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Tag SNP Selection

HKU, 12 May 2009

What is tag SNP?

e TagSNPis a
representative SNP in a
region of genome w/ high
linkage disequilibrium

2 2P SlIP S’:P S’:P
* Enable identification of e o Trcarearcr.. Aeres accenn.
genetic variation wio R Aa e eaacarer. Aeroasenas
genotyping each SNP in a \
chromosomal region s iuotyees 7

Haplotype1 CTCAAAGTACGGTTCAGGCA
Haplotype2 TTGATTGCGCAACAGTAATA
Haplotyped CCCOATCTGTOATACTOGOGTG

. Useful for discovering Haplotyped TCGATTCECGCGGTTCAGACA
genes responsible for
various disorders
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© Tag SNPs
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ERANUS
Motivation &z

» Genotyping all SNPs are very expensive

» Adjacent SNPs are often not independent

= Desirable to select a subset of SNPs (the tag SNPSs)
that are sufficient to infer all the other SNPs

» Existing tag SNP selection algo cannot handle
chromosomes containing more than 100k SNPs
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INUS
r2 Statistic O e

* Nearby SNPs are transmitted together
» So they tend to be highly associated

* r2 statistic is a common metric to measure
correlation of SNPs

= (snpi, spj) — (POY) = POOPY))

P(X)P(x)P(Y)P(y)

where P(XY), P(Xy), P(xY), P(xy) are freq of
possible alleles; P(X) =P(XY)+P(Xy), P(x)
=P(xY)+P(xy), etc
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EINUS
Example SNP Data Set ""‘""‘"‘"’

SNP1|SNP2| SNP3 | SNP4 | SNP5 | SNPE | SNPT | SNP&| SNPa

Major allele] A G G T A T [ A C
Minor allele] C A A [ T A T T G
locus 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 800
T11 A G G T A A T A C
T12 C A G C T T C A C
T21 A G A T A T c A G
s A G G T A F C ; C
T31 C A A C T A T A C
T32 A G G T A T Cc T C
T41 c A G c T T c A G
T42 A G G T A A T T G
T51 A A A T T A T A C
T52 A G A T A 53 C T C

(NP SNPZ)Z(P(AG)—P(A)P(G))Z _ (0607708 _, o0
’ P(A)P(C)P(G)P(A) 0.7*0.3*0.6%0.4
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{SNP,, ..., SNP,} > SNP, =

* LetY and y be major and minor alleles of SNP,

» Divide haplotypes H over S = {SNP,, ..., SNP,}
into groups X and x where

— H e Xif P(HY) > P(Hy)
— H e x otherwise

e Then

(s, sNpj) = (POY) = POOP(Y))*
P(X)P(X)P(Y)P(y)
where P(XY) = X, .« P(HY), P(X) = Z,.«x P(H), etc

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong




e —
EBANUS
-i-nn--u

e EnT

Example SNP Data Set

SNP1|SNP2| SNP3|SNP4| shps [shpe| shpT [shPe| shpe
- * Hapolotypes over S
Major allele] A G G T A T [ A C
Minorallele] ¢ | A4 | A [ T| 4 T T| 6 = {SNP7, SNP8} are
locus 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 {CA, TA, CT, TT}
T11 Alc|ls [Tl AalAalT]A]lC
T12 clale]c|t]T1]c]aAa]c H P(HY) | P(Hy)
T21 Alec|a]lT]Aa]lT]c]Aa]lGc
T22 Alec|les|1T]laAalT]lc]T]C cA |01 0.2 X
T31 clalalelr]alr]alc
T32 Alc|le [T |[AalT]c]T]cC TA | 0.3 0.0 X
T41 clale]celr]1T]c]alec
Ta2 Al c|e|T|A|A|T]|T]| G CT |03 0.0 X
T51 Al A|A]T|T|A|T]| A]|C
T52 Al | alt]lalt]lc]1]cC TT 0.0 0.1 X

(P(XY)=P(X)P(Y))>  (0.6—0.6%0.7)"

= =64.3%
P(X)P(X)P(Y)P(y) 0.6*0.4*0.7*0.3

r?({SNP7,SNP8}, SNP9) =

Btw, r2(SNP7,SNP9) = 0. 79%, r2(SNP8,SNP9) = 0.79%
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Tag SNP Selection =

* Given a set S of SNPs, find the smallest set of tag
SNPs S,,4 such that for every SNP; € S - S, there
is at least one SNP set S, c S, such that

— r%(S;, SNP;) > min_r?

