What do gambling, leukemia treatment, database design, and computer security have in common?

Wong Limsoon
21 April 2012

Invariants:
 The Golden Thread of Science

Science is characterized by

- Observing an invariant, a law, etc...
- Proving that it is true
- Exploiting it to solve problems

Biology/Chemistry is no more about Petri dish \& test tube than Computer Science is about programming

- What is an invariant?
- Bet on color of the bean
- Efficiency of PTPs
- Design a good database
- Diagnose leukemia
- Make computers safer
- Problem solving by logical reasoning on invariants
- Fixing db design by rectifying violation of invariants
- Guilt by association of invariants
- Rootkit detection by monitoring violation of invariants

What is an invariant?

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
- Remove 2 beans
- If both green, discard both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?

Bet on the last green bean

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
- Remove 2 beans
- If both green, discard both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind, - y remains odd can you predict its colour? \Rightarrow Last bean must be green!

Bet on the last red bean

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
- Remove 2 beans
- If both green, discard both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind, - y remains even can you predict its colour? \Rightarrow Last bean must be red!

Bet on color of the last bean ... and

- Suppose you have a bag of x red beans and y green beans
- Repeat the following:
- Remove 2 beans
- If both green, discard both
- If both red, discard one, put back one
- If one green and one red, discard red, put back green
- If one bean is left behind, can you predict its colour?
- If you start w/ odd \# (even \#) of green beans, there will always be an odd \# (even \#) of green beans in the bag
\Rightarrow Parity of green beans is invariant
\Rightarrow Bean left behind is green iff you start with odd \# of green beans

- What have we just seen?

- Problem solving by logical reasoning on invariants

Science is characterized by ...

Observing an invariant: Parity of green beans is invariant

Bet on the last red bean

- Suppose you have a bag of x red beans and y green beans
Proving it:

> Exploit it to solve problems: Predict colour of the last bean

Why are some PTPs inefficient?

Protein Tyrosine Phosphatase

 of Singapore>gi|00000|FTPA-D2

Sequence from a typical PTP

EEEFKKLTGIKIQNDFMPTGNLPANMEKWRWLQI IPYEFNRUI IPWKRGEENTDYWNASF
 GYGDITUELKFEEEGEGYTWRDLLUTWTRENKGFQIFQFHFHGWPEWGIFGDGKGMIGII
 MUGLEGYEFGYKUTGEYIDAFGDYANFK

- Some PTPs are much less efficient than others
- Why? And how do you figure out which mutations cause the loss of efficiency?

Reasoning based on an invariant...20

Key Mutation Site：PTP D1 vs D2

？！？？
？
？2？

gi｜00000｜P	D2
gi｜126467｜	
gi｜2499753	
gi｜462550｜	
gi｜2499751	
gi｜1709906	D1
gi｜126471｜	
gi｜548626｜	
gi｜131570｜	
gi｜2144715	

QF HF HGWPEVGIPSDGKGMIS I IAAVQKQQQQ－SGNHP ITVHCSAGAGRTGTFCALSTVL QFHFTSTWPDFGVPFTP IGMLKFLKKVKACNP－－QYAGAIVVHCSAGVGRTGTFVVIDAML QF HF TGWPDHGVPYHATGLLSF IRRVKLSNP－－PSAGP IVVHCSAGAGRTGCYIVID IML QYHYTQWPD MGVPEYALPVLTFVRRSSAARM－－PETGPVLVHCSAGVGRTGTYIVIDSML QFHFTSWPDHGVPDTTDLL INFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI QFQFTATWPDHGVPEHPTPFLAFLRRVKTCNP－－PDAGPMVVHCSAGVGRTGCF IVIDAML QLHFTSWPDFGVPFTPIGMLKFLKKVKTLNP－－VHAGP IVVHCSAGVGRTGTF IVIDAMM QFHFTGWPDHGVPYHATGLLSF IRRVKLSNP－－PSAGPIVVHCSAGAGRTGCYIVIDIML QFHFTGWPDHGVPYHATGLLGFVRQVKSKSP－－PNAGPLVVHCSAGAGRTGCF IVIDIML QFHFTSWPDHGVPDTTDLL INFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI ＊．．＊＊．＊．＊
－Positions marked by＂！＂and＂？＂are likely places responsible for reduced PTP activity
－All PTP D1 agree on them
－All PTP D2 disagree on them

