
Distrib. Comput. (2009) 21:367–384
DOI 10.1007/s00446-008-0072-2

Optimal inter-object correlation when replicating for availability

Haifeng Yu · Phillip B. Gibbons

Received: 23 August 2007 / Accepted: 9 October 2008 / Published online: 11 November 2008
© Springer-Verlag 2008

Abstract Data replication is a key technique for ensuring
data availability. Traditionally, researchers have focused on
the availability of individual objects, even though user-level
tasks (called operations) typically request multiple objects.
Our recent experimental study has shown that the assignment
of object replicas to machines results in subtle yet dramatic
effects on the availability of these operations, even though
the availability of individual objects remains the same. This
paper is the first to approach the assignment problem from a
theoretical perspective, and obtains a series of results regar-
ding assignments that provide the best and the worst availa-
bility for user-level operations. We use a range of techniques
to obtain our results, from standard combinatorial techniques
and hill climbing methods to Janson’s inequality (a strong
probabilistic tool). Some of the results demonstrate that even
quite simple versions of the assignment problem can have
surprising answers.

Keywords Multi-object operation · Inter-object
correlation · Availability · Data replication ·
Object assignment

H. Yu (B)
Department of Computer Science, School of Computing,
National University of Singapore, 3 Science Drive 2,
Singapore 117543, Singapore
e-mail: haifeng@comp.nus.edu.sg

P. B. Gibbons
Intel Research Pittsburgh, 4720 Forbes Avenue, Suite 410,
Pittsburgh, PA 15213, USA
e-mail: phillip.b.gibbons@intel.com

1 Introduction

Masking failures is a key goal in distributed computing, and
data replication is a well-known and widely used technique
to ensure data availability in the presence of failures. Tra-
ditionally, researchers typically focus on the availability of
individual data objects (e.g., individual file blocks [4] or indi-
vidual variable-sized objects [7,13]). On the other hand, a
user-level task often needs to request multiple data objects;
we refer to this as a multi-object operation. For example, in
order to compile a project, all source files need to be available.
Similarly, a database query usually touches multiple database
objects. Our recent experimental study [24] shows that the
assignment of object replicas to machines has a subtle yet cri-
tical effect on the availability of such multi-object operations,
even though the availability of individual objects remains the
same.

A simple yet subtle example Consider the example in Fig. 1
with four objects: A, B, C, and D. Each object has exactly
two replicas.1 We have four identical machines to hold these
eight object replicas, and each machine holds exactly two
objects. Each machine may fail (crash) independently with
the same probability p, causing all its data to become unavai-
lable. An object is unavailable if and only if both its replicas
are unavailable. Clearly, there are many ways to assign the
object replicas to the machines. Figure 1 gives two possible
assignments.

Imagine that the four objects are source files of a project
and the user is trying to compile the project. Here, if any
source file is unavailable, the multi-object operation (i.e., the
compilation process) will fail. Which assignments in Fig. 1

1 The same assignment problem also arises [24] when using erasure
coding for the objects, but that is beyond the scope of this paper.

123

368 H. Yu, P. B. Gibbons

C D

C DA B

A B A C

A B C D

B D
assignmentassignment βα

Fig. 1 Two possible assignments of four objects, A, B, C, and D, to
four machines. Each box represents a machine

gives us a better probability that all four files are available
so that the operation succeeds? A calculation will show that
assignment α provides better availability than β.2

Assume now that, instead, the four objects are database
objects that have numerical values. Our multi-object opera-
tion intends to compute the average of the values. Suppose
we are willing to tolerate some error in the average, and the
operation is considered successful as long as we can retrieve
three or more objects. Under this assumption, assignment β

now provides better availability than α.3

There are several important observations from this
example. First, individual objects have the same availabi-
lity (i.e., 1 − p2) in α as in β. Also, the eight object replicas
occupy the same number of machines (i.e., four machines) in
α as in β, thus the difference does not result from “concentra-
ting” or “spreading” the objects. (For example, if we spread
the eight object replicas onto eight machines with one object
replica per machine, then it will be clear that the probability
of having all objects available will be lower than the proba-
bility in α.)

Second, all machines are completely identical, so for any
individual object, it does not matter to which two machines
the object is assigned. This clearly distinguishes the assi-
gnment problem from classic replica placement problems
[3,5,25]. The difference between α and β arises purely from
inter-object correlation: Because each machine has multiple
objects, object failures are correlated even when machine fai-
lures are independent. For example, A is fully correlated with
one object (i.e., B) in α, while A is partially correlated with
two objects (i.e., B and C) in β. However, because neither the
correlation in α nor the correlation in β is strictly stronger
than the other, comparing the two assignments is subtle and
no single numerical value can be used to summarize/rank
such correlations in the general case.

Practical importance The object assignment problem has
significant practical relevance, and applies to almost all repli-
cation systems. A long list of previous replication systems

2 The failure probabilities are FP(α) = p4 +4p3(1− p)+2p2(1− p)2

and FP(β) = p4 + 4p3(1 − p) + 4p2(1 − p)2.
3 The failure probabilities (i.e., the probabilities that fewer than three
objects are available) are FP(α) = p4 + 4p3(1 − p) + 2p2(1 − p)2

and FP(β) = p4 + 4p3(1 − p).

and protocols (such as CAN [15], CFS [4], Chord [20],
Coda [11], FARSITE [1], GFS [6], GHT [16], Glacier [7],
Pastry [18], R-CHash [10], and RIO [19]) use different object
assignments, which can yield dramatically different availa-
bility for multi-object operations. For example, it has been
shown [24] that under practical settings, the failure proba-
bility of the TPC benchmark [22] can vary by four orders
of magnitude under different assignments used in these pre-
vious systems. Thus, a thorough understanding of the subject
is critical to guide system design.

Previous results We recently first identified [24] the
availability effects of object assignments and inter-object cor-
relation on multi-object operations. This earlier work used
simulation to compare several specific assignments, inclu-
ding the PTN and RAND assignments. PTN is the assign-
ment where we partition the objects into sets and mirror each
set across multiple machines (as in assignment α in Fig. 1).
RAND is obtained by randomly assigning object replicas to
machines. The simulation results [24] show that: (1) pre-
viously proposed assignments can result in dramatically dif-
ferent availability; (2) if the multi-object operation cannot
tolerate any missing objects, then PTN and RAND provide
the best and the worst availability among the set of assi-
gnments simulated, respectively; and (3) in contrast, if the
multi-object operation can tolerate a sufficient number of
missing objects, then PTN and RAND provide the worst and
the best availability among the set of assignments simulated,
respectively. Our earlier work [24] further proposed designs
to approximate PTN and RAND for dynamic contexts, and
performed a thorough evaluation of their implementation on
the PlanetLab. We are not aware of any other previous work
on this topic.

