What do gambling, leukemia treatment, database design, and computer security have in common?

> Wong Limsoon 21 April 2012

Invariants: The Golden Thread of Science

Science is characterized by

- Observing an invariant, a law, etc...
- Proving that it is true
- Exploiting it to solve problems

Biology/Chemistry is no more about Petri dish & test tube than Computer Science is about programming

Plan

- What is an invariant? Problem solving by logical • reasoning on invariants Bet on color of the bean Efficiency of PTPs Fixing db design by rectifying Design a good database violation of invariants Guilt by association of invariants **Diagnose leukemia** ۲

•

•

•

Make computers safer ullet

Rootkit detection by monitoring violation of invariants

What is an invariant?

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
 - Remove 2 beans
 - If both green, discard both
 - If both red, discard one, put back one
 - If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?

Shall we bet on the color of the bean that is left behind?

Bet on the last green bean

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
 - Remove 2 beans
 - If both green, discard both
 - If both red, discard one, put back one
 - If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?

- When the parity of # of green beans (y) is odd, ...
- Start with y=2n+1
- $y=2n+1 \rightarrow y=2n-1$
- y=2n+1 → y=2n+1
- y=2n+1 → y=2n+1
- y remains odd
- \Rightarrow Last bean must be green!

Bet on the last red bean

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
 - Remove 2 beans
 - If both green, discard both
 - If both red, discard one, put back one
 - If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?

- When the parity of # of green beans (y) is even, ...
- Start with y=2n
- $y=2n \rightarrow y=2n-2$
- $y=2n \rightarrow y=2n$
- $y=2n \rightarrow y=2n$
- y remains even
- \Rightarrow Last bean must be red!

Bet on color of the last bean ... and W

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
 - Remove 2 beans
 - If both green, discard both
 - If both red, discard one, put back one
 - If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?

- If you start w/ odd # (even #) of green beans, there will always be an odd # (even #) of green beans in the bag
- ⇒ Parity of green beans is invariant
- ⇒ Bean left behind is green iff you start with odd # of green beans

What have we just seen?

 Problem solving by logical reasoning on invariants

24th Science Research Congress, UTown, NUS, 21/4/2012

Science is characterized by .

24th Science Research Congress, UTown, NUS, 21/4/2012

Why are some PTPs inefficient?

NUS National University of Singapore

Protein Tyrosine Phosphatase

Sequence from a typical PTP

>gi|00000|PTPA-D2 EEEFKKLTSIKIQNDKMRTGNLPANMKKNRVLQIIPYEFNRVIIPVKRGEENTDYVNASF IDGYRQKDSYIASQGPLLHTIEDFWRMIWEWKSCSIVMLTELEERGQEKCAQYWPSDGLV SYGDITVELKKEEECESYTVRDLLVTNTRENKSRQIRQFHFHGWPEVGIPSDGKGMISII AAVQKQQQQSGNHPITVHCSAGAGRTGTFCALSTVLERVKAEGILDVFQTVKSLRLQRPH MVQTLEQYEFCYKVVQEYIDAFSDYANFK

- Some PTPs are much less efficient than others
- Why? And how do you figure out which mutations cause the loss of efficiency?

Reasoning based on an invariant.

This site is conserved in D1, but is not consistently missing in D2 ⇒ Not a likely cause of D2's loss of function

This site is conserved in D1, but is consistently missing in D2 \Rightarrow Possible cause of D2's loss of function

Key Mutation Site: PTP D1 vs D2²²

gi|00000|P gi|126467| gi|2499753 gi|462550| gi|2499751 gi|1709906 gi|126471| gi|548626| gi|131570| gi|2144715

2 2 2 2 22 2 OFHFHGWPEVGIPSDGKGMISIIAAVOKOOOO-SGNHPITVHCSAGAGRTGTFCALSTVL ∕QFHFTSWPDFGVPFTPIGMLKFLKKVKACNP--QYAGAIVVHCSAGVGRTGTFVVIDAML OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OYHYTOWPDMGVPEYALPVLTFVRRSSAARM--PETGPVLVHCSAGVGRTGTYIVIDSML OF HF TSWPDHGVPDTTDLL INFRYLVRDYMKOSPPESPILVHCSAGVGRTGTFIAIDRLI QFQFTAWPDHGVPEHPTPFLAFLRRVKTCNP--PDAGPMVVHCSAGVGRTGCFIVIDAML QLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP--VHAGPIVVHCSAGVGRTGTFIVIDAMM OFHFTGWPDHGVPYHATGLLSFIRRVKLSNP--PSAGPIVVHCSAGAGRTGCYIVIDIML OFHFTGWPDHGVPYHATGLLGFVROVKSKSP--PNAGPLVVHCSAGAGRTGCFIVIDIML QFHFTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI **. *.* ***** **** * . .

