

Fun With Invariants

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
- Remove 2 beans
- If both green, discard both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind,
can you predict its colour?

Shall we bet on the color of the bean that is left behind?

Bet on the last green bean

- Suppose you have a bag of x red beans and y green beans
- Repeat the following: - Start with $y=2 n+1$
- Remove 2 beans
- If both green, discard - $y=2 n+1 \rightarrow y=2 n-1$ both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind, - y remains odd can you predict its colour? \Rightarrow Last bean must be green!

The 21-Card Trick
4. Again, he stacks up the 3 piles on top of each other and redistribute, from top to bottom and left to right, into 3 equal piles from a deck of 21 cards as your card. Do not tell him what the card is
5. He repeats step (3) and (4) 2 more times
6. Finally, he deals your card right out from the rest of the 21 cards!

How does he manage that?!

What is the invariant?

- Mitochrondrial DNA accumulates 1 mutation about every 10,000 years
- Human history is not so long relative to this
\Rightarrow When a nucleotide in mitochrondrial DNA is mutated it stays mutated through future generations

Origin of Polynesians [[9\%	
Seq from Taiwan natives have variants 189, 217 Seq from regions in betw have 261.	

- The invariant:

When a nucleotide in mitochrondrial DNA is mutated it stays mutated through future generations

- The lesson learned:

Figure out origins of Polynesians by logical reasoning on invariant

What is a good database design?

Design Issues

- How many possible alternate ways to represent movies using tables?
- Why this particular set of tables to represent movies?
- Indeed, why not use this alternative single table below to represent movies?
Wrong Movies
Wrong MoVies

Titte	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- The invariants:
BCNF is an invariant of a good database design
- The lesson learned:
Deliver a better database design by fixing violated invariants

38					
1 mpact					
ORACLE CORPORATION Q3 FISCAL 2010 FINANCIAL RESULTS CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS ($\$$ in millions, except per share data)					
	2010	Throo Manths Endod Fobruary 28,		$\begin{gathered} \text { \% of } \\ \text { Revenues } \end{gathered}$	\% Increase Decrease) in US \$
REVENUES New software licanses Software license updates and product support Software Revenues Hardware systems products Hardware systems sup port Hardware Systems Revenues Services Total Revenues	 $\$$ 1.718 3,297 5.015 273 185 458 931 6.404	27% 51% 78% 4% 3% 7% 15% 100%	\$1.516 2.917 4.433 -	28\% 53% 81% 0% 0% 0% 18% 100%	13% 19% 13% \vdots $\%$ $18 \%)$ 17%
Copyright 2010 © Limsoon Wong					

What does this program do?
$F(a, 0)=1$
$F(a, n+1)=a$ * $F(a, n)$

- We see that

Exponentiation

$$
a^{n}=\underbrace{a \times \cdots \times a}_{n} \text {, }
$$

$F(a, n)=a^{n}$

How to make computers safer?

Semantic integrity

- Current integrity monitoring systems focus on the scalar nature of the monitored data
- Work for scalar (i.e., invariant) data
- Don't work for non-scalar data
- Semantic integrity
- Monitor non-invariant portions of a system via predicates that remain valid during the proper operation of the system
- I.e., monitor invariant dynamic properties!

Impact

"Nus

- 2008: Komoku (kHIVE) acquired by Microsoft
- 2009: Put into MS Security Essentials (~4m hosts)
- 2010: Put into Windows Update (~500m hosts)
"There is no other field out there where you can get right out of university and define substantial aspects of a product that is going to go out and over 100 million people are going to use it". ---Bill Gate

What have we learned?
- Invariant is a fundamental property of many
problems
- Paradigms of problem solving
- Problem solving by logical reasoning on invariants
- Problem solving by rectifying/monitoring violation
\quad of invariants
- Guilt by association of invariants
- Solution optimization by preserving invariants

I didn't get to telling you yet, but ...
- Every time you write a loop in a program, it
involves an invariant
- Every time you do a recursive function call, it
involves an invariant
- Every time you do an induction proof, it involves
an invariant
- ... Computing is about discovering,
understanding, exploiting, and having fun with
invariants!