Our results To the best of our knowledge, this paper is the
first to study this problem from a theoretical perspective.
Experimental methods as in [24] have the following funda-
mental limitations: given the exponential number of possible
assignments, it is infeasible to experiment with them all. Are
there better assignments that were overlooked? Also, expe-
rimental methods can cover only specific parameter values
(e.g., specific p values)—will the same conclusions hold
under other parameter values? The theoretical results in this
paper not only provide a deep understanding of the problem,
but also help to ultimately confirm what was observed expe-
rimentally.

Our goal in this paper is to find the best and the worst4

assignments, among all possible assignments, in terms of the

4 We are interested in the worst assignment as well because (i) previous
simulation results [24] suggest the best and the worst may flip when the
“tolerance” level of the operation changes, (ii) knowing the worst helps
guide us to avoid it, and (iii) it is also of theoretical interest.

123

Optimal inter-object correlation when replicating for availability 369

availability provided to multi-object operations. Achieving
our goal, however, is challenging for several reasons. First,
human intuition often fails here, even when the problem
appears quite simple on the surface. The example in Fig. 1
already gave us some flavor of this, and later in Sect. 7.2
we will show that the problem can become considerably
more intriguing. Second, natural approaches to solve the
problem (such as constrained optimization and hill- clim-
bing methods) do not work out well. To address these chal-
lenges, this paper leverages Janson’s inequality [2,8,9] to
obtain results for the most general cases. Combinatorial tech-
niques and hill climbing are then used to prove stronger
results under more restricted settings. Our final results are
clean and simple:

– Calculating the availability of an arbitrary given assign-
ment is #P-hard.

– If the multi-object operation cannot tolerate any missing
objects, then PTN and RAND provide the best and the
worst (within small constants) availability among all pos-
sible assignments, respectively.

– In contrast, if the multi-object operation can tolerate a
sufficient number of missing objects, thenPTN andRAND
provide the worst and the best (within small constants)
availability among all possible assignments, respectively.

– Under some restricted settings, we are able to construct
the best and worst assignments and remove all constants.

– It is impossible for any single assignment strategy to
achieve the best of both PTN and RAND.

2 Related work

On the surface, object assignment is related to the classic
replica placement problem. Replica placement has been
extensively studied for both performance and availability
targets. Replica placement research for availability [3,5,25]
typically considers the availability of individual objects rather
than multi-object operations. Such results cannot be easily
extended to our context because the two problems are fun-
damentally different: replica placement problems [3,5,25]
stem from the heterogeneity of machines (e.g., different fai-
lure probabilities). In contrast, because of inter-object corre-
lation, object assignment affects availability even when all
machines are identical (as shown in Fig. 1). Chain replica-
tion [17] investigates the availability of individual objects
where the system creates additional replicas to compensate
for lost data. Here, if the repair bandwidth is limited, different
placements will result in different repair times and thus dif-
ferent availabilities for individual objects. Such effects are
orthogonal to the inter-object correlation effect observed by
multi-object operations.

To improve availability, some file systems [1,14] try to
place related file blocks (or meta-data) on a small number
of machines instead of spreading them over a large number
of machines. The availability effect of such “concentration”
or “spreading” is orthogonal to the effect of inter-object cor-
relation in data replication, which is the focus of this paper.
However, if the data on the small number of machines are in
turn mirrored onto more machines, then the resulting assign-
ment will be similar as our PTN assignment.

3 Formal model and assumptions

There are N (numbered) data objects in the system, where
an object can be a file block, a file, a database tuple, a group
of database tuples, an image, etc. (see Table 1). Each object
has k identical replicas, and the object is considered avai-
lable as long as any of the k replicas is available. There are
s (numbered) machines in the system, each of which may
independently experience crash (benign) failures with pro-
bability p. This paper assumes p ≤ 0.5, because this is the
common case in practice. For the purpose of load balancing,
each machine holds the same number of l = k N/s objects.
To rule out trivial and uninteresting scenarios, we assume
that N > l ≥ k ≥ 2. If a machine fails, all l object replicas
on it become unavailable.

A multi-object operation (or operation in short) requests
(for reading and/or writing) a specific subset of n objects,
out of the N objects, in order to perform a certain user-
level task. In some application scenarios such as astrophy-
sical image databases [21], the number of objects requested
can reach thousands or more. If not all n objects requested by
the operation are available, the operation may or may not be
considered successful, depending on its tolerance for missing
objects. For example, most aggregation queries (e.g., “com-
pute the average brightness of all galaxies”) are likely to be
able to tolerate some limited fraction of missing objects. On
the other hand, a query of “check whether any of the images
in the database contains the face of a terrorist” would likely
require cheching all objects in the database, and thus cannot
tolerate any missing object. See our earlier work [24] for a
more detailed discussion on applications. This paper studies

Table 1 Notation used in this paper, where N > l ≥ k ≥ 2

N Number of objects in the system
k Number of replicas per object

l Number of objects on each machine

s Number of machines in the system (= Nk/ l)

p Failure probability of each machine

n Number of objects requested by an operation

t Number of objects needed for the operation to succeed (out of the
n objects)

123

370 H. Yu, P. B. Gibbons

the threshold criteria: an operation is successful if and only
if at least t out of the n objects are available. Here t is a value
from 1 to n depending on application semantics.

An assignment is a one-to-k mapping from the N objects
to the s machines, where each object is assigned to k distinct
machines and each machine holds exactly l objects. Notice
that according to this definition, no machine can hold multiple
replicas of the same object. Assigning multiple replicas of the
same object to the same machine obviously waste resources.
Thus we do not consider those scenarios (it is also easy to
avoid in practice).

The PTN assignment is obtained by partitioning the N
objects into N/ l groups of size l, and then mirroring each
group onto k machines. Obviously, there are many ways to do
this partitioning, but they all result in the same availability
when n = N , because the operation needs any t available
objects to succeed. For n < N , we will refine the definition
for PTN in Sect. 8. The RAND assignment is an assignment
drawn uniformly randomly from all possible assignments.
Thus strictly speaking,RAND is a distribution of assignments.
Similarly, the definition for RAND will be refined later for
n < N .

For a given operation, we define the availability of an assi-
gnment α to be the probability that the operation is successful
under α. The complement of availability is called the failure
probability, denoted by FP(α). Our goal is to find α such
that FP(α) is either minimized or maximized. Doing so for
all t values in [1, n] is challenging, and this paper focuses on
cases where t takes the two extremes.

The next section explains the challenges. Section 5 through
Sect. 7 prove the best/worst assignment for the two extremal
t values when n = N . Section 8 explains why the results
for n = N easily extend to n < N . Finally, Sect. 9 genera-
lizes our basic model (described above) to scenarios where
different objects may have different number of replicas, and
then proves the best (within constants) assignment for t = n.

4 Challenges

To find the best/worst assignment, a brute force enumera-
tion of all assignments is obviously infeasible. Thus the first
natural attempt would be to cast the problem into a constrai-
ned optimization problem. To do this, we need a closed-form
expression for the failure probability FP(·) of any given assi-
gnment (the assignment itself, of course, also needs to be
expressed as constraints). Unfortunately, our first theorem
shows that even calculating FP(α) is difficult:

Theorem 1 Calculating FP(α) for an arbitrary α is #-P
hard. This is true even if every object has only two replicas.