- |§;| = max_size

— Distance betw every pair of SNPs in §; U {SNP;}
is no larger than max_dist
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Existing Algo
» Step 1: Correlations betw » Earlier tag SNP selection
SNPs within certain methods rely on pairwise
distance are calculated correlations

» Step 2: Find smallest set * MultiTag & MMTagger find

of tag SNPs using multimarker rules

correlations calculated in — {SNP1, SNP2, SNP3}

Step 1 - SNPX

— Cannot handle >100k SNP

* Most algo use greedy  MultiTag takes hundreds

approach to find a near of hours for 30k SNP

optimal set of tag SNPs in + MMTagger takes hours &

Step 2 1GB memory for 30k SNP

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

FastTagger
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FastTagger &z

» Step 1: Use data mining techniques to mine
tagging correlation rules

» Step 2: Use a greedy algorithm to select tag SNPs
using the tagging correlation rules generated

» Several techniques are employed to effectively
reduce the search space of Step 1 and memory
consumption of Step 2

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

INUS
FastTagger &=

 Four ideas to reduce # of rules to be tested and
generated

1. Merge nearby equiv SNPs

2. Prune redundant correlation rules

3. Skip rule if its RHS has been covered many times
4

. If total size of rules exceeds memory, divide
chromosome into blocks, and then find tag SNPs
within each block

— Can handle >100k SNPs using <50MB memory

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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Mining Tagging Correlation Rules~ =
¢ Possible combinations of

NULLG SNPs are tested in depth-
s o - first left-to-right manner

L

T N ; 0 N
ERVRERTINE TR T e 6 6T 68

LR
,
-

a2 wah Winday e i ©sn

Candidate RHS of each
SNP set S include all SNPs
within max_dist of every
» SE-tree of SNP SNPin S

combinations in our

running example

— SNP, represented by i * rZis computed for each S
_ Maxl dist = 300 in the SE-tree and each
_ Max size =3 SNP in its candidate RHS

= Those above min_r? are
the tagging correlation
rules
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G
Merge Nearby Equiv SNPs =

e Many SNPs have identical e Original SE-tree
occurrences. The r2 of

. . NULL{}
these equiv SNPs is o —
always 1 SO I I R R IR IO
‘ . ’ S —— I VY Y . “u
{21y {31} {3_:2} 4.1} -,;-_1.2} {/—1\:'_‘} S X . { }.i_9__.:8}
* Lemma: If SNP, and SNP, ol ead Wiy iy eh ohe e
are equiv, then for any ) )
SNP;, rA(SNP,, SNP)) = » SE-tree after merging equiv
r(SNP,, SNP)) SNPs is a lot smaller!
NULL()
« Optimization: Merge equiv WA m e W

SNPs within max_dist of o {3‘1}/3/= zﬁjl'}'_,{,;z:),{_,ﬁ!} @ Be oo by
each other, & use one as ] |
0 {3.2.1} {621} {631} {632} {8.6,2} {9.8,6}
the representative
1 merged with 4. 2 merged with 5. 6 merged with 7.
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TINUS
Prune Redundant Rules ""‘""‘"‘"’
* Definition:

If SNP; can be tagged by a SNP set S, then rule S’ -> SNP;,
such that S’ is a proper superset of S, is redundant

e Optimization: Prune
redundant rules

e To prune redundant rules,
before generate S > SNPj, oo
63y 52 e (0.6 T
(4

check if S' > SNP; where S’ R
cSis already generated {s_zﬁ {ﬁ,z‘,i':;f {ﬁ‘_;l'::/{élj):: (8.6.2) 986}