- Positions marked by "!" and "?" are likely places responsible for reduced PTP activity
 - All PTP D1 agree on them
 - All PTP D2 disagree on them

Confirmation by Mutagenesis Expt

- Wet expts to confirm the prediction
 - Mutate $D \rightarrow E$ in D1
 - i.e., check if $D \rightarrow E$ can cause efficiency loss
 - Mutate $E \rightarrow D$ in D2
 - i.e., show $\mathsf{D}\to\mathsf{E}$ is the cause of efficiency loss

Impact: Hundreds of mutagenesis expts saved by simple reasoning on (violation of) invariants!

What is a good database design?

Relational Data Model

Contracts

	Contract No	Star	Studio	Title	S	alary
(salary)	1	Carrie Fisher	Fox	Star W	lars \$	\$\$
	2	Mark Hamill	Fox	Star W	lars \$	\$\$
Contracts	3	Harrison Ford	Fox	Star W	lars \$	\$\$
Star-of Studio-of	Movie-of		Stars Name		Address	
\forall	filmI		Carrie F		Hollywoo	
Stars Studios	Movies	nes.	Mark Ha	mill	Brentwo	od
	leng	th	Harrison	n Ford	Beverly	Hills
name addr	AA	Movies				
(name) (addr)	\sim	Title	Year	Length	Film	Гуре
$\bigcirc \bigcirc \bigcirc$	Strate Strategics	Mighty Ducks	1991	104	Color	,
		Wayne's World	1992	95	Color	,
		Star Wars	1977	124	Color	,

24th Science Research Congress, UTown, NUS, 21/4/2012

Design Issues

- How many possible alternate ways to represent movies using tables?
- Why this particular set of tables to represent movies?
- Indeed, why not use this alternative single table below to represent movies?

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

Anomalies

9

• What's wrong with the "Wrong Movies" table?

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- Redundancy: Unnecessary repetition of info
- Update anomalies: If Star Wars is 125 min, we might carelessly update row 1 but not rows 2 & 3
- Deletion anomalies: If Emilio Estevez is deleted from stars of Mighty Ducks, we lose all info on that movie

24th Science Research Congress, UTown, NUS, 21/4/2012

Some Interesting Questions

- How to differentiate a good database design from a bad one?
- How to produce a good database design automatically from a bad one?

Functional Dependency

- If two rows of a table R agree on attributes $A_1, ..., A_n$, then they must also agree on attributes $B_1, ..., B_m$

 \Rightarrow Values of B's depend on values of A's

• FD (A₁, ..., A_n \rightarrow B₁, ..., B_m) is trivial if a B_i is an A_j

Wrong N	Aovies	
Title	Veer	Lana

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

Example: Title, Year → Length, Film Type, Studio

- Key is a minimal set of attributes {A₁, ..., A_n} that functionally determine all other attributes of a table
- Superkey is a set of attributes that contains a key

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

Wrong Movies

• Example superkey: Any set of attributes that contains {Title, Year, Star} as a subset

Boyce-Codd Normal Form

- A relation R is in Boyce-Codd Normal Form iff whenever there is a nontrivial FD (A₁, ..., A_n → B₁, ..., B_m) for R, it is the case that {A₁, ..., A_n} is a superkey for R
- Theorem (Codd, 1972)

A database design has no anomalies due to FD iff all its relations are in Boyce-Codd Normal Form

How is BCNF violated here?

Title	Year	Length	Film Type Studio		Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

• A nontrivial FD:

- Title, Year \rightarrow Length, Film Type, Studio
- The LHS not superset of the key {Title,Year, Star} \Rightarrow Violate BCNF!
- Anomalies are due to FD's whose LHS is not superkey

Towards a Better Design

• Use an offending FD $(A_1, ..., A_n \rightarrow B_1, ..., B_m)$ to decompose R $(A_1, ..., A_n, B_1, ..., B_m, C_1, ..., C_h)$ into 2 tables

$$- R_1(A_1, ..., A_n, B_1, ..., B_m)$$

$$-R_2(A_1, ..., A_n, C_1, ..., C_h)$$

No deletion anomaly

Wrong	Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

TitleYearStarStar Wars1997Carrie FisherStar Wars1997Mark HamillStar Wars1997Harrison FordMighty Ducks1991Emilio Estevez

24th Science Research Congress, UTown, NUS, 21/4/2012

The "Invariant" Perspective

• The invariants:

BCNF is an invariant of a good database design

• The lesson learned:

Deliver a better database design by fixing violated invariants

 $\mathbf{77}$

ORACLE CORPORATION

Q3 FISCAL 2010 FINANCIAL RESULTS CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS

(\$ in millions, except per share data)