Confirmation by Mutagenesis Exp

- Wet expts to confirm the prediction
- Mutate D \rightarrow E in D1
- i.e., check if $D \rightarrow E$ can cause efficiency loss
- Mutate $\mathrm{E} \rightarrow \mathrm{D}$ in D 2
- i.e., show $D \rightarrow E$ is the cause of efficiency loss

Impact:
 Hundreds of mutagenesis expts saved by simple reasoning on (violation of) invariants!

What is a good database design?

Relational Data Model

Contracts

Design Issues

- How many possible alternate ways to represent movies using tables?
- Why this particular set of tables to represent movies?
- Indeed, why not use this alternative single table below to represent movies?

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

Anomalies

- What's wrong with the "Wrong Movies" table? Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- Redundancy: Unnecessary repetition of info
- Update anomalies: If Star Wars is 125 min, we might carelessly update row 1 but not rows 2 \& 3
- Deletion anomalies: If Emilio Estevez is deleted from stars of Mighty Ducks, we lose all info on that movie

Some Interesting Questions

- How to differentiate a good database design from a bad one?
- How to produce a good database design automatically from a bad one?

Functional Dependency

- Functional dependency $\left(A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}\right)$
- If two rows of a table R agree on attributes A_{1}, \ldots, A_{n}, then they must also agree on attributes $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}$
\Rightarrow Values of B's depend on values of A's
- $F D\left(A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}\right)$ is trivial if a B_{i} is an A_{j}

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- Example: Title, Year \rightarrow Length, Film Type, Studio
- Key is a minimal set of attributes $\left\{A_{1}, \ldots, A_{n}\right\}$ that functionally determine all other attributes of a table
- Superkey is a set of attributes that contains a key

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- Example superkey: Any set of attributes that contains \{Title, Year, Star\} as a subset

Boyce-Codd Normal Form

- A relation R is in Boyce-Codd Normal Form iff whenever there is a nontrivial FD $\left(A_{1}, \ldots, A_{n} \rightarrow B_{1}\right.$, \ldots, B_{m}) for R, it is the case that $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R
- Theorem (Codd, 1972)

A database design has no anomalies due to FD iff all its relations are in Boyce-Codd Normal Form

How is BCNF violated here?

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

- A nontrivial FD:
- Title, Year \rightarrow Length, Film Type, Studio
- The LHS not superset of the key \{Title, Year, Star\}
\Rightarrow Violate BCNF!
- Anomalies are due to FD's whose LHS is not superkey

Towards a Better Design

- Use an offending FD ($\left.A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}\right)$ to decompose $R\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{h}\right)$ into 2 tables

$$
\begin{aligned}
& -R_{1}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right) \\
& -R_{2}\left(A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{n}\right)
\end{aligned}
$$

Wrong Movies

Title	Year	Length	Film Type	Studio	Star
Star Wars	1997	124	Color	Fox	Carrie Fisher
Star Wars	1997	124	Color	Fox	Mark Hamill
Star Wars	1997	124	Color	Fox	Harrison Ford
Mighty Ducks	1991	104	Color	Disney	Emilio Estevez

Title	Year	Star
Star Wars	1997	Carrie Fisher
Star Wars	1997	Mark Hamill
Star Wars	1997	Harrison Ford
Mighty Ducks	1991	Emilio Estevez

The "Invariant" Perspective

of Singapore

- The invariants:

BCNF is an invariant of a good database design

- The lesson learned:

Deliver a better database design by fixing violated invariants

Impact

ORACLE CORPORATION

Q3 FISCAL 2010 FINANCIAL RESULTS CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS
(\$ in millions, except per share data)

