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Abstract—Stencils represent an important class of computa-
tions that are used in many scientific disciplines. Increasingly,
many of the stencil computations in scientific applications are
being offloaded to GPUs to improve running times. Since a large
part of the simulation time is spent inside the stencil kernels,
optimizing the kernel is therefore important in the context of
achieving greater computation efficiencies and reducing simula-
tion time. In this work, we proposed a novel in-plane method for
stencil computations on GPUs and compared its performance
with the conventional method implemented in the Nvidia SDK.
We also implemented an auto-tuning framework for our method
to select the optimal parameters for different GPU architectures.
A performance model was developed for our proposed method,
and is used to speed up the auto-tuning process. Our results
show that a speedup of nearly 2× can be achieved compared to
Nvidia’s implementation.
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I. INTRODUCTION

Iterative stencil computations form the core of many scien-
tific simulations in a number of diverse disciplines, such as
computational fluid dynamics, heat diffusion, electromagnet-
ics, as well as image processing. In many of these applications,
the bulk of the simulation time is typically spent in the stencil
kernel. It is therefore important to optimize and tune the stencil
kernel in order to reduce the overall simulation time, as well
as scale the simulation to larger problem sizes.

In a stencil computation, the stencil kernel iteratively
sweeps over a large spatial grid many times, and computes
for each grid point, a value from the data in its neighboring
grid points. Owing to the data parallelism that is inherent in a
stencil kernel, a homogeneous many-core architecture such as
the GPU is an ideal platform for targeting such computations.
Apart from the well-structured and uniform memory accesses
within the stencil kernel, the absence of communication be-
tween grid elements in the lattice during the computation also
makes the GPU suitable for stencil applications. Furthermore,
programming models such as CUDA and OpenCL [1], [2]
make it easier for scientists to exploit the Single Instruction
Multiple Thread (SIMT) paradigm that is so well suited for the
class of stencil computations. In fact, there has been a number
of works describing the use of the GPU for various types of
stencil computations (for example, see [3]–[7]).

Although a considerable performance increase can be
achieved simply by directly porting a stencil kernel over to
the GPU using CUDA, even greater gains can be achieved by
carefully tuning and optimizing the code for the underlying
hardware architecture. Many different optimization techniques
for stencil computations have been proposed, including array
padding, prefetching, and various tiling or blocking mecha-
nisms to improve memory bandwidth usage [8]–[16]. These
works have reported substantial performance gains compared
to a kernel that is not optimized for the underlying GPU
hardware.

The key to good performance in optimized stencil kernels is
the reduction of memory bandwidth usage by the exploitation
of locality of reference that is present in the stencil compu-
tations. Owing to the significant overlap of input data that is
used in calculating each adjacent grid point, data reuse can be
achieved either by relying on hardware managed cache (such
as the L1 and L2 caches on the Nvidia Fermi architecture)
or through judicious use of registers and shared memory in a
GPU. The latter has been shown to yield better performance
than the former [17].

In this paper, we will explore different data access strategies
to improve the performance of stencil kernels. In partic-
ular, we propose a novel algorithm for computing stencil
operations based on an in-plane method as opposed to the
more commonly used forward-plane method. One of the main
difficulties of stencil computations is the loading of boundary
data elements known as the halo regions. With the appropriate
tuning, we show that our in-plane method is able to obtain
optimal parameters on different GPU platforms, and is able to
achieve better performance than prior methods.

The main contributions of this paper are as follows: (i) an
in-plane method is proposed to improve the performance of
stencil kernels, (ii) a performance model is developed for the
in-plane method and is validated with experimental results,
and (iii) performance speedups are demonstrated using actual
application kernels.

The rest of the paper is organized as follows. Section II
discusses prior work on optimizing stencil computations. In
section III, we provide details of our stencil algorithm and
discuss their variants in relation to prior methods. Section IV
lists our hardware setup and evaluates the performance of



our proposed method. Section V applies our method on real-
world application stencils and performs benchmarks on them.
In section VI, we develop a performance model for our method
that can be used to accelerate the auto-tuning process. Finally,
we conclude our paper in section VII.

II. RELATED WORK

Many previous approaches have focused on different levels
of blocking to improve cache locality on both multicore CPU
and GPU architectures. Datta et al. studied and evaluated
several optimizations such as array padding, multi-level block-
ing, loop unrolling and reordering for stencil computations on
a wide variety of hardware architectures [11]. In particular,
they advocate a decomposition strategy that divides the full
grid into thread blocks and register blocks to avoid last level
cache misses and to exploit data level parallelism. Their
auto-tuning approach then selects the optimal parameters for
each architecture. On the Nvidia GTX280 graphics processor
with 16×4 computation threads, they showed a sustained
performance of 36.5 GFlop/s, or a 3.6× speedup over their
naı̈ve CUDA code using 3D blocking.