16.2}

» Easy to do given
enumeration order of SE-tree
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INUS
Skipping Rules &=

« If a SNP can be tagged by many other SNPs, then
during tag SNP selection process, the SNP has
high probability to be covered by selected tag
SNPs

* Optimization: If SNP; occurs in RHS of tagging
rules enough # of times, then SNPj need not be
considered as RHS candidate in future rule
generation

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong




Select Tag SNP Greedily

Stag = All SNPs not in RHS of any rule

Scovered = {SNP; | S > SNP;, S ¢ S, .} U S,

Pick SNP; ¢S,,, and SNP; covers largest # of SNPs
Add SNP; to S,

Goto Step 2 if there remains SNP ¢ S q

s R

The algo above requires FastTagger to keep all
rules in memory. Impossible if too many rules

= Divide chromosome into chunks. Run FastTagger
on each chunk separately

— FastTagger can handle >100k SNPs using 50MB

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

Performance Studies
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Data Sets &z
« Japanese and Han in HapMap release 21
— 45 unrelated individuals

— 6 chromosomes
e chr1. chr2. chr3. chr19. chr21 and chr22

Chromosome | #SNPs | #representative SNPs
chrl 149.716 70,823
chr2 169,905 84,098
chr3 135,058 63,814
chrl9 28,931 11,124
chr2l 28914 13,270
chr22 26,595 11,042

* Note greatly reduced # of rep SNPs after merging
of nearby equiv SNPs!

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

EBANUS
Comparison w/ MMTagger 85 s
Wang & Jiang. GIW2008
mar_size | min_r2 Running time #tag SNPs
Fast Tagger | MMTagger | FastTagger | MMTagger | Reduction ratio
chrl 1 0.9 0.08 - 50,446 - -
chr2 1 0.9 0.09 - 52,447
chr3d 1 0.9 0.08 - 44,984 -
chr19 1 0.9 0.01 - 12,488 -
chr21 1 0.9 0.02 - 10,138 -
chr22 1 0.9 0.02 - 10,411 - -
chrl 2 0.9 2.47 9.47 33,964 57,131 0.406
chrz 2 0.9 2.85 11.88 34,055 60,356 0.436
chr3 2 0.9 2.48 8.09 20,407 50,528 0.418
chr19 2 0.9 0.37 0.53 9,101 13,316 0.317
chr21 2 0.9 0.62 0.80 6,712 11,493 0.416
chr22 2 0.9 0.83 0.94 7,163 11,567 0.381
chrl 3 0.9 T4.27 - 28,219 - -
chr2 3 0.9 91.09 - 27,828 -
chr3 3 0.9 82.21 - 24,066 -
chrl9 3 0.9 9.08 - 7,835 -
chr21 3 0.9 20.81 - 5510 -
chr22 3 0.9 34.06 - 5,967 -
chrl 3 0.95 T7.25 - 35,496 -
chr2 3 0.95 95.92 - 35,435
chr3d 3 0.95 85.41 - 30,632 - -
chr19 3 0.85 9.42 61.00 9,433 10,032 0.060
chr21 3 0.95 21.43 T7.56 6,929 7,404 0.064
chr22 3 (.95 35.76 180.00 7,321 7,788 0.06
Heuristic for skipping rules turned off for fair comparison

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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Comparison w/ MMTagger ""‘""‘"’"’

FastTagger MMTagger
stepl step2
chrl | 12.17MEB | 375.83MB -
chr2 | 18.03ME | 613.57MB -
chrd | 11.73ME | 424.84MB -
chr19 | 2.07MB | 47.35MB 657MB
chr21l | 3.27MB | 83.50MB 1210MB
chr22 | 3.45MB 21.56MB 1216MB
Max_size =3, min_r2 = 0.95

« MMTagger consumes much more memory
— Failed on large chromosomes when max_size = 3

e Step 2 of FastTagger consumes much more memory than
Step 1 because this step needs to store rules generated in
the memory