Proof We reduce the #-P hard MONOTONE 2-SAT pro-
blem [23], to calculating FP(α). The MONOTONE 2-SAT

problem asks for the number of possible ways to satisfy a
monotone boolean formula in two-conjunctive normal form.
For a given instance of MONOTONE 2-SAT with n two-
conjunctive tuples, we consider each tuple as an object and
each literal in the problem as a machine. Each object has
exactly two replicas, assigned to the two literals in the tuple.
We add some dummy objects to the problem so that all
machines have the same load, so that the assignment is valid.
Let s denote the total number of literals (machines). A global
state describes exactly which of the s machines are available.
Clearly we have 2s possible global states. If we set p = 0.5,
then every global state occurs with the same probability of
0.5s . Now consider an operation that requests all the n objects
except the dummy objects, with t = n. One can see that the
operation is available under a global state if and only if that
global state satisfies the original boolean formula. Thus we
have 1 − FP(α) = 0.5s× (# of ways to satisfy the boolean
formula). ��

A second natural attempt to find the best/worst assignment
is to use hill-climbing methods. For example, we can hope
to adjust any given assignment step by step, where each step
always increases (or decreases if we want to find the worst)
the availability. Unfortunately, it is difficult to design these
steps in general. Later in some significantly simplified sce-
narios in Sect. 7.2, we will apply such an approach.

Instead of using constrained optimization or hill climbing,
in the following, we first leverage a strong probabilistic tool
to prove upper and lower bounds on FP(α). Then we show
that some specific assignments are small constants away from
the respective bounds.

5 Best and worst assignments for t = n = N

We start from the simple case of n = N . This is also per-
haps the most interesting case because when n = N , the
objects requested fully occupy all the machines (as in Fig. 1).
Thus there is no difference resulting from “concentrating” or
“spreading” the objects, and inter-object correlation is the
sole cause of the availability difference. This section consi-
ders the largest t , i.e., when t = n.

5.1 Upper and lower bounds

We derive the upper and lower bounds using a probabilis-
tic tool called Janson’s inequality [2,8,9].5 Janson’s inequa-
lity is mainly used to study the property of random graphs,
and it provides a tail approximation for the sum of a set of
dependent Bernoulli random variables. We briefly describe
Janson’s inequality for completeness.

5 Not to be confused with the well-known Jensen’s inequality.

123

Optimal inter-object correlation when replicating for availability 371

Let Jz , 1 ≤ z ≤ s, be independent indicator random
variables denoting the failure of machine z in our context. In
other words, Jz is 1 if machine z fails. For 1 ≤ i ≤ n, let Ii =∏

z∈Qi
Jz , where Qi are arbitrary subsets of {1, 2, . . . , s}. In

our context, Qi is the set of machines holding object i , and
Ii indicates the loss of object i . We write i �∼ j if i �= j and
Qi ∩ Q j �= ∅. Define:

µ =
n∑

i=1

Pr [Ii]

� =
∑

(i, j):i �∼ j

Pr [Ii ∧ I j]

Notice that the sum in � is done over ordered pairs of i and
j and the sum over unordered pairs would be �/2.

Theorem 2 Janson’s inequality [2,8,9]

Pr [I1 = I2 = · · · = In = 0] ≥
n∏

i=1

Pr [Ii = 0] (1)

Pr [I1 = I2 = · · · = In = 0] ≤ e−µ2/(�+µ) (2)

Obviously, when t = n, we have FP(α) = 1 − Pr [I1 =
I2 = · · · = In = 0]. An upper bound for FP(α) will then
immediately follow from Inequality (1). We will use Inequa-
lity (2) to obtain the lower bound. For any assignment α, the
term µ is always npk . So to obtain a lower bound on FP(α),
all we need is to upper bound �. The term � can be written
as

∑n
i=1(

∑
j : j �∼i Pr [Ii ∧ I j]). Now consider a given object

i as in Fig. 2, whose k replicas reside on k machines. Each
machine holds l −1 additional objects, and these k machines
have a total of k(l −1) empty slots for other objects. If j �∼ i ,
j must occupy x of these slots where 1 ≤ x ≤ k. For such
j , we trivially have Pr [Ii ∧ I j] = p2k−x .

There are many different ways of “filling up” the k(l − 1)

slots. One extreme is to use l − 1 objects, where each object
takes k slots. The other extreme is to use k(l − 1) objects,
where each object takes 1 slot. In the first extreme, the total
number of terms in the summation of

∑
j : j �∼i Pr [Ii ∧ I j] is

minimized (l −1 terms), but each individual term is maximi-
zed (each is pk). In the second extreme, the total number of
terms is maximized (k(l −1)), while each term is minimized
(p2k−1). Because p ≤ 0.5, however, one would suspect that
the term p2k−x quickly decreases as x decreases. Thus, the

object i

object i

k

l

object j

object jobject i

Fig. 2 Illustrating the � term in Janson’s inequality, for k = 3 and
l = 4. Each row is a machine

number of terms becomes less important, and the magnitude
of individual terms dominates. In other words, intuitively, the
first extreme above will likely maximize �, while the second
extreme will likely minimize it.

It is interesting to note that the first extreme above exactly
corresponds to the PTN assignment,6 while the second
extreme is closer to the RAND assignment. In other words,
the � term actually gives us an intuition of why, when t =
n = N , PTN is the best while RAND is the worst (within
constants).

Lemma 1 For 1 ≤ x1, x2 ≤ z, we have:

– If p ≤ 0.5, then p−x1 + p−x2 ≤ p−(x1+x2).
– If x1 + x2 ≥ z +1, then p−x1 + p−x2 ≤ p−z + p−x1−x2+z

Proof

– Without loss of generality, assume x1 ≤ x2. Let q =
1/p ≥ 2. We have qx1−x2 ≤ 1 ⇒ qx1−x2 + 1 ≤ 2 ≤
qx1 ⇒ qx1 + qx2 ≤ qx1+x2 .

– Let d = x1 + x2 and define f (x) = p−x + p−(d−x) for
d −z ≤ x ≤ z. We only need to prove that f (x1) ≤ f (z).
We have f ′(x) = (ln p)(px−d − p−x) and f ′′(x) =
(ln p)2(p−x + px−d) > 0. Thus the maximum of f (x)

must occur at the boundary. On the other hand, f (d−z) =
f (z) = p−z + p−(d−z). So we have f (x1) ≤ f (z). ��

Lemma 2 Consider 1 ≤ x1, x2, . . . , xu ≤ z where
∑u

i=1

xi = y. We have p2k−x1 + p2k−x2 +· · ·+ p2k−xu ≤ y
z �p2k−z

when p ≤ 0.5.