Another way to improve data reuse and reduce memory
traffic is the use of cache oblivious stencil algorithms [12],
[13]. Cache oblivious algorithms aim to use the available
hardware caches effectively through recursive decomposition
of the input data and its associated computations, without
having to know in advance parameters such as the cache size
and the memory hierarchies [18]. Frigo and Strumpen [13]
demonstrated examples of cache oblivious stencil computa-
tions using the heat diffusion equation and the 2-dimensional
Lattice-Boltzmann Magneto-Hydro-Dynamics, a variant of the
Lattice-Boltzmann Method. However, Kamil and coworkers
[12] showed that implicit tiling by cache oblivious stencils
performed worse than the explicitly tiled and cache-aware
approach on the Cell processor.

Apart from blocking in the spatial dimension, some of the
previous publications have also looked into temporal blocking
as a way to increase data reuse opportunities [14], [16],
[19]–[21]. Since choosing the optimal trapezoid (i.e. blocking
in both spatial and time dimensions) configuration depends
on each stencil kernel, Meng [16] proposed an automated
framework to perform parameter selection. In the work by
Nguyen et al. [14], a 3.5-D blocking method was described
which combines 1-D temporal blocking with 2.5-D spatial
blocking, instead of 3D spatial blocking. Unlike the full 3D
spatial blocking method, their method reduces the overhead
and memory bandwidth usage that is required due to less
accesses of the overlapped halo regions.

Since many of the blocking parameters are dependent on
various factors related to the underlying hardware architecture,
such as the number of registers and limitations in cache sizes,
a number of code generation and auto-tuning frameworks have
been proposed for stencil computations to select the optimal
blocking factors for each level of blocking [17], [22]–[24].
For small search spaces, an exhaustive search was used to
determine the best run-time parameters [23], whereas for a

larger search space, methods like dynamic programming or
stochastic search can be used [17].

In many of the above stencil kernels, either a full 3D or
a 2.5-D spatial blocking method was used to improve data
reuse and reduce memory bandwidth usage. These methods
are based on the forward-plane method described in [10].

III. OPTIMIZING STENCIL KERNELS

A. Stencil Kernels

Stencil kernels constitute a major component in partial
differential equation (PDE) solvers where iterative finite dif-
ference methods are employed to solve PDEs. In an iterative
stencil computation, each stencil element in a grid is swept
through and a new value is calculated using the values of its
neighboring elements from the previous time-step.

A typical Jacobi iterative stencil computation makes use
of two data grids, an input data grid, in, and an output
grid, out. At a particular time step, the out grid is updated
with values calculated from the nearest neighbors of the
corresponding grid element from the in data grid. At the next
time step, the roles of the grids are swapped, now with the in
grid calculated from data from the out grid. This is usually
implemented by swapping the pointers to the grids before
calling the computational kernel. The iterations then continue
until a particular stop criteria has been met. Figure 1 shows the
pseudo-code of this iterative process. initial is the initial input
data that is passed to the procedure and ComputeKernel(·)
denotes a call to the main computational kernel with references
to the input and output grid storage locations as parameters.

For our paper, we focused on three-dimensional nearest-
neighbor stencil kernels defined by

outi,j,k = c0 ∗ ini,j,k+
m=r∑
m=1

cm ∗ (ini±m,j,k + ini,j±m,k + ini,j,k±m).
(1)

The radius of a given kernel, r, defines the extent of a com-
putation cell, which is given by (2r+1)× (2r+1)× (2r+1).
A Jacobi stencil of radius r (also known as a 2r-order stencil)
makes use of 6r + 1 nearest neighbors within its extent
for computation. For each element in the grid, a total of
6r + 2 memory references are required, including a write
operation (and excluding loading of the coefficients). A total
of 7r + 1 floating point operations are used to calculate each
grid element.

1: procedure ITERSTENCILLOOP(initial)
2: in← initial
3: for t = 1 until stop criteria do
4: ComputeKernel(in, out)
5: Swap(in, out)
6: end for
7: return in
8: end procedure

Fig. 1: Iterative stencil computation loop.



TABLE I: List of stencil kernels and their specifications.

Stencil Order Extent Memory Accesses/Elem. Flops/Elem.

2 3×3×3 8 8
4 5×5×5 14 15
6 7×7×7 20 22
8 9×9×9 26 29
10 11×11×11 32 36
12 13×13×13 38 43
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(b) 4th order stencil

Fig. 2: Stencil kernels

Table I gives the specifications of 2nd to 12th order stencils,
while Fig. 2 illustrates the first two stencil kernels, and their
neighboring grid points that are needed for computing each
grid element.

B. 3D vs 2.5-D Blocking

For exploiting thread-level parallelism, 3D or 2.5-D block-
ing methods can be used to tile the input grid for stencil
computations on a GPU as depicted schematically in Fig. 3.
Let the grid or lattice size be LX ×LY ×LZ. In the full 3D
blocking method, the grid is decomposed into blocks of size
TX×TY ×TZ, with each block to be assigned and processed
by a corresponding thread block in the GPU. For each block, a
data volume containing (TX +2r)× (TY +2r)× (TZ+2r)
elements need to be accessed, including the additional halo
regions in all six faces of the block. Before performing the
computations, each data block is usually loaded onto fast on-
chip memory in order to improve data reuse. The ratio of extra
halo elements loaded to the actual number of elements com-
puted is given by (1+2r/TX)×(1+2r/TY )×(1+2r/TZ).