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

Effectiveness of E...._l_é
Merging Nearby Equiv SNPs

merging SNPs without merging
mar_size | minr2 | time mem #tag SNPs Zrules time mem #tag SNPs #rules
chrl 2 0.9 2.47 | B5.8TMDB 33,964 937,806 27.57 | 221.56MB 34,121 13,363,677
chr2 2 0.9 2.85 | 69.14MB 34,055 1,340,978 | 34.69 | 304.55MB 34,224 20,559,496
chr3 2 0.9 2.48 | 53.10MB 20,407 974,249 25.30 | 216.87TMB 29,539 13,155,605
chrl9 2 0.9 0.37 5.84MB 9,101 134,866 3.47 29.10ME 9,132 1,665,499
chr21 2 0.9 0.62 | 11.59MB 6,712 152,416 6.87 44.62MB 6,733 2,605,213
chr22 2 0.9 0.83 | 10.75MB 7,163 170,649 T7.26 37.63MB 7,188 2,377,089
chr19 3 0.95 9.42 | 47.35MB 9,433 1,025,160 | 138.20 | 472.10MB 9,476 17,863,615
chr2l 3 0.95 21.43 | 83.59MB 6,929 1,859,282 | 318.32 | 937.55MB 6,960 35,365,338
chr22 3 0.95 35.76 | 81.56MDB 7321 1,775,501 | 409.39 | 790.65MB 7,342 31,025,297

» # of rules, tag SNPs, and runtime are significantly
reduced

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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Effectiveness of ._.@.._L_E
Pruning Redundant Rules

with pruning without pruning
merm #rules mem #rules
chrl | 375.83MB | 8,473,070 | 1000.50MB | 28,784,330
chr2 | 613.57TMB | 15,611,930 | 1473.02MB | 46,202,676
chrd | 424, 84MB | 9,942,665 | 1076.30MB | 31,521,519

Max_size =3, min_r2 = 0.95

* Memory usage and # rules are significantly
reduced

Copyright 2009 © Limsoon Wong
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E& Nlé

Effectiveness of Skipping Rules ==

no skipping cover_thres=5
time mem #tag SNPs Frules time mern F#tag SNPs | #rules
chrl | 77.25 | 375.83MB 35,496 8,473,070 | 59.43 | 193.90MB 36,180 3,466,008
chr2 | 95.92 | 613.5TMB 35,435 15,611,939 | 68.04 | 276.80MB 36,403 5,263,179
chrd | 85.41 | 424.84MB 30,632 9,942,665 | 64.13 | 207.24MB 31,303 3,845,950
chrl9 | 9.42 47.35MB 0,433 1,025,160 T7.87 27.87TMB 9,545 478,412
chr21 | 21.43 | 83.59MB 6,929 1,850,282 | 16.98 | 43.68MB 7.073 773,801
chr22 | 35.76 | 8L.56MB 7,321 1,775,501 | 29.25 | 44.11MB 7.445 776,435

 Memory usage and runtime are significantly
reduced, while # of tag SNPs is marginally

increased

Copyright 2009 © Limsoon Wong
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Conclusions

» Compared to existing genome-wide tag SNP
selection algo using multi-marker correlations,
FastTagger is

— Many times faster
— Consumes much less memory
— Can work on chromosomes with > 100k SNPs

* Merging equiv SNPs together is most effective
technique in reducing running time and memory
consumption

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

Disease Gene Location Inference
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ERANUS
Motivation &z

 ldentification of disease gene location has big
impact on patient treatment planning

* Major challenge: How to maximize haplotype info
extraction in association mapping of disease
under extreme conditions

— # of samples with mutation of interest is very low
— Samples contain lots of errors and noise