	Three Months Ended February 28,						\% Increase (Decrease) in US \$
	2010		\% of Revenues		2009	\% of Revenues	
REVENUES							
New software licenses	$\$$	1,718	27\%	\$	1,516	28\%	13\%
Software license updates and product support		3,297	51\%		2,917	53\%	13\%
Software Revenues		5,015	78\%		4,433	81\%	13\%
Hardware systems products		273	4\%		-	0\%	*
Hardware systems support		185	3\%		-	0\%	*
Hardware Systems Revenues		458	7\%		-	0\%	*
Services		931	15\%		1,020	19\%	(9\%)
Total Revenues		6,404	100\%		5,453	100\%	17\%

Diagnosing Leukemias

Some Patient Samples

- Does Mr. A have cancer?

Let's rearrange the rows...

- Does Mr. A have cancer?

and the columns too...

Invariant Profile of Leukomia Subtye Invariant Profile of Leukemia Subtypes ${ }^{*=}$

- What have we just seen?

- Guilt by association of invariants

Exploit Invariant Gene Expr Profiles
 National University of Singapore

- Low-intensity treatment applied to 50% of patients
- Intermediate-intensity treatment to 40\% of patients
- High-intensity treatment to 10% of patients
\Rightarrow Reduced side effects
\Rightarrow Reduced relapse
\Rightarrow 75-80\% cure rates
- US\$36m (US\$36k * 2000 * 50\%) for low intensity
- US\$48m (US\$60k * 2000 * 40\%) for intermediate intensity
- US\$14.4m (US\$72k * 2000 * 10\%) for high intensity
- Total US\$98.4m/yr
\Rightarrow Save US\$51.6m/yr, compared to applying intermediate-intensity treatment to everyone

How to make computers safer?

COMPUTERWORLD

RSA: Microsoft on 'rootkits': Be afraid, be very afraid
 Rootkits are a new generation of powerful system-monitoring programs

News Story by Paul Roberts
FEBRUARY 17, 2005 (IDG NEWS SERVICE) - Microsoft Corp. security researchers are waming about a new generation of powerful system-monitoring programs, or "rootkits," that are almost impossible to detect using current security products and could pose a serious risk to corporations and individualsthe only reliable way to remove kernel rootkits is to completely erase an infected hard drive and reinstall the operating system from scratch......

Rootkit Problem

- Traditional rootkits • Modern rootkits
- Modify static scalar invariants in OS
- kernel text
- interrupt table
- syscall table
- Direct Kernel Object Manipulation (DKOM)
- Rather than modify scalar invariants in OS, dynamic data of kernel are modified to:
- Hide processes
- Increase privilege level

Credit: Bill Arbaugh

Hiding a window process

Semantic integrity

- Current integrity monitoring systems focus on the scalar / static nature of the monitored data
- Don't work for non-scalar / dynamic data
- Semantic integrity
- Monitor non-invariant portions of a system via predicates that remain valid during the proper operation of the system
- I.e., monitor invariant dynamic properties!

DKOM Example

- Semantic integrity predicate (ie., dynamic invariant) is

- There is no thread such that its parent process is not on the process list

\Rightarrow kHIVE (contains 20k other predicates)

- What have we just seen?

- Maintain computer safety by checking violation of invariants!

Impact

- 2008: Komoku (kHIVE) acquired by Microsoft
- 2009: Put into MS Security Essentials (~4m hosts)
- 2010: Put into Windows Update ($\sim 500 \mathrm{~m}$ hosts)
"There is no other field out there where you can get right out of university and define substantial aspects of a product that is going to go out and over 100 million people are going to use it". ---Bill Gate

Remarks

What have we learned?

 of Singapore- Invariant is a fundamental property of many problems
- Paradigms of problem solving
- Problem solving by logical reasoning on invariants
- Problem solving by rectifying/monitoring violation of invariants
- Guilt by association of invariants

Computer Science is no more about programming than Biology/Chemistry is about Petri dish \& test tube