Proof It suffices to show that p−x1 + p−x2 + · · · + p−xu ≤
 y

z �p−z . We combine the terms on the left-hand side step by
step. If xi + x j ≤ z, we combine the two terms of p−xi and
p−x j into one term p−xi −x j . Otherwise we convert the two
terms to p−z + p−x1−x2+z . From Lemma 1, we know that
the summation is never decreased at any of these steps. Thus
p−x1 + p−x2 + · · · + p−xu ≤ y

z �p−z . ��
Theorem 3 When t = n = N, for any assignment α, we
have:
FP(α) ≤ 1 − (1 − pk)n (3)

FP(α) ≥ 1 − e−(n/l)pk
(4)

Proof From Inequality (1), we trivially have 1 − FP(α) ≥
(1 − pk)n . To obtain the lower bound, consider a particular
object i . Suppose there are altogether u j’s such that j �∼ i .
For each such j , we define x = |Qi ∩ Q j |. Let these u

6 This, of course, does not necessarily mean that PTN is optimal. All
it says is that the failure probability of PTN is lower bounded by the
lowest lower bound among all assignments.

123

372 H. Yu, P. B. Gibbons

x’s be x1, x2, . . . , xu . Clearly 1 ≤ x1, x2, . . . , xu ≤ k and let
y = x1 +x2 +· · ·+xu ≤ (l −1)k (Fig. 2). For the given i , we
have

∑
j : j �∼i Pr [Ii ∧ I j] = p2k−x1 + p2k−x2 +· · ·+ p2k−xu .

Lemma 2 shows that this summation is upper bounded by
 y

k �pk ≤ (l − 1)pk . When we consider all possible i’s, we
have:

� =
∑

(i, j):i �∼ j

Pr [Ii ∧ I j] ≤ n(l − 1)pk

Finally, from Inequality (2) and with µ = npk , we have:

1 − FP(α) ≤ e−µ2/(�+µ) ≤ e−(n/ l)pk

��
5.2 Approaching upper and lower bounds

To show that PTN is near the lower bound, we trivially have
FP(PTN) = 1 − (1 − pk)n/ l , which is not far from the lower
bound of 1 − e−(n/ l)pk

:

Theorem 4 When t = n = N, for any assignment α and
any constant ε > 0:

1. FP(PTN) < 1.14FP(α).
2. When either p is sufficiently small or when n is suffi-

ciently large,7 FP(PTN) < (1 + ε)FP(α).

Proof Theorem 3 tells us that FP(α) ≥ 1 − e−(n/ l)pk
. Let

x = n/ l where x ≥ 1, y = pk where 0 < y ≤ 0.52 = 0.25,
and f (x, y) = (1 − (1 − y)x)/(1 − e−xy). It can be shown
that for any constant y, f (x, y) is a monotonically decrea-
sing function of x . Next define g(y) = f (1, y). We can
show that g(y)′ ≥ 0 for any y. Thus f (1, y) is a monoto-
nically increasing function of y, and we have f (x, y) ≤
f (1, y) ≤ f (1, 0.25) < 1.14. Furthermore, y → 0 as
p → 0, x → ∞ as n → ∞, limy→0 f (x, y) → 1, and
limx→∞ f (x, y) → 1. ��

Different from performance measures, because FP(α) is
usually a close-to-zero value in practice, having a multipli-
cative constant is more desirable than an additive constant.

Next we intend to show that RAND is close to the worst.
Remember that RAND is actually a distribution of assign-
ments. Given the #-P hardness of calculating failure probabi-
lity, it is unlikely that we can enumerate the failure probability
of all assignments in the distribution. Instead, we use Janson’s
inequality to approximate the failure probability of the assi-
gnments in the distribution. By carefully upper bounding �,

7 The assignment problem requires that s = Nk/ l = nk/ l and n is
not a “free” variable. In this paper, whenever we consider “sufficiently
large” n, we make the natural assumption that k and l are fixed, while s
changes with n as s = nk/ l. This follows the practical meaning of the
problem: Namely, when the number of objects increases, we will use
more machines to hold them.

we can show that with high probability, an assignment drawn
according to the distribution is close to the worst.

Recall from Fig. 2 and the intuition in Theorem 3 that
bounding � is all about bounding the summation

∑
j : j �∼i

Pr [Ii ∧ I j] for any given i . Earlier we explained that, for
p ≤ 0.5, the magnitude of individual terms in the summation
for i is more important than the number of terms. For an object
j that occupies x of the k(l −1) slots in Fig. 2, Pr [Ii ∧ I j] =
p2k−x , which can vary between p2k−1 to pk . We will show
that in RAND, with high probability, any j will occupy at
most roughly k/2 slots. This is easy to imagine since with
k(l −1) object replicas, it is unlikely that we end up with too
many replicas from the same object. On the other hand, this
will upper bound Pr [Ii ∧ I j] within roughly p1.5k , which is
sufficient to prove the result.

Theorem 5 When t = n = N, k ≥ 3, and 2lp�k/2� ≤ 1, for
any assignment α and any constant ε > 0, with probability
of at least 1 − O(1/n):

1. FP(RAND) > 0.46FP(α).
2. When either p is sufficiently small or n is sufficiently

large, FP(RAND) > (1 − ε)FP(α).

Proof We know that for any assignment µ = npk . Let

q = n
k∑

i=k/2�+1

(kl/n)i

Notice that when k ≥3, q = O(n·(1/n)k/2�+1) = O(1/n2).
We will show that for RAND:

Pr [� > 2nlpk+�k/2�] ≤ nq = O(1/n)

To study the distribution of�, consider a particular object and
its corresponding indicator variable Ii as in Janson’s inequa-
lity. As in the proof of Theorem 3, imagine that there are
altogether u j’s such that j �∼ i and for each such j , we
define x = |Qi ∩ Q j |. Let these u x’s be x1, x2, …, xu . We
have 1 ≤ x1, x2, . . . , xu ≤ k and x1+x2+· · ·+xu = (l−1)k.
Let z = max(x1, x2, . . . , xu) ≤ k. For the given i , Lemma 2
tells us:
∑

j �∼i

Pr [Ii ∧ I j] = p2k−x1 + p2k−x2 + · · · + p2k−xu

≤ (l − 1)k

z
�p2k−z

≤ kl

z
· p2k−z

Define h(z) = kl
z · p2k−z and we have

∑
j �∼i Pr [Ii ∧ I j] ≤

h(z).
On the other hand, the definition of z is exactly the same

as in Lemma 7 (in the Appendix), which tells us:

Pr [z > k/2�] = Pr [z ≥ k/2� + 1] ≤ q

123

Optimal inter-object correlation when replicating for availability 373

Because p ≤ 0.5, one can show that h(1) ≤ h(2) < h(3) <

h(4) < This means that if
∑

j �∼i Pr [Ii ∧ I j] > h(k/2�),
we must have h(z) > h(k/2�) and z > k/2� (since k/2�
≥ 2). Thus for given i :

q ≥ Pr [z ≥ k/2� + 1] = Pr [z > k/2�]
≥ Pr [

∑

j �∼i

Pr [Ii ∧ I j] >
kl

k/2� · p2k−k/2�]

≥ Pr [
∑

j �∼i

Pr [Ii ∧ I j] > 2lpk+�k/2�]