The main principle behind the 2.5-D blocking method is
that redundant loads of the halo regions in the z-direction can
be reduced since the whole block of data need not be loaded at
the same time during computation of the elements inside the
block. Instead, for computing points within a single z-plane,
only 2r+1 xy-planes (e.g. 3 and 5 planes for 2nd and 4th order
stencils, respectively) are required to be made available at any
single instance of the computation. Hence, streaming loads
can be used to bring the required data on-line, and the data
can be discarded as soon as it is no longer required. Overall,
less bandwidth is needed for this method in comparison to the
full 3D method where the z-halos are loaded multiple times
as the blocks are traversed successively in the z-direction. The
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(b) 2.5-D blocking

Fig. 3: Different spatial blocking methods. Grid is swept in
the z direction.

amount of bandwidth required by 2.5-D blocking is reduced
by a factor of (1 + 2r/TZ)−1. As an example, a 4th and 8th
order stencil using the 2.5-D method will see reductions in
bandwidth of 11% and 25% compared to the 3D method if the
block size is 32 in all dimensions. In addition, the flops/word
ratios will be ∼12 and ∼19, respectively.

The 2.5-D blocking method is employed in the Nvidia Cuda
SDK sample [25] (we will refer to the Nvidia stencil code
as nvstencil). In order to maximize reuse and reduce data
fetches from the global memory, shared memory is used as
a buffer for inter-thread communication. The buffer is used
to store elements from the currently loaded z-plane that are
used to compute the output. Each thread also stores a local
copy of the 2r+1 data elements in the range [z− r, z+ r] in
registers. As the threads coherently traverse down the z-axis,
the registers are moved and updated in a pipelining fashion.
In this way, only 2r + 1 planes are resident in the registers
while the previous points can be discarded.

However, the nvstencil baseline code suffers from low
bandwidth utilization efficiency due to poor distribution of
memory access among threads during loading of the halo
regions. Whereas interior threads access at most a single
memory location, threads within the perimeter of r issue two
load instructions for the halo regions. In the worst case, threads
from the top-left area of a thread block attempt to load from
four different memory locations by separately issuing four
memory load instructions. This is illustrated in Fig. 4 for a
2nd order stencil. Such a loading pattern is inefficient because,

… 

… 

… 

… 

Fig. 4: Distribution of threads accessing the halo regions in
nvstencil.
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Fig. 5: Forward and in-plane loading methods. Arrows indicate
direction of sweep.

firstly, non-coalesced memory accesses of the left and right
halos will increase the number of memory bus transactions as
well as reduce bandwidth usage efficiency. Secondly, many of
the threads which are loading the interior elements will be idle
most of the time.

C. In-Plane Loading

In this section, we propose another memory access method
that is different from the one employed by nvstencil. nvstencil
uses the forward-plane loading method to fetch data from
the grid. This can be visualized in Fig. 5a, where the plane
in which input elements are loaded is located a distance r
(stencil radius) away from the plane containing the halos
and the output elements. In a typical forward-plane method,
the interior elements are loaded first followed by the halo
elements. The forward-plane method computes for each point
(i, j, k) when z = k,

outFi,j,k|z=k = c0 ∗ ini,j,k+
m=r∑
m=1

cm ∗ (ini±m,j,k + ini,j±m,k + ini,j,k±m).
(2)

Note that r forward planes are required to calculate the output
in Eqn. (2).

In the in-plane method that we propose, the plane in which
the interior elements are read is made to coincide with the
plane containing the halos as shown in Fig. 5b. This opens
up a few possibilities in which the memory loading patterns
can be varied, which will be discussed subsequently. The
main difference between the two methods is that the former
fetches all neighbor values for calculating each output element,
while our method performs incremental updates of the output
element from partial reads of the neighbor data.

A formal description of our method is as follows. Let
outIi,j,k|z=k denote the value computed using the in-plane
method for the point (i, j, k) when z = k. We define

outIi,j,k|z=k = c0 ∗ ini,j,k+
m=r∑
m=1

cm ∗ (ini±m,j,k + ini,j±m,k + ini,j,k−m).
(3)

TABLE II: Difference in the number of operations per grid
point between in-plane method and nvstencil.

