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1. INTRODUCTION
Distributed systems are particularly vulnerable to sybil attacks [1],

where a malicious user pretends to have multiple identities. Among
the small number of decentralized solutions, our recently proposed
SybilGuard [2] protocol is based on a unique insight on social net-
works. Formally, the system has n honest users, and one or more
colluding malicious users. Each honest user has a single (honest)
identity, while each malicious user has an arbitrary number of (ma-
licious) identities. All identities created by the malicious users are
called sybil identities. All of these honest and sybil identities are
nodes in the social network. An (undirected) edge exists between two
nodes if the two corresponding users have strong social connections
and trust each other not to launch a sybil attack. For explanatory
purposes, we also consider an (undirected) edge as two directed
edges. Edges connecting the honest nodes and the sybil nodes are
called attack edges. With SybilGuard, the number of attack edges
is independent of the number of sybil nodes and is limited by the
number of trust relation pairs between malicious and honest users.
The basic idea in SybilGuard is that if malicious users create too
many sybil nodes compared to the number of attack edges, the graph
will have a large mixing time. On the other hand, social networks
tend to be fast mixing (i.e., Θ(log n) mixing time) [2].

SybilGuard is decentralized and enables any honest node V
(called the verifier) to decide whether or not to accept another node
S (called the suspect). “Accepting” means that V is willing to re-
ceive service (e.g., back-up service) from and provide service to S.
Throughout this paper, we let ε and δ be arbitrary constants between
0 and 1. If the number of attack edges is at most Θ(

√
n/ log n),

SybilGuard guarantees that i) an honest node accepts at most εn
sybil nodes with probability at least 1 − δ, and ii) an honest node
accepts another honest node with probability at least 1− δ. We say
that the tolerance of SybilGuard is Θ(

√
n/ log n).

This brief announcement first summarizes SybilGuard and then
presents our new protocol, SybilLimit, that leverages the same social
network but dramatically improves the tolerance from
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Θ(
√

n/ log n) to Θ(n/ log n). It has been shown [2] experimen-
tally that for n = 106, SybilGuard’s tolerance is around 2500 attack
edges. SybilLimit, on the other hand, is expected to tolerate around
2.5 × 106 attack edges. To break SybilLimit, the adversary will
need to establish 2.5 trust relations (on average) with every honest
user in the system. Furthermore, we can show that the Θ(n/ log n)
tolerance is optimal for any protocol based on social network mixing
time.

2. USING SOCIAL NETWORKS: SybilGuard
SybilGuard leverages a special kind of random walk called ran-

dom routes, where each node uses a pre-computed random permu-
tation as a one-to-one mapping from incoming edges to outgoing
edges. As a result, two random routes entering an honest node along
the same edge will always exit along the same edge (i.e., they con-
verge). Furthermore, the outgoing edge uniquely determines the
incoming edge as well; thus the random routes can be back-traced.

Accepting honest nodes. Each node performs a random route of
length Θ(

√
n log n). Unless the social network changes, each user

needs to do this only once and the route will be “remembered”.
The verifier only accepts a suspect whose random route intersects
with the verifier’s random route. A length-w random walk starting
from a uniformly random honest node will stay entirely within the
honest region with probability of at least 1 − gw/n, where g is
the number of attack edges [2]. Thus with g = Θ(

√
n/ log n), the

probability is at least 1 − δ. Next, with Θ(log n) mixing time, a
random walk Θ(

√
n log n) long will include Θ(

√
n) random nodes

drawn from the stationary distribution of the graph. It follows from
the generalized Birthday Paradox that an honest suspect will have
a random route that intersects with the verifier’s random route (and
thus be accepted) with probability at least 1− δ.

Bounding the number of sybil nodes accepted. To intersect with
the verifier’s random route and be accepted, a sybil node’s random
route must traverse one of the attack edges. Consider Figure 1 where
there is only a single attack edge. Because of the convergence prop-
erty, all the random routes from sybil nodes must merge completely
once they traverse the attack edge. Thus, all of these routes will
have the same intersection with the verifier’s route; furthermore,
they enter the intersection along the same directed edge (e1 in the
figure). We say that a directed edge e intersects with a random route
if the ending node of the direct edge is on the route. Obviously, with
g attack edges there can be at most g directed edges that intersect
with the verifier’s route.

Because of convergence and back-traceability, there can be at most
Θ(
√

n log n) distinct random routes (of length Θ(
√

n log n)) that
traverse a certain directed edge, if all the nodes in the random routes
are honest nodes. Thus each directed edge conceptually has a registry
table with Θ(

√
n log n) entries. The ith entry is registered with the
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Figure 1: Routes traversing the same edge merge.

node whose random route traverses the directed edge at hop i. The
verifier always confirms that the suspect is properly registered before
accepting it. Thus the verifier will accept Θ(g ·

√
n log n) = εn

sybil nodes when g = Θ(
√

n/ log n).