When considering all possible i’s, we have:

Pr [� > 2nlpk+�k/2�] ≤ nq = O(1/n)

Thus Inequality (2) tells us that with at least 1 − O(1/n)

probability:

FP(RAND) ≥ 1 − e(−n2 p2k)/(npk+2nlpk+�k/2�)

= 1 − e−npk/(1+2lp�k/2�) ≥ 1 − e−0.5npk

From Theorem 3, we know that FP(α) ≤ 1 − (1 − pk)n . Let
x = n where 1 ≤ x , y = pk where 0 < y ≤ 0.52 = 0.25,
and f (x, y) = (1−e−0.5xy)/(1− (1− y)x). It can be shown
that for any constant y, f (x, y) is a monotonically increa-
sing function of x . Next define g(y) = f (1, y). One can
show that g′(y) ≤ 0 for any y. Thus f (1, y) is a mono-
tonically decreasing function of y, and we have f (x, y) ≥
f (1, y) ≥ f (1, 0.25) > 0.46. Furthermore, we also have
limx→∞ f (x, y) → 1 and limy→0 f (x, y) → 1. ��

We construct a customized proof for k = 2:

Theorem 6 When t = n = N, k = 2, and 4lp ≤ 1, for any
assignment α and any constant ε > 0, with probability of at
least 1 − O(1/n):

1. FP(RAND) > 0.46FP(α).
2. When either p is sufficiently small or n is sufficiently

large, FP(RAND) > (1 − ε)FP(α).

Proof We know that for any assignment µ = np2. To study
the distribution of �, consider a particular object and its cor-
responding indicator variable Ii as in Janson’s inequality. As
in the proof of Theorem 3, imagine that there are altoge-
ther u j’s such that j �∼ i and for each such j , we define
x = |Qi ∩ Q j |. Let these u x’s be x1, x2, …, xu . We have
1 ≤ x1, x2, . . . , xu ≤ 2 and x1 + x2 + · · · + xu = 2(l − 1).
By definition, we have:
∑

j �∼i

Pr [Ii ∧ I j] = p2k−x1 + p2k−x2 + · · · + p2k−xu

Different from the proof of Theorem 5, here it is not suffi-
cient to simply reason about the (small) probability of having
a large x j in the sequence. Rather, we need to be more precise

and reason about the number of large x j ’s. Fortunately, k = 2
simplifies such reasoning. For the given i , let yi be the num-
ber of x j ’s that are 2. Lemma 6 (in the Appendix) tells us that
the expectation of yi is smaller than n ·(k2/s)2 = 4l2/n. Now
consider all yi ’s for 1 ≤ i ≤ n and define y = ∑n

i=1 yi . We
have E[y] < 4l2. Applying a Markov inequality will show
that Pr [y ≥ 0.5n] ≤ 8l2/n = O(1/n).

When k = 2, � is a summation of terms in the form of
p4−x j where x j is either 1 or 2. In other words, the terms
appearing in the summation are either p2 or p3. The sum of
all x j ’s, across all j and all i , is exactly 2(l − 1)n. Thus the
total number of p3 terms in the summation is at most 2nl.
The number of p2 terms is exactly y. Thus with 1 − O(1/n)

probability, we have:

� ≤ 2nl · p3 + 0.5n · p2,

and also:

FP(RAND) ≥ 1 − e(−n2 p4)/(np2+2nlp3+0.5np2)

= 1 − e−np2/(1.5+2lp) ≥ 1 − e−0.5np2

The rest of the proof is the same as the second half of the
proof for Theorem 5. ��

Discussion on inter-object correlation in PTN and RAND We
have shown thatPTN andRAND are the best and worst assign-
ments (within constants and under the conditions in the theo-
rems). For t = n, if the n objects were all independent, then
the success probability of the operation would be (1 − pk)n .
Inter-object correlation helps us to improve such probability:
Conditioned upon one object being available, other objects
that reside on the same machines as that object will have an
availability larger than (1 − pk). However, notice that the
availability of RAND approaches (1− pk)n , meaning that the
inter-object correlation in RAND is weak and the availabi-
lity is almost as if the n objects were independent. On the
other hand, PTN has a strong correlation and the availability
(1 − pk)n/ l is as if we only had n/ l independent objects.
When pk is small, the difference between FP(RAND) and
FP(PTN) is about a factor of l.

Because randomly assigning objects seems to be a good
way to minimize the correlation among objects, it may appear
obvious that RAND should be close to the worst. But such
intuition overlooks the subtlety in defining a single quan-
titative measure for inter-object correlation. For example,
for t = n, Janson’s inequality uses a single quantity � to
“summarize” inter-object correlation. We indeed showed that
RAND tends to give us a small � for p ≤ 0.5, which led to
Theorem 5. On the other hand, when p → 1, each term in
the summation of � = ∑

(i, j):i �∼ j Pr [Ii ∧ I j] approaches 1.
As a result, because RAND tends to maximize the number of
terms in the summation, RANDwill actually give us a large �

(much larger than the � inPTN) when p → 1. This, however,
does not mean that the correlation in RAND becomes larger

123

374 H. Yu, P. B. Gibbons

now, since obviously the correlation level is an inherent pro-
perty of the assignment and should not depend on p. Thus
the only explanation is that � now fails to accurately capture
such correlation.

6 Best and worst assignments for t = l + 1 < n = N

Having discussed the largest t in the previous section, we
now turn to the smallest t in this section. When t ∈ [1, l]
the assignment problem reduces to a trivial one, because all
assignments have the same availability. Thus the smallest t
we consider is l + 1.

We first use basic combinatorial arguments to prove that
PTN is the worst assignment when t = l +1. The intuition is
that we need one machine to be available to give us l objects,
and some other machines to be available such that at least
one of these machines provides at least one other object.
This does not happen only when all the available machines
have exactly the same set of objects. A counting argument
will show that the number of such scenarios is maximized
under PTN.

To formalize such arguments, we introduce some defini-
tions that are used only in this section. A configuration G is
the subset of the available machines out of the s machines. A
configuration is unavailable (under a given assignment) if the
number of available objects in that configuration is smaller
than t .

Theorem 7 When t = l + 1 < n = N, FP(PTN) ≥ FP(α)

for any assignment α.

Proof For a given assignment and any 1 ≤ i ≤ s and 1 ≤
v ≤ s, we define Ui,v to be:

{G|i ∈ G, |G| = v, and G is an unavailable configuration}
The failure probability of the assignment is then:

ps +
s∑

v=1

s∑

i=1

[|Ui,v|/v × (1 − p)v ps−v]

In the expression, the term |Ui,v|/v is the total number of size
v configurations that are unavailable (each such configuration
appears in v different Ui,v’s).