Stencil Order Data Refs. Flops (in-plane) Flops (nvstencil)

2 8 9 8
4 14 17 15
6 20 25 22
8 26 33 29
10 32 41 36
12 38 49 43

Using Eqns. (2) and (3),

outFi,j,k|z=k = outIi,j,k|z=k +

m=r∑
m=1

cm ∗ ini,j,k+m (4)

By substituting outFi,j,k|z=k with outIi,j,k|z=k+r in Eqn. (4),
we can obtain for p = 1 to r, a recurrence relation

outIi,j,k|z=k+p = outIi,j,k|z=k+p−1 + cp ∗ ini,j,k+p. (5)

Equation (4) shows that at z = k, the computed value for the
in-plane method is partial and not yet complete. By pipelining
(with depth p = r) and aggregating the output as shown in
Eqn. (5), the computed value for outIi,j,k is complete when
z = k + r.

In our implementation, the write operation at each z-plane
is essentially delayed until the next r planes have been loaded.
As such, a total of r output elements are cached in registers.
After each plane is loaded, the previous output elements are
updated and shifted further into the pipeline. Only the last
element in the pipeline is written to memory. This procedure
is summarized in the following steps.

1) At z = k, load the next plane at ini,j,k into shared buffer
2) Compute partial stencil output with Eqn. (3), using the

data in the shared buffer
3) Update r previous outputs which were queued in regis-

ters with the current point using Eqn. (5)
4) Shift out and write outIi,j,k−r to global memory
5) Shift in current outIi,j,k into queue
6) Repeat steps 1 to 5 until the whole z-axis has been

traversed
With in-plane loading, the number of flops per stencil

element is increased while the number of data references
remain the same. Due to the incremental updating of the output
element, we now need for every element, a total of 8r + 1
floating point operations. Table II summarizes the number of
data references and flops required per element for the in-plane
loading method for various stencil orders. Note that since the
z values are also cached in registers as in the 2.5-D blocking
method, the bandwidth required by the in-plane method is
similar to that of nvstencil.

1) Memory Loading Variants: There are a few ways in
which the grid data can be loaded using the in-plane method.
These variants are shown in Fig. 6. The first classical method
is very similar to how nvstencil loads data from the grid. It is
not efficient due to separate memory load instructions that have
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Fig. 6: Different variants of the in-plane loading method.

to be issued for the interior points as well as for the boundary
halos. Hence, we leave this variant out in our evaluations.

The vertical and horizontal loading patterns are symmetrical
in nature. In the former, we group the top and bottom halos
with the interior points and load them together. In the latter,
the left and right halos are loaded together with the interior
elements. The advantage of these loading patterns is that
by removing the separate halo loading in one axis, they
improve memory coalecsing and also reduce the number of
bus transactions at the same time.

This can be further extended into the full-slice pattern in
Fig. 6d, where the halo regions in both axes are merged
with the interior data. Thus, coalescing of the halo loads is
improved at the expense of redundant loads at the four corners
of the tile (4r2 redundant data elements). Note that the extra
loads depend only on the radius of the stencil, and not on
the block size. These three methods will be evaluated and
compared with the original nvstencil method in section IV.

2) Memory-Level Parallelism: To improve the efficiency of
memory throughput, we make use of memory-level parallelism
to reduce the number of load instructions. There are altogether
(TX × TY ) threads in a single block. With the full-slice
pattern, we need to load (TX + 2r) × (TY + 2r) elements.
Therefore there will be more than 1 load for each thread.
By using memory-level parallelism, we can perform loads of
two- or four-element wide vectors. If we are loading using
four-element wide vectors, we can reduce the number of load
instructions by a factor of 4.

In order to use vector loads, memory alignment for the grid
data is important. Two-element vector loads require the grid
data to be aligned to 8 bytes while four-element vector loads
require alignment to be 16 bytes. For the horizontal loading
pattern, the top and bottom halos and the center area need to
be aligned, as vector loads are used in both the halo and center
regions. The vertical loading pattern only requires the center
region to be aligned, as the left and right halos are loaded
separately. The full-slice pattern requires the whole block to be
aligned. A warp-based assignment method for memory loads is
then implemented so that the loading of different data regions
is aligned to warp-size. This avoids control flow divergence
within a warp. This method also differs from the conventional
way of loading the interior data elements followed by the halo
regions, which causes idle threads within a warp.

3) Register Tiling: To improve the instruction-level paral-
lelism of our algorithm, we increased the area of the grid
that each thread block computes for in both dimensions. RX
and RY denotes the scaling factor in the x and y directions.
Excluding the halos, a total of (TX ∗ RX) × (TY ∗ RY )
elements are read, computed, and output by a thread block of
size TX×TY . To achieve coalescing of the memory locations
written by the threads, the indices of the output elements are
strided according to the number of threads in each of the x
and y directions.

IV. EVALUATION

A. Experimental Setup

For our experiments, we used GPUs from Nvidia and
programmed the stencil applications using the CUDA pro-
gramming model. The bulk-synchronous programming model
offered by CUDA allows exploitation of thread level paral-
lelism through the use of cooperative thread arrays (CTA) or
thread blocks within each Streaming Multiprocessor (SM). The
basic unit of execution within each SM is a warp, which is a
collection of 32 threads executed in lockstep and operating on
different data.

