph-based method that 
combines multiple sources of data sources for 
function prediction

• Our method is simple, flexible and can report 
datasources contributing to each prediction

• We have shown that our method performs 
comparable, if not better, than existing 
approaches
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Any Question?