To prove FP(PTN) ≥ FP(α), it suffices to show that for
any i and v, |Ui,v| is maximized under PTN. In any confi-
guration G ∈ Ui,v , machine i must be available. Thus at
least l objects are already available. As G is not available
under the threshold of l + 1, all other machines in G must
hold exactly the same set of objects as machine i . With each
object having k replicas, we can have at most k − 1 such
machines. Thus |Ui,v| ≤ (k−1

v−1

)
for 1 ≤ v ≤ k and |Ui,v| = 0

for k + 1 ≤ v ≤ s. On the other hand, in PTN, we have
exactly |Ui,v| = (k−1

v−1

)
for 1 ≤ v ≤ k. Thus |Ui,v| is maxi-

mized under PTN. ��

Next we want to find the best assignment for t = l+1. This
is not difficult, because all we need is that no two machines
hold exactly the same set of objects. It is simple to construct
such an assignment using a sliding-window approach. We
number all objects from 1 to n and place them sequentially
on a ring. Imagine that there is a window of size l. The first
machine holds object 1 through object l. Then we slide the
“window” to the right by l/k, and have the second machine
hold object (l/k + 1) through (l/k + l). Similarly, the third
machine will hold object (2l/k + 1) through (2l/k + l), and
so on.

In the following, however, we intend to derive a more inter-
esting result—we will prove that RAND is close to optimal
when t = l+1. This means that just randomly picking an assi-
gnment can be almost as good as carefully constructing one.
The intuition is simple: if we randomly assign object repli-
cas, then it is unlikely that two machines will have exactly
the same set of objects.

Theorem 8 When t = l + 1 < n = N, for any assignment
α and any positive constant ε, we have E[FP(RAND)] ≤
(1 + ε)FP(α) when n is sufficiently large.

Proof For any assignment, if less than two machines are
available, there must be less than l + 1 objects. Thus when
t = l + 1, for any assignment α, we have the trivial lower
bound of FP(α) ≥ ps + s(1 − p)ps−1.

For RAND, we define random variable Ui to be the set of
unavailable configurations whose size is i . From the linearity
of expectation, we have E[FP(RAND)] as:

ps + s(1 − p)ps−1 +
k∑

i=2

E[|Ui |](1 − p)i ps−i

It is important to notice that s is not a constant and when
n → ∞, we also have s = nk/ l → ∞. Thus the lower bound
of ps + s(1 − p)ps−1 will approach zero when n → ∞. To
prove the theorem, showing E[|Ui |] → 0 is not sufficient—
we need to prove that it approaches zero at a faster rate than
the lower bound, as following.

Let Ci to be the set of all configurations whose size is
i , and we have |Ci | = (s

i

)
. Notice that Ci is not a random

variable. Define indicator random variable xi, j , where xi, j =
1 if and only if the j th configuration in Ci belongs to Ui .
Obviously, we have E[|Ui |] = E[∑ j xi, j] = (s

i

)
E[xi,1] ≤

si E[xi,1]. Notice that E[xi,1] is the probability of having
exactly l distinct objects on a given set of i machines in
RAND. Thus E[xi,1] decreases with i and we have E[|Ui |] ≤
sk E[x2,1].

Determining the probability (i.e., E[x2,1]) of having
exactly l distinct objects on a given set of two machines is
actually not trivial because a machine is not allowed to hold
multiple replicas of the same object. As a result, the num-
ber of ways to assign object replicas to the remaining n − 2

123

Optimal inter-object correlation when replicating for availability 375

machines is dependent on how we assign the object replicas
to the 2 machines. Lemma 8 in the Appendix proves that
E[x2,1] < (l/n)l ≤ (l/n)k . Thus, we have E[FP(RAND)]
as:

ps + s(1 − p)ps−1 +
k∑

i=2

E[|Ui |](1 − p)i ps−i

< ps + s(1 − p)ps−1 + k · sk · (l/n)k · (1 − p) · ps−k

≤ ps + s(1 − p)ps−1 + s(1 − p)ps−1 ·
(

1

pk−1 · kkl

n

)

≤ (1 + ε)FP(α) when n sufficiently large.

��
Corollary 1 For any assignment α and any positive
constants ε and δ, when t = l + 1 < n = N and n is
sufficiently large, Pr [FP(RAND) ≥ (1 + ε)FP(α)] ≤ δ.

Proof To prove this corollary, we need to translate the expec-
tation guarantee from Theorem 8 to a high probability gua-
rantee. We will apply a Markov inequality, in a careful way.
Let β be the assignment with the smallest failure probability.
Obviously such β exists, since there are only finite number
of possible assignments. By definition of β, we always have
FP(RAND)/FP(β) ≥ 1.

To prove the corollary, we only need to show that
Pr [(FP(RAND)/FP(β)) ≥ (1 + ε)] ≤ δ. We prove by
contradiction and assume that Pr [(FP(RAND)/FP(β)) ≥
(1 + ε)] > δ. This means that E[FP(RAND)/FP(β)] >

1 · (1 − δ) + (1 + ε) · δ = 1 + εδ. On the other hand,
Theorem 8 tells us that E[FP(RAND)] ≤ (1 + εδ)FP(β)

when n is sufficiently large. Contradiction. ��

7 A deeper look

7.1 Impossibility of remaining optimal across all values of t

Our results so far show that when t decreases from n to l +1,
the best assignment (PTN) becomes the worst, while the worst
assignment (RAND) becomes the best. Ideally, we would pre-
fer an assignment that is optimal for all t values. However,
the following shows that no such assignment exists.

Our proof is based on the area bounded by the availability
curve (Fig. 3) for any assignment, where the x-axis is t and
the y-axis is the availability of the given assignment. We will
prove that the area is a constant independent of the assign-
ment. If we want to raise one part of the curve, some other part
must necessarily drop to keep the area constant. It is impos-
sible for a single assignment to be optimal under all t values
because otherwise the area will no longer remain constant.
Also because the difference betweenPTN andRAND is usually
large, it is not even possible for a single assignment to be near
to the optimal under all t value.

1
+ q

2
+ + q

n
. . .

−
q

1 n

availability of the assignment

t

q
n

Fig. 3 Illustrating the area bounded by the availability curve. The curve
is actually a step function, so the area bounded by the curve exactly
equals the sum of the rectangular areas

Specifically, for any assignment, let qi be the probability
that exactly i objects are available, for 0 ≤ i ≤ n. The area
bounded by the availability curve is:

(q1 + · · · + qn) + (q2 + · · · + qn) + · · · + (qn) =
n∑

i=1

iqi

On the other hand, the summation
∑n

i=1 iqi is exactly the
expected number of available objects in the system. In any
assignment, each object is available with probability 1 − pk .
Linearity of expectation tells us that

∑n
i=1 iqi = n(1 − pk),

which is independent of the assignment.

7.2 Removing constant factors when t = n = N
and k = l = 2

For t = l+1, we have already obtained the best and the worst
assignments without any constant factor. While for t = n,
the best and the worst assignments are within constant fac-
tors (Theorems 4 and 5). In particular, the worst “assign-
ment” RAND is actually a distribution, which does not shed
much light onto the structure of the worst assignment. Thus
this section aims to find the best/worst assignment (without
constants) for t = n, under some significantly restricted sce-
narios.