We performed the stencil experiments on the GeForce
GTX580, GeForce GTX680 and Tesla C2070 cards as shown
in Table III. The GTX580 and Tesla C2070 cards are based
on the Fermi architecture while the GTX680 is based on the
newer Kepler architecture. We included the GTX680 card so as
to evaluate the effectiveness of the in-plane method on the new
architecture. The GeForce GTX580 and Tesla C2070 cards
contain 512 and 448 cores respectively, which are organized
into groups of 32 cores, thereby providing 16 and 14 SMs for
each of the cards. Each SM has access to 32K on-chip registers
and 48KB of shared memory. In the GeForce GTX680 card
based on Kepler, the 1536 cores are organized into 8 units,

TABLE III: Specifications of GPUs used in experiments.

Peak Memory Peak SP Peak DP
GPU Model Bandwidth Performance Performance

GeForce GTX580 192.4 GB/s 1581 GFlop/s 198 GFlop/s
GeForce GTX680 192.3 GB/s 3090 GFlop/s 129 GFlop/s

Tesla C2070 144 GB/s 1030 GFlop/s 515 GFlop/s



each of which is called a Next-generation Streaming Multi-
processor (SMX). Each SMX comprises 192 cores which can
access up to 65536 registers and 48KB of shared memory.

GTX680 has the highest single-precision (SP) floating point
performance. However, the double-precision (DP) floating
point performance of GTX580 and GTX680 are 1/8th and
1/24th, respectively, of their SP performance. The GTX580
and GTX680 cards have comparable pin bandwidths, both of
which are higher than the Tesla C2070. We also measured the
throughput achievable on each GPU and obtained 161 GB/s
on GTX580, 150 GB/s on GTX680 and 117.5 GB/s on Tesla
C2070. The bandwidths achieved are typically around 75% to
85% of the pin bandwidths.

B. Comparison of In-plane Loading Variants

We first evaluate and compare the performance of the in-
plane variants using a 512× 512× 256 test grid for all stencil
orders. The Nvidia stencil nvstencil (2.5-D forward-loading
method) is used as the baseline for our comparison. Our
experimental results are shown in Fig. 7. We used the same
test harness for experimenting with all the kernel variations,
including nvstencil. The output of each kernel is verified to
be consistent with the result from the CPU-computed stencil
output. We first tuned each variant for the optimal thread block
size (TX × TY ) without register blocking and obtained the
highest measurements for each memory access method.

For the in-plane method, results in Fig. 7 show that the
vertical and horizontal loading patterns gave a benefit over nvs-
tencil for some cases, while giving none in others. horizontal
outperformed nvstencil in almost all cases, whereas vertical
fared worse, especially for high order stencils. For instance,
it experienced significant slowdowns for 10th and 12th order
stencils across all GPUs. In short, their performance varied
over different stencil orders, as well as different platforms.

Of the in-plane variants, we observe that the full-slice
loading method consistently performed the best for all the
stencil kernels and GPU platforms. The speedups achieved
over nvstencil ranged from ∼1.2× to ∼1.4×. The highest
speedup of >1.4× was typically achieved for the 2nd order
stencil.
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Fig. 7: Speedup of in-plane variants over nvstencil with thread
blocking only.

C. Auto-Tuning For All Blocking Levels

We have also implemented register-level blocking to im-
prove the instruction parallelism of the stencil kernels using
the full-slice method. In order to automatically discover the

TABLE IV: Summary of auto-tuning results for the full-slice in-plane method with both thread and register blocking.

GeForce GTX580 GeForce GTX680 Tesla C2070
Stencil Order Optimal Param. MPoint/s Speedup Optimal Param. MPoint/s Speedup Optimal Param. MPoint/s Speedup

SP

2 (256, 1, 1, 8) 17294.0 1.70 (256, 4, 1, 4) 16181.6 1.96 (256, 1, 1, 4) 10761.2 1.65
4 (32, 2, 2, 4) 14348.6 1.82 (64, 4, 2, 4) 13163.1 1.81 (32, 2, 2, 4) 8994.0 1.77
6 (32, 8, 2, 2) 10944.2 1.66 (128, 4, 1, 4) 10632.1 1.71 (32, 4, 1, 4) 6965.9 1.65
8 (32, 4, 1, 4) 9254.5 1.64 (64, 4, 1, 4) 9904.7 1.76 (32, 4, 1, 4) 5949.9 1.66
10 (32, 8, 1, 2) 7183.9 1.38 (32, 8, 1, 2) 7488.7 1.66 (32, 8, 1, 2) 4550.8 1.39
12 (32, 8, 1, 2) 6503.6 1.34 (32, 8, 1, 2) 6421.8 1.42 (32, 8, 1, 2) 4130.8 1.34

