Randomized View Reconciliation in Permissionless Distributed Systems

Ruomu Hou Irvan Jahja Loi Luu Prateek Saxena Haifeng Yu

IEEE International Conference on Computer Communications 15-19 April 2018 // Honolulu, HI // USA

Our Contributions in a Nutshell

Protocol for view divergence

	Running time
Andrychowicz et al, CRYPTO 2015	θ(N)
Our contribution	θ(ln N / ln ln N)

Permissionless Distributed System

- N honest nodes
- Nodes join the system without permission
 - No central authority
 - Set of nodes and N are not known

Computational Puzzle

- Non-trivial computation
 - E.g., reversing a hash function
 - Given y, find any x such that: hash(x) = y
- Challenge Solution

challenge solution

• Adversary has limited computational power

View Divergence

- View divergence <u>breaks</u> the basis of many protocols
- Protocols in distributed algorithms traditionally are permissioned and requires same views
 - "Authenticated algorithms for byzantine agreement" (Dolev et. al, 1983)
 - "The byzantine general problem" (Lamport et. al, 1982)
 - "Protocols for secure computations" (Yao, 1982)
- Overlay protocols requires same view for bootstrapping
 - "Towards a scalable and robust DHT" (Awerbuch et al, 2009)
 - "Highly dynamic distributed computing with byzantine failures" (Guerraoui et. al, 2009)

View Reconciliation Protocol

• Andrychowicz and Dziembowski (CRYPTO 2015)

Agree on a final, common view

Our Contributions

• Recall N = number of honest nodes

	Running time	Total communication
Andrychowicz et al, CRYPTO 2015	θ(N)	θ(N ²)
Katz et al, 2014	θ(N)	$\theta(N^2)$
Our contribution	θ(In N / In In N)	θ(N ln² N / In ln N)

Our Contributions

- Alleviates bottleneck issue
 - Many security protocols have polylog complexity
 - "Towards a scalable and robust DHT" (Awerbuch et al, 2009)
 - "Highly dynamic distributed computing with byzantine failures" (Guerraoui et. al, 2009)
 - The overhead of previous $\theta(N)$ view reconciliation protocols would have been the bottleneck!

On View Divergence in BitCoin

- BitCoin does not solve view divergence
- E.g., Eclipse attack
 - "Eclipse attacks on bitcoins peer-to-peer network" (Heilman et. al, 2015)
- Our protocol together with existing overlay protocols would prevent such an attack on BitCoin!

Our Approach

- Existing protocols are deterministic
- Randomization
 - Has δ error, similar to many security protocols
 - 256-bit AES: attacker has at least 2²⁵⁶ probability of guessing the key correctly
 - Our complexity scales with log $(1 \ \delta)$

Our Approach

- RandomizedViewReconcile (RVR)
- RVR uses randomization to obtain better performance
 - Utilize computational puzzles to elect a leader probabilistically
 - Traditionally puzzles used only to challenge computational power limitation of adversary
 - Randomized sampling and gossipping

Some Challenges

- How to handle malicious leader, missing leader, multiple leaders?
- How to spread leader's proposal efficiently?
- No common estimate on N: How to determine when the protocol should finish?
- All results were proven, details in the paper

Conclusions

RVR solves view divergence with probability 1 - δ . RVR has a time complexity of $\Theta(\frac{\ln N}{\ln \ln N} \ln \frac{1}{\delta})$ and communication complexity of $\Theta(N \ln \frac{N}{\delta})$

- We presented the first view reconciliation protocol with polylog(N) time complexity
 - Previously known protocol has θ(N) tc
 - Bridges many existing permissioned security protocols to work under the permissionless settings