The scenarios we consider are when every object has two
replicas and each machine holds two objects (as in Fig. 1).
We will see that even under such significantly restricted and
perhaps impractical parameters, the problem is still far from
trivial. To simplify discussion, the rest of this section assumes
that n|2 and n|3.

When k = l = 2, any assignment can be uniquely repre-
sented as a set of rings (Fig. 4). Each ring edge represents
an object, and each ring node corresponds to a machine hol-
ding the two adjacent edges (objects). The size of a ring can
range from 2 to n. Obviously, if two adjacent nodes on any
ring fail, then we lose an object and the assignment becomes
unavailable under t = n. Notice that because all objects are
equivalent, it is not important which object corresponds to
which ring edge—only the ring sizes matter. Define f (x)

to be the probability of not having any two adjacent nodes

123

376 H. Yu, P. B. Gibbons

example assignment

C D

E
corresponding set of rings

A B A B

C D D E

C E

A B

Fig. 4 When k = l = 2, each assignment can be uniquely represented
as a set of rings. Each box represents a machine

failing on a ring of size x for 2 ≤ x ≤ n. If assignment α

corresponds to rings of size x, y, z, . . ., then:

FP(α) = 1 − f (x) f (y) f (z) . . .

To find the best (worst) assignment, we use hill-climbing
and adjust an assignment repeatedly so that at each step FP(·)
is decreased (increased). For any assignment, the sum of the
sizes of all rings is always n. To keep this invariant, an adjust-
ment step can either split a big ring of size x + y into two
smaller ones of size x and y, or merge two smaller rings of
size x and y into one big ring of size x + y. Any assignment
can be transformed into any other assignment via a sequence
of these adjustment steps. The crux is to understand how
availability changes in these steps, or more precisely, which
of f (x) f (y) and f (x + y) is larger. Interestingly, the com-
parison outcome is uniquely determined by the parity of the
smaller of x and y:

Lemma 3

f (x) = zx
1 + zx

2 , where: q = √
(3p + 1)(1 − p),

z1 = (1 − p + q)/2, z2 = (1 − p − q)/2

We also have z1 > 0, z2 < 0, and 0 < |z2| < |z1| < 1.

Proof Consider a string of n nodes (i.e., a broken ring).
Define g(x) to be the probability of not having any two adja-
cent nodes failing on a string of size x for x ≥ 1. Define
g(0) = 1. One can show the following linear recurrence for
x ≥ 2:

g(x) = (1 − p)g(x − 1) + p(1 − p)g(x − 2) (5)

Using standard techniques to solve the recurrence, we have
for x ≥ 0:

g(x) = azx
1 + bzx

2 , where:

a = (q + 1 + p)/(2q), b = (q − 1 − p)/(2q),

z1, z2 and q are as defined in the lemma.

For x ≥ 3, we have:

f (x) = (1 − p)2g(x − 2) + 2p(1 − p)2g(x − 3) (6)

One can easily verify that f (x) = zx
1 + zx

2 satisfies the above
equation. It is trivial to show that f (2) = z2

1 + z2
2. ��

Lemma 4 Let x and y be integers where x ≥ y ≥ 2:

– f (x) f (y) > f (x + y) if y is even.
– f (x + y) > f (x) f (y) if y is odd.

Proof

f (x) f (y) − f (x + y)

= (zx
1 + zx

2)(zy
1 + zy

2) − (zx+y
1 + zx+y

2)

= zx
1 zy

2 + zy
1 zx

2 = zy
1 zy

2(zx−y
1 + zx−y

2)

Because (x − y) ≥ 0, z1 > 0, and |z1| > |z2|, the term
(zx−y

1 + zx−y
2) is positive. Thus the sign of the above expres-

sion must be the same as the sign of zy
2 . ��

We are now ready to prove the two main theorems of this
section, which say that n/2 size-2 rings are the best while
n/3 size-3 rings are the worst. This is somewhat surprising
because it is tempting to conjecture that a single ring of size
n is the worst.

Theorem 9 When t = n = N and k = l = 2, the assi-
gnment corresponding to n/3 size-3 rings has the highest
failure probability.

Proof Consider the set of rings corresponding to any given
assignment α. We want to adjust the rings to ultimately obtain
n/3 size-3 rings. To always decrease availability in the adjust-
ment steps, Lemma 4 allows two kinds of adjustments:

– Merge two rings of size x and y into one ring of size
(x + y) where x ≥ y and y is even.

– Split a ring of size (x + y) into two rings of size x and y
where x ≥ y and y is odd.

Now we adjust the set of rings corresponding to assign-
ment α. First, for any odd size ring whose size is at least 7,
we split it into two smaller rings where one of them is of
size 3. We will end up with three kinds of rings: size-3 rings,
size-5 rings, and even size rings. We merge all even size rings
into a single big one, and then keep ripping size-3 rings out
of the big ring until the size of the big ring is either 3, 4,
or 5. If we do have a size-4 ring, then there must be at least
one size-5 ring (since n|3). We merge the size-4 ring and the
size-5 ring into a size-9 ring. This ring can then be split into 3
size-3 rings. Now we have only size-3 rings and size-5 rings.
One can easily show that f 3(5) > f 5(3), which enables us
to adjust all size-5 rings into size-3 rings. At this point, we
obtain n/3 size-3 rings. ��

Note that the ring structure of RAND significantly differs
from n/3 size-3 rings. For k = l = 2, RAND can be roughly
viewed as selecting a random permutation of 1 . . . n. In a
random permutation, the expected number of cycles of size

123

Optimal inter-object correlation when replicating for availability 377

m ≤ n is 1/m and the average cycle size is �(n/ log n) [12].
Such structure is obviously quite different from n/3 size-3
rings.

Theorem 10 When t = n = N and k = l = 2, the assign-
ment corresponding to n/2 size-2 rings (i.e., the PTN assi-
gnment) has the lowest failure probability.

Proof To always increase availability in the adjustment,
Lemma 4 allows two kinds of adjustments:

– Merge two rings of size x and y into one ring of size
(x + y) where x ≥ y and y is odd.

– Split a ring of size (x + y) into two rings of size x and y
where x ≥ y and y is even.

Now we adjust the set of rings corresponding to assign-
ment α. We first break all even size rings whose size is at
least 4 into size-2 rings. For all odd size rings whose size
is at least 5, we keep ripping out size-2 rings until all odd
size rings become size 3. We now have only size-2 rings and
size-3 rings. We merge all rings of size 3 into one big ring,
and then split the big ring into size-2 rings. ��

As we mentioned, it was tempting to conjecture that a
single size-n ring has the worst availability. Given that is not
true, what availability does a single size-n ring provide? Is it
close to the best or close to the worst? What about rings of
other sizes? To shed light onto these question, we consider
assignments that correspond to rings of homogeneous sizes
(i.e., (n/x).8 rings of size x) We will prove that:

– If x is odd, then the larger x is, the better the availability.
For example, three rings of size 25 is better than five rings
of size 15.

– If x is even, then the larger x is, the worse the availability.
For example, four rings of size 12 is worse than six rings
of size 8.