DP

2 (128, 1, 1, 4) 7206.9 1.35 (64, 2, 1, 4) 6411.6 1.44 (128, 1, 1, 4) 4975.9 1.31
4 (32, 4, 1, 4) 4858.8 1.30 (64, 4, 2, 4) 4285.0 1.16 (32, 4, 1, 4) 3692.7 1.28
6 (32, 4, 1, 2) 3432.2 1.16 (128, 4, 1, 4) 3005.8 1.13 (64, 4, 1, 2) 2764.3 1.29
8 (32, 4, 1, 2) 2788.7 1.12 (64, 4, 1, 4) 2406.4 1.13 (64, 4, 1, 2) 2381.5 1.23
10 (16, 8, 1, 1) 2388.9 1.15 (32, 8, 1, 2) 1911.0 1.06 (16, 16, 1, 1) 1889.9 1.13
12 (16, 8, 1, 1) 2029.3 1.05 (32, 8, 1, 2) 1607.8 1.05 (16, 16, 1, 1) 1735.5 1.17
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Fig. 8: Examples of auto-tuning on GeForce GTX580.

optimal parameters for different blocking levels (TX , TY ,
RX , RY ) in our algorithm, we implemented an auto-tuning
engine. Selecting the correct parameters is of paramount
importance to achieving good performance on the GPU. On
one hand, increasing the outer thread block size (TX × TY )
relative to the inner register block (RX×RY ) increases thread
parallelism at the expense of instruction level parallelism.
On the other hand, increasing the inner block size relative
to the outer block increases the working set per thread at
the expense of utilizing more registers, a scarce resource,
which invariably leads to lower occupancy or causing spill-
overs to global memory. Hence, it is important to balance the
trade-offs between the two relative factors to achieve the best
performance.

The auto-tuning engine employs an exhaustive search over
the parameter space. To constrain the search space, we used
the following set of criteria: (i) setting TX to a multiple of a
half-warp in order to help with memory coalescing; TY has
no such constraint, (ii) ensuring TX×TY is within the thread
limit for each architecture, (iii) making sure the buffer used is
within the shared memory limit for each architecture, and (iv)
ensuring TY ×RY divides the vertical grid size.

Figure 8 shows an example of the tuning that is performed
by the auto-tuner. For the purpose of demonstration, since the
auto-tuner searches over a four-dimensional parameter space,
we illustrate the search in terms of a performance surface
over the RX and RY parameters. The optimal TX and TY
parameters are fixed to allow a 3D surface to be plotted. For
points which did not satisfy the above search constraints, we
set them to zero. Figure 8 shows the performance surfaces
for the 2nd and 8th order kernels on GeForce GTX580.
For the 2nd order stencil, the peak performance of 17294
MPoint/s occurs with blocking parameters (256, 1, 1, 8). For
the 8th order stencil, the best performing point has blocking
parameters (32, 4, 1, 4).

Table IV summarizes, for all kernels and platforms, the
performance of the in-plane full-slice loading method with
the chosen optimal blocking parameters (TX , TY , RX , RY )
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Fig. 9: A comparison of global memory load efficiency.

from the auto-tuning process. The table also lists the best
speedup in relation to nvstencil that can be achieved using
the full-slice method on the various platforms. The results
demonstrate the importance and effectiveness of the auto-tuner
in exploring and picking the best performing combinations
of blocking factors. The set of optimal parameters differs for
different stencil orders, and on different GPU hardware. We
observe that the speedup of our method over the conventional
forward-plane method in nvstencil reaches up to ∼2× for the
2nd order stencil on GeForce GTX680.

From Table IV, we find that the speedup generally decreases
as the order of the stencil is increased. The highest speedups
were obtained for either the 2nd or 4th order stencils, while the
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Fig. 10: Breakdown of contributions to performance gain.

12th order stencil registered the lowest speedup. The reason for
this is that for the in-plane full-slice method, extraneous data
elements in the four corners of each plane are loaded together
with the interior elements (compare Fig. 6(d) with Fig. 6(a)).
The number of extra data elements loaded increases at a rate
of 4r2 as the radius of the stencil increases, contributing to the
lower speedup achieved for higher stencil orders. For the DP
case, only marginal speedup is achieved for high order stencils
on GTX580 and GTX680 due to the poorer DP capability of
these cards. For Tesla C2070, we find that with the full-slice
method, speedups can be achieved for up to 32nd order for
SP stencils, and up to 16th order for DP stencils.

In Fig. 9, we plot the global memory load efficiency attained
for all stencil orders on the three GPUs. The load efficiency is
a measure of the bandwidth requested as a percentage of the
effective bandwidth used, and can be used as an indication
of how well the memory requests are being coalesced on a
GPU. From the graph, we can see that the load efficiency of
the full-plane method is higher than nvstencil for all stencil
orders, implying that better coalescing is achieved by the full-
slice method.

D. Breakdown of Speedup Factors

In Fig. 10, we show a breakdown of the factors that con-
tributed to the performance gain of the kernels, with nvstencil
as the baseline. We compared three cases: (i) nvstencil with
register blocking, (ii) full-slice without register blocking, and
(iii) full-slice with register blocking. All of them were tuned
to obtain the best results. In all cases, we found that the full-
slice method with register blocking performed the best across
all GPUs.