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

INUS
Some Previous Works ==
e BLADE [Liu, 2001] * HapMiner [Li & Jiang, 2005]
— MCMC-based Bayesian — Density-based clustering
parameter estimation — “Model free”, no need
— Assume all mutations occur genealogy info
in same location — Very fast, but sensitive to
= No locus heterogeneity clustering parameters
« HPM [Toivonen, 2000] ¢ GeneRecon [Mailund, 2006]
— Mine freq patterns in cases — “Shattered coalescent”,
— %2 test to discriminate cases allow multiple founding
Vs controls mutations
— Markers w/ largest freq in — Take long time to process a
significant patterns = few hundred samples with a
disease gene location few tens of markers

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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LinkageTracker

HKU, 12 May 2009

LinkageTracker

* Model free; no need any population ancestry info
about disease and genealogy of haplotypes

* No need to set complex parameters prior to the
disease gene location inference process

« Two steps
1. Discover linkage disequilibrium patterns by
constrained level-wise search
2. Marker inference via Fisher's P-value estimation
method

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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Constrained Level-Wise Search &~ ==

* LinkageTracker mine patterns <dx1, dx2, ..., dxk>
— dxi = allele of marker i of sample x
— dxi = * means missing marker allele
- E.g., (3,5,6,%,*,4)

» Allelic association beyond 20cM is weak [Long &
Langley, 1999]

= Enumerate all possible patterns <dx1, dx2, ...,
dxk> where markers in a pattern is no more than
20cM apart

» Score patterns using odds ratio

» Pick patterns w/ significant P-value
HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

INUS
Marker Inference &

» X(c) follows y2 distribution w/ df=2n [Fisher 1970]
= Can infer combined P-value from X(c)
= Pick marker with best combined P-value

Marker 123456 P-Value c=-2"In(P)
Pattern01 43w 0.0090 9.4211
Pattern02 24**61 0.0065 10.0719
Pattern(3 2435 %+ 0.0030 11.6183
Pattern04 *E IS5 0.0100 9.2103
Pattern05 24*56* 0.0045 10.8074
Freq Z(c) Combine P-Falue
Marker 1 allele 2 3 32,4975 1.3098E-05
Marker 2 allele 4 4 41.9186 1.4027E-06
Marker 3 allele 3 3 30.2497 3.5236E-05
Marker 4 allele 5 3 31.6390 1.9160E-05
Marker 5 allele 6 2 10,0719 0.0392
Marker 6 allele 1 2 19.2822 0.007

17



Performance Studies
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23 bi-allelic markers
around CFTCR gene

92 control haplotypes, 94
disease haplotypes

Founder mutation is betw
marker 17 and 18

67% of disease haplotypes
carry founder mutation

Disease haplotypes have
39% missing info

HKU, 12 May 2009

To study disease gene
location inference w/
noise, we divide this CF
data set into 3 subsets

— Set A: Disease
haplotypes carrying
founder mutation, 63
samples

— Set B: Disease
haplotypes w/o founder
mutation, 31 samples

— Set C: Control group
haplotypes, 92 samples

Copyright 2009 © Limsoon Wong
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ZINUS
Standard Conditions ——
* Pick 50 from Sets A & B as cases
* Pick 50 from Set C as controls
T Standard | .| Avg Time
I Avg .
D t . ( -
o | s | G
Blade 0.0036 0.01564 58.0202
HapMiner 0.0129 0.00588 1.986
HapMiner . -
“}: Mtf;; 0.0354 | 004376
LinkageTracker 0.0043 0.00811 125.534
GeneRecon 0.0149 001466 | 4775.6566
* HapMiner is most accurate & very fast, but
parameter sensitive
e LinkageTracker is 29, but more consistent

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

INUS
Low Occurrence O e

e Can we find the founder mutation under
conditions of low occurrence?

e Combine Set A and Set C to form data sets with
x% founder mutations

* E.g., for x=20, we take

— 10 from Set A and 40 from Set C & label them as
“cases”

— 50 from Set C & label them as “controls”