	Th	ree Months E	inde	d February 28	,	% Increase
		% of			% of	(Decrease)
	 2010	Revenues		2009	Revenues	in US\$
REVENUES						
New software licenses	\$ 1,718	27%	\$	1,516	28%	13%
Software license updates and product support	3,297	51%		2,917	53%	13%
Software Revenues	5,015	78%		4,433	81%	13%
Hardware systems products	273	4%		-	0%	*
Hardware systems support	185	3%		-	0%	*
Hardware Systems Revenues	458	7%		-	0%	*
Services	931	15%		1,020	19%	(9%)
Total Revenues	6,404	100%		5,453	100%	17%

24th Science Research Congress, UTown, NUS, 21/4/2012

Diagnosing Leukemias

Some Patient Samples

genes

Mr. A:

• Does Mr. A have cancer?

24th Science Research Congress, UTown, NUS, 21/4/2012

Let's rearrange the rows...

genes

Mr. A:

• Does Mr. A have cancer?

24th Science Research Congress, UTown, NUS, 21/4/2012

and the columns too...

genes

24th Science Research Congress, UTown, NUS, 21/4/2012

Genes for class distinction (n=271) MLL T-ALL Hyperdiploid >50 E2A-BCR-TEL-AML1 Novel PBX1 ABL

Diagnostic ALL BM samples (n=327)

24th Science Research Congress, UTown, NUS, 21/4/2012

Copyright 2012 © Limsoon Wong

32

What have we just seen?

Guilt by association of invariants

24th Science Research Congress, UTown, NUS, 21/4/2012

Exploit Invariant Gene Expr Profiles

- Low-intensity treatment applied to 50% of patients
- Intermediate-intensity treatment to 40% of patients
- High-intensity treatment to 10% of patients
- \Rightarrow Reduced side effects
- \Rightarrow Reduced relapse
- \Rightarrow **75-80% cure rates**

- US\$36m (US\$36k * 2000 * 50%) for low intensity
- US\$48m (US\$60k * 2000 * 40%) for intermediate intensity
- US\$14.4m (US\$72k * 2000 * 10%) for high intensity
- Total US\$98.4m/yr
- ⇒ Save US\$51.6m/yr, compared to applying intermediate-intensity treatment to everyone

Yeoh et al, Cancer Cell 2002

How to make computers safer?

COMPUTERWORLD An IDG

RSA: Microsoft on 'rootkits': Be afraid, be very afraid Rootkits are a new generation of powerful system-monitoring programs

News Story by Paul Roberts

FEBRUARY 17, 2005 (IDG NEWS SERVICE) - Microsoft Corp. security researchers are warning about a new generation of powerful system-monitoring programs, or "rootkits," that are almost impossible to detect using current security products and could pose a serious risk to corporations and individuals......the only reliable way to remove kernel rootkits is to completely erase an infected hard drive and reinstall the operating system from scratch.....

Credit: Bill Arbaugh

Copyright 2012 © Limsoon Wong

36

Rootkit Problem

- Traditional rootkits
 - Modify static scalar invariants in OS
 - kernel text
 - interrupt table
 - syscall table

Modern rootkits

- Direct Kernel Object
 Manipulation (DKOM)
- Rather than modify scalar invariants in OS, dynamic data of kernel are modified to:
 - Hide processes
 - Increase privilege level

Ē

38

Hiding a window process

24th Science Research Congress, UTown, NUS, 21/4/2012

Semantic integrity

- Current integrity monitoring systems focus on the scalar / static nature of the monitored data
 – Don't work for non-scalar / dynamic data
- Semantic integrity
 - Monitor non-invariant portions of a system via predicates that remain valid during the proper operation of the system
 - I.e., monitor invariant dynamic properties!

DKOM Example

- Semantic integrity predicate (ie., dynamic invariant) is
- There is no thread such that its parent process is not on the process list

⇒kHIVE (contains 20k other predicates)

24th Science Research Congress, UTown, NUS, 21/4/2012

What have we just seen?

 Maintain computer safety by checking violation of invariants!

24th Science Research Congress, UTown, NUS, 21/4/2012

Impact

- 2008: Komoku (kHIVE) acquired by Microsoft
- 2009: Put into MS Security Essentials (~4m hosts)
- 2010: Put into Windows Update (~500m hosts)

"There is no other field out there where you can get right out of university and define substantial aspects of a product that is going to go out and over 100 million people are going to use it". ---Bill Gate

What have we learned?

- Invariant is a fundamental property of many problems
- Paradigms of problem solving
 - Problem solving by logical reasoning on invariants
 - Problem solving by rectifying/monitoring violation of invariants
 - Guilt by association of invariants

Computer Science is no more about programming than Biology/Chemistry is about Petri dish & test tube