On average, we found that the full-slice method with
register blocking contributed 36% of the performance gain
over nvstencil on GTX580 and Tesla C2070, and 42% on
GTX680. The contributions of register blocking on the full-
slice method is about 18%. On the other hand, nvstencil with
register blocking contributed only around 11%. In a few rare
cases, nvstencil with register blocking can perform better than
full-slice without register blocking. However, by including
register blocking with the full-slice method, a much higher
overall performance can be achieved. On average, about half

TABLE V: List of application stencils benchmarked and the
number of input and output grids required.

Div Grad Hypertherm. Upstream Laplacian Poisson
In 3 1 10 1 1 2

Out 1 3 1 1 1 1
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Speedup achieved by full-slice method over nvstencil
Div Grad Hypertherm. Upstream Laplacian Poisson

SP 1.52 1.21 1.05 1.61 1.78 1.57
DP 1.30 1.13 0.95 1.27 1.32 1.19

Fig. 11: Performance and speedup of application stencils listed
in Table V.

of the performance gain is contributed by the full-slice method
and the other half is contributed by using register blocking on
the full-slice method.

V. APPLICATIONS

A. Benchmarks

In this section, we apply the in-plane full-slice method
on the application stencils listed in Table V and carry out
benchmarks to evaluate the effectiveness of our method in
comparison to nvstencil. The benchmarks also give us an idea
of how well the in-plane method will perform under real-
world scenarios. Many of the application stencils are taken
from ref. [17].

The first two stencils, Div and Grad, are commonly used
differential operators, the 3D discrete divergence operator and
the 3D discrete gradient operator. The former maps a vector
field to a scalar function and the latter maps a function to
a vector field. The third stencil, Hyperthermia is used in
simulating the distribution of temperature in the human body
during hyperthermia cancer treatment, while the next stencil,
Upstream is found in weather forecast code (see [17]). The



Laplacian stencil is the 3D discrete Laplacian used in many
image processing applications. The last stencil, Poisson is used
to solve the 3D Poisson equation. These stencils differ in the
number of input and output grids that are used in computing
the result, and these are summarized in Table V.

Figure 11 shows the performance of the stencils when the
forward-plane method (nvstencil) and the in-plane methods are
used. In general, we obtained better performance when the in-
plane method is used, especially when the number of input
and output grids are not too large. For instance, the Laplacian
stencil achieved the greatest speedups of close to 1.8× when
only one input and one output grids are required. In contrast,
we observe that the speedup achieved by Hyperthermia is
small, and may even slowdown due to the large number of
coefficient grids required (9 out of the 11 grids are used for
spatially varying coefficients); any improvement due to the
in-plane method was offset by the large amount of coefficient
data that had to be loaded.

B. Comparison with Previous Work

To put our performance results into perspective, we compare
our results with previous work. Nguyen et al. [14] reported a
performance of 9234 MPoint/s on GTX285 for a 2nd order
SP stencil. On a DP stencil, they obtained ∼4600 MPoint/s.
Similarly, Datta [11] obtained 36.5 GFlop/s on GTX280.
Since the 2nd order SP stencil is bandwidth-limited, if we
extrapolate their results to the GTX580 using the theoretical
bandwidths, our performance will be about ∼39% higher than
their results for the SP case and ∼16% higher for the DP case.
In the stencil code generation and auto-tuning framework by
Christen [17], ∼30 GFlop/s was obtained on Tesla C2050 for
the SP Laplacian stencil. In comparison, we achieved about 96
GFlop/s on Tesla C2070. The Tesla C2050 and Tesla C2070
GPUs have the same specifications except for the amount
of DRAM available. In another auto-tuning framework called
Physis [26], the authors obtained 67 GFlop/s on Tesla M2050
for a 7-point SP stencil, while we achieved about 97 GFlop/s.
Recently, Holewinski [27] achieved 28.7 GFlop/s on GTX580
for the 7-point 3D Jacobi DP stencil. In our case, we obtained
∼65 GFlop/s on GTX580 for the same stencil.

VI. A MODEL-BASED APPROACH FOR AUTO-TUNING THE
IN-PLANE METHOD

The auto-tuning method used in section IV-C is exhaustive,
and requires every configuration in the parameter space to be
executed in order to identify the best configuration. This is
very time-consuming. In this section, we develop a simple
model for the in-plane method that helps to accelerate the
auto-tuning process by restricting the parameter space to be
searched.

For a given GPU, let SM be the number of streaming
multiprocessors in a GPU, BW be the off-chip global memory
bandwidth, and Smem and Reg be the per-SM shared memory
limit and register limit, respectively. The memory bandwidth
is divided evenly among the available SMs, each given by
BWSM = BW/SM. Furthermore, let BlkSM and WarpSM be

the maximum number of blocks and the maximum number of
warps that can be scheduled on a SM in the GPU. Let KR

and KS denote the number of registers and amount of shared
memory used by a stencil kernel, and WarpBlk be the number
of warps in a thread block. Our model is described by the
following equations (6)-(14).