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong




ERANUS
Low Occurrence &=

Stan-
dard
deviation| A‘? SS;E
lAvg SSE 10% | 20% | 30% | 40% | 50% |ofSSE | °V¢F°
o | different
aver 5 o
different °
o,
Blade 0.41200( 0.42290 | 0.02427 | 0.02025 |0.00691 [0.21938| 0.17727
[HapMiner 0.11264( 0.02765 [ 0.13234 | 0.00380 |0.01647 | 0.05936 | 0.05858
[HapMiner .
\(Modified) 0.28143( 0.21786 (0.06756 | 0.24051 |0.05967 | 0.10282 | 0.17341
[Link-

0.01860( 0.02751 |0.04065|0.01047 |0.00035| 0.01549 | 0.01952
lageTracker

GeneRecon  |0.03386|0.016987(0.01810| 0.02246 |0.01255| 0.00811 | 0.02079

Avg time over 5 Avg time with Linkage

different %o Tracker as base unit
Blade Im 11.47s 0.74
HapMiner 2.57s 0.03
LinkageTracker 1m 36,665 1
GeneRecon 2hirs 54m 32.235 108.33

» LinkageTracker is consistent, accurate & fast

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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Noisy Data &=

e Can we find the founder mutation under
conditions of high confounding noise?

i\“l\T]a“O“ Data type Sel-A Set-B Set-C Total
e Use SetB to Disease set | 5/63 | AI31 | 14192 50
10%
g ene rate Control set | - - 50/(92-14) 50
H isease /63 All /92 5
confoundlng 2% Disease set | 10/6. All 31 9/9 0
= Control set - - S0/{92-5) 50
noise
Disease set | 15/63 All 31 4/92 50
30%
Control set - - 50/(92-4) 50
Disease set | 20/63 30/31 - 50
40%
Control set | - - 50/92 50
Discase sel 25/63 25/31 - 50
0%
Control set | - - 50/92 50

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong




EINUS
Noisy Data G

Stan
dard "y
- Avg SSE
deviation| e &
lAvg SSE 10% | 20% | 30% | 40% | 50% | of SSE | o' -
different
over § 0
dilferent :
Yo
Inde 0.12414 [0.13140 [0.18466 [0.10704 |0.13875 [0.02902 013720
E]h.pm...-r A2124 [0.00010 0.00010 0.00010 0.00010 0.18833 [0.08433
[HapMiner 04986 [0.23604 0.05109 0.05604 |0.03199 008492 008501
Modified)
Link- 00627 001580 001004 000232 000619 000501 |0.00835
ageTracker
lGeneRecon  [0-02467 [0.01305 [0.01078 [0.02759 [0.02283 0.00742 (0.01979
Avg time over 5 Avg time with Linkage
different %o Tracker as base unit
Blade 47.855 0.31
HapMiner 1.53s 0.01
LinkageTracker 2m 33.29s 1
GeneRecon Thr 21m 18.63s 31.83

» LinkageTracker is consistent, accurate, & fast

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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9 NUS
Simulated Data Sets [Toivonen, 2009

* 100 data sets
« Each data set consists of
— 200 seq labeled “abnormal”
— 200 seq labeled “normal”
— Each seq consists of 101 markers
« Each dataset has a diff disease gene location

 The main task is to predict the marker that
nearest to the disease gene for each dataset

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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[T e
120
@ Haphiner
. 4 HPM
S I m u | ate d 100 * LinkageTracker|
Data Sets g
< 60
g
E 40
- 20 :_
* LinkageTracker
= 1] T T T T T
is accurate & ) » P " - — o
consistent. It is True Location
IeaSt affeCted Avg SS5E over 100 :':sg(.:‘f‘t':l ':L::u??;::;;
by (0] utl ie rs datasets llnl:lbt:llt"illit;:jl}ug the
HPM 86.71 15.47
HapMiner 76.91 1385

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong

EINUS
5 i

Conclusions
Method Accuracy Consistency |Speed
BLADE X XX
GeneRecon | xx XX
HapMiner XXX XX XXX
Linkage XXX XXX XX
Tracker

» LinkageTracker is consistently accurate under
extreme conditions of low occurrence & high noise

» Itis fast enough for data sets of small/medium size

HKU, 12 May 2009 Copyright 2009 © Limsoon Wong
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