Estimating the needed length of random routes. While the length
of the random routes is designed to be Θ(

√
n log n), the value of

n is unknown. In SybilGuard, each node locally determines the
needed length of the random routes via sampling, as follows. Each
node is assumed to know a rough upper bound t on the mixing
time. To obtain a sample, a node A first performs a random walk
of length t, ending at some node B. Next A and B conceptually
both perform random routes to determine how long the routes need
to be to intersect. A sample is bad (i.e., potentially influenced by
the adversary) if any of the three random walks/routes in the process
enter the sybil region. Assuming g = Θ(

√
n/ log n), the probability

of a sample being bad is at most δ.

3. TOWARD OPTIMALITY: SybilLimit
SybilGuard’s (suboptimal) tolerance of g = Θ(

√
n/ log n) is

actually quite fundamental as it is simultaneously needed by the
following three properties:

• The number of sybil nodes accepted is at most εn with proba-
bility 1− δ.

• The verifier’s random route stays in the honest region with
probability 1− δ.

• The probability of a bad sample (for estimating random route
length) is at most δ.

Thus the challenge for our new protocol, SybilLimit, is that we
must preserve these three properties (or equivalent properties) when
g = Θ(n/ log n).

Reducing the number of accepted sybil nodes from Θ(g·
√

n log n)
to Θ(g ·log n). We will consider g = 1 because the generalization to
g > 1 is trivial. In SybilLimit, each node performs Θ(

√
m) random

routes of length Θ(log n), where m is the total number of edges in
the graph. (We will discuss later how nodes estimate Θ(

√
m).) For

each of route, a node conceptually records the termination edge (i.e.,
the last directed edge traversed). Intersection is performed between
the verifier’s termination edges and the suspect’s termination edges.

Because of the deterministic routing tables, for any fixed w, a
degree-d node is limited to at most d different length-w random
routes. To overcome this, SybilLimit uses Θ(

√
m) independent

instances of the random route protocol for all verifiers. Each verifier
takes one random route in each instance. Another Θ(

√
m) instances

are used for all suspects to ensure independence.
One can easily see that the intersection guarantees between honest

nodes are still the same as before. For sybil nodes, in each instance,
the adversary can shift the random route (crossing the attack edge) at
Θ(log n) different positions, and each position allows it to control
one registry table entry. With Θ(

√
m) instances, the adversary

controls a total of Θ(
√

m log n) entries. One can show that to

maximize the number of sybil nodes accepted, the optimal strategy
for the adversary is to register different nodes in different entries.
The verifier has Θ(

√
m) termination edges. For the termination

edges in the honest region, we can show that because these edges
are independent uniformly random edges, the number of sybil nodes
accepted is at most Θ(log n) with probability at least 1− δ.
Protecting verifiers with termination edges in the sybil region.
As discussed earlier, a length-w random walk enters the sybil region
with probability at most gw/n. In SybilLimit, with g = Θ(n/ log n)
and w = Θ(log n), gw/n becomes a constant. Thus as many as a
constant fraction of a verifier’s Θ(

√
m) random routes may enter

the sybil region. The adversary can introduce arbitrary intersections
with a termination edge in the sybil region, causing potentially an
unlimited number of sybil nodes accepted. We say that a suspect is
accepted by a termination edge e if e belongs to the intersection.

Our insight here is that because termination edges for verifier
routes that remain in the honest region are uniformly random edges,
each such termination edge should accept roughly Θ(n/

√
m) out

of the n honest suspects in the system. Making the intuition rigor-
ous requires a careful argument because the termination edges of
different suspects are not independent.

The above observation enables a verifier to enforce a limit of
Θ(n/

√
m) on the number of nodes accepted per termination edge,

without hurting honest suspects. On the other hand, a Chernoff
bound can show that an honest verifier will have Θ(

√
m · g log n/n)

termination edges that are in the sybil region with at most probability
δ. Because each termination edge will accept only Θ(n/

√
m) nodes,

the number of sybil nodes accepted by these termination edges will
be O(g log n).
Estimating the number of routes needed. Similar as in Sybil-
Guard, we assume we know a rough upper bound T on the mixing
time. We need to estimate the number of random routes needed
(i.e., Θ(

√
m)). The sampling technique as in SybilGuard now faces

the challenge that with g = Θ(n/ log n), both A and B will quite
likely have at least one route entering the sybil region. The adversary
can then make them intersect and cause an under-estimation for the
number of routes needed. (The adversary cannot, however, cause
over-estimation.)

SybilLimit uses a novel and perhaps counter-intuitive design to
address this challenge. The verifier maintains two sets of suspects,
the benchmark set K and the test set S. The benchmark set is
constructed by repeatedly taking random walks of length T and then
adding the ending node to K. The test set contains the nodes that the
verifier wants to verify. If T = Θ(log n), then at most ε fraction of
the nodes in K are sybil nodes. The verifier will increase the number
of random routes (from 0) until most (e.g., 95%) of the nodes in K
are accepted.

As an intuitive correctness argument, notice that the adversary
may still cause under-estimation. Under-estimation will not increase
the number of sybil nodes accepted. On the other hand, for honest
suspects in S, the adversary does not know whether they belong
to K or S. Thus, if the adversary manipulates intersections such
that most of the suspects in K are accepted, with high probability,
most honest suspects in S are accepted as well. This is somewhat
counter-intuitive because SybilLimit manages to provide the desired
end guarantee despite the under-estimation.
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