Blks =
LX× LY

(TX× RX)(TY× RY)
(6)

ActBlks = min(bReg
KR
c, bSmem

KS
c, bWarpSM

WarpBlk

c,BlkSM ) (7)

Stages = dBlks/(SM× ActBlks)e (8)

RemBlks = dBlks− (Stages− 1)× ActBlks× SM
SM

e (9)

Tm =
Lat

Clock
+

BytesBlk

BWSM
(10)

Tc =
ActBlks× Ops× RX× RY×WarpBlk

Clock
(11)

Ts = f(ActBlks)× Tm + ActBlks× Tc (12)

Tl = f(RemBlks)× Tm + RemBlks× Tc (13)

Perf = (LX× LY)/(Ts × (Stages− 1) + Tl) (14)

Equation (6) determines the number of thread blocks re-
quired to complete each plane of the grid, while Eqn. (7)
determines the maximum number of active blocks that can fit
onto a SM at any time given the kernel resource usage and SM
limits. The number of stages needed to finish the computation
is calculated in Eqn. (8). In each stage, each SM is populated
with the maximum number of available blocks that can fit,
given the available resources. Equation (9) computes the
number of remaining blocks per SM to be scheduled for the
last stage. Equation (10) computes the time required for a
thread block to access data in the global memory. Lat is the
global memory access latency in cycles, and BytesBlk is the
total number of bytes read and written for each stencil plane.
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Fig. 12: A comparison of the performance obtained using the
model-based auto-tuning approach and the exaustive search
method for all stencil orders, with β=5%.



Equation (11) computes the time required for a thread block to
finish computing the stencil output. Ops denotes the number
of flops required for a particular stencil order, and Clock is
the clock frequency of the GPU. Next, the time taken for each
stage to finish its computation is computed using Eqn. (12).
For the last stage, Eqn. (13) is used instead. The function
f(arg) in Eqns. (12) and (13) is used to model latency hiding
during memory accesses, and returns a value between 1 and
arg. When the total number of warps is WarpSM , i.e. at full
occupancy, the function assumes perfect latency hiding. On
the other hand, if there is only a single warp, then execution
becomes serialized. In the current model, f(arg) uses a linear
function. Finally, the predicted performance in MPoint/s is
computed using Eqn. (14).

There are several sources of inaccuracies with this model.
Firstly, the model did not take into account bank conflicts
arising from overlapping data accesses by neighboring grid
points. Secondly, scheduling overhead of the warps was as-
sumed to be insignificant. Thirdly, cache effects were ignored
in the model even though the GPUs employ a small amount of
L1 cache for each SM. Nevertheless, these limitations do not
prevent the model from being useful. Specifically, we found
that the model is helpful in limiting the search space for the
auto-tuning process.

The model-based auto-tuning procedure is described as
follows. Let M be the total number of configurations in the
global parameter space. For every parametric configuration
(TX , TY , RX , RY ), the performance model (Eqns. (6)-(14))
is used to predict the run-time performance. All the predictions
are then ranked in decreasing order starting from the candidate
with the best predicted performance. A user-specified cutoff
of β% of the total number of configurations is then used to
select the top N = β/100M candidate configurations from the
ranked predictions. Next, all the selected N configurations are
executed in order, and the actual run-time performance of each
configuration is recorded. Finally, the auto-tuning procedure
completes by returning the configuration which has the best
actual run-time performance.

Generally, we find that a cutoff β that is 5% of the total
parameter space is sufficient to yield a good result. In Fig. 12,
we plot and compare the performance of the stencils which
have been auto-tuned using the model-based approach with
those tuned using the exhaustive search method (for all stencil
orders on the GTX580, GTX680 and Tesla C2050 GPUs). β is
set to 5%. We can see that, in general, the model-based auto-
tuning approach is able to find a configuration that performs
close to the best performing configuration obtained using the
exhaustive method. The difference in performance obtained
using the model-based and exhaustive auto-tuning approach
is typically about 2% on average. The largest performance
difference between the two approaches is ∼6%, and occurs for
the GeForce GTX680 GPU. This could be due to architectural
differences in the newer Kepler cards which the model does
not capture. We intend to improve this aspect in future. Nev-
ertheless, the utility of the model-based auto-tuning approach
lies in its ability to yield highly performing configurations

while searching only a small fraction of the global parameter
space.

VII. CONCLUSION

Current implementations of stencil kernels on GPUs do not
make effective use of the available memory bandwidth due to
poor memory coalescing of the halo regions. In this paper, we
proposed a novel in-plane loading method that is different from
the conventional foward-plane loading method used in the
Nvidia SDK, as well as by many other implementations. Our
experiments demonstrated speedups of ∼2× over nvstencil.
We also showed that our method can be applied with achiev-
able speedups of close to ∼1.8× on real-world application
stencils. A model-based tuning approach was developed for
the proposed method.
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