– If x is even and y is odd, then (n/x) size-x rings is always
better than (n/y) size-y rings.

Figure 5 illustrates these results, whereas we increase x , the
availability oscillates with a decreasing oscillation magni-
tude. Notice that these results, however, do not necessarily
imply Theorems 9 and 10, which also apply to rings of hete-
rogeneous sizes.

Theorem 11

– For any odd integers x and y where x > y ≥ 3, we have
(f (x))n/x > (f (y))n/y .

8 To simplify discussion, wherever we use the notation n/x below, we
assume n|x .

availability

x2 3 4 5 6 7 8

Fig. 5 Illustrating the availability of the assignment corresponding to
n/x rings of size x

– For any even integers x and y where x > y ≥ 2, we have
(f (x))n/x < (f (y))n/y .

– For any even integer x ≥ 2 and any odd integer y ≥ 3,
we have (f (x))n/x > (f (y))n/y .

Proof For the first case, define z3 = −z2 > 0. We have from
Lemma 3 that f (x) = zx

1 − zx
3 and f (y) = zy

1 − zy
3 :

(f (x))n/x > (f (y))n/y ⇔ (zx
1 − zx

3)y > (zy
1 − zy

3)x

⇔ (1 − (z3/z1)
x)y > (1 − (z3/z1)

y)x

On the other hand, because 0 < z3/z1 < 1, we have
(1 − (z3/z1)

x)y > (1 − (z3/z1)
x)x > (1 − (z3/z1)

y)x . The
other two cases are similar. ��

8 Extending the previous results to n < N

So far we have considered only n = N . When n < N , the nk
replicas of the n requested objects may not be evenly distribu-
ted among the s machines. Each machine may hold any num-
ber (ranging from 0 to l) of the replicas for these n objects.
This provides us with another degree of freedom, and PTN
and RAND as defined in Sect. 3 are no longer well-defined.
We refine these definitions as follows. The PTN assignment
is obtained by partitioning the N objects into N/ l groups of
size l where the n objects requested by the operation belong
to exactly n/ l groups, and then mirroring each group onto
k machines. In other words, the n objects “concentrate” and
occupy as few machines as possible. The RAND assignment
is a random assignment drawn uniformly randomly from all
assignments where each machine holds exactly nk/s object
replicas of the n objects requested by the operation. In other
words, the n objects “spread” and occupy (evenly) as many
machines as possible.

Now we are ready to explore the best/worst assignments
for t = n < N . Both Theorems 3 and 4 (together with the
exact proofs) apply to t = n < N without modification.
Thus PTN is optimal within a constant of 1.14. Theorems 5
and 6 (together with the proofs) apply to t = n < N once
we substitute l with nk/s in the theorems and proofs. This
means that RAND is the worst within a constant of 0.46. As
for the best and worst assignments for small t , notice that the

123

378 H. Yu, P. B. Gibbons

smallest interesting t value is now 1 (instead of l + 1). For
t = 1, we only need any machine holding any of the nk object
replicas to be available for the operation to be successful.PTN
uses the minimal number of machines for the n objects, while
RAND uses the maximum number of machines. Thus they are
obviously the best and worst assignment, respectively.

In practice, the application may have multiple multi-object
operations, and each multi-object operation may access a dif-
ferent subset of n objects. Mathematically modeling these
operations is challenging because the access pattern can be
complex and simply assuming that each operation accesses
a uniformly random subset will be far from reality. Our
previous experimental study [24] has investigated these sce-
narios for some specific applications.

9 Heterogeneous replication degrees

So far we have obtained a complete set of results under the
model from Sect. 3, where all objects have the same number
(k) of replicas. One can easily imagine that in some appli-
cations, different objects may have different importance. For
example, in a file system, some files may be deemed as more
important than others, and metadata blocks (containing direc-
tory information) are often considered to be more critical than
data blocks. Naturally, systems designers will use more repli-
cas for important objects to protect them. In other words, the
objects in the system will have different number of replicas
or heterogeneous replication degrees.

This section thus aims to study the object assignment pro-
blem under this generalized model with heterogeneous repli-
cation degrees. We first define the generalized model. The
system has N objects, from object 1 to object N . Object i
(1 ≤ i ≤ N) has ki (ki ≥ 1) replicas and ki is called the repli-
cation degree of object i . The value of ki is determined by
the system designer based on the importance of object i . The
s machines each hold exactly l objects, with s · l = ∑N

i=1 ki .
Our results under heterogeneous replication degrees are

not as general as for homogeneous replication degrees, due
to the difficulty of the problem. Instead of finding out the best
and worst assignment for t = n and t = l+1 (i.e., four cases),
here we have results only regarding the best assignment for
t = n. This, however, is perhaps the most important case in
practice among the four cases.

At a high level, we will show that the failure probability of
the PTN assignment, when properly generalized to heteroge-
neous replication degrees, is at most k multiplicative factor
from the optimal. Here k is the average replication degree
across all n objects requested by the operation. Replication
degrees (especially the average replication degree) in a real
replication system tend to be small (e.g., below 5). Further-
more in practice, because failure probability or availability
can span a wide range, it is usually discussed in log-scale. For

example, system designers often use “number of nines” as
the measure for availability, where x number of nines means
that the availability is 1 − 0.1x . A multiplicative factor of 5
in failure probability would then translate to less than one
nine’s difference. Thus we do not expect this k factor to be
significant in practice.

It is worth noting that the proving technique we use to
obtain this result is different from before. Earlier in Sect. 5,
we used Janson’s inequality to obtain a lower bound on
FP(α), and then some straightforward calculation showed
that FP(PTN) is close to the lower bound. With heteroge-
neous replication degrees, Janson’s inequality can no longer
provide a good enough lower bound. Instead, we obtain a
lower bound via elementary combinatorial techniques. We
then carefully show that the properly generalized PTN assi-
gnment can approach the lower bound within k factor.

In the next, without loss of generality, we assume that the
n objects requested by the operation are objects 1 through
n. Also without loss of generality, we further assume that
1 ≤ k1 ≤ k2 ≤ · · · ≤ kn . We let k = ∑n

i=1 ki/n. We do not
(in fact we cannot) assume that kn ≤ kn+1 ≤ · · · ≤ kN .

9.1 Lower bound

We will first obtain a lower bound on FP(α) for any α, by
finding out a set of mutually independent objects (out of
the n objects requested). In other words, no machine holds
more than one object from that set. For the assignment to be
available under t = n, all objects in that set must be available.
This then yields an upper bound on availability and a lower
bound on FP().

Obviously, the lower bound depends on the set of objects
we find and the lower bound is stronger if (i) the number of
objects in the set is larger, and (ii) the replication degree (and
thus the availability) of individual objects in the set is smal-
ler. Further remember that we are trying to obtain a lower
bound for any α, so we cannot leverage any special struc-
ture of α. To obtain a strong lower bound, we first include
object 1 in the set, since its replication degree is the smallest.
Object 1 has k1 replicas on k1 different machines. The num-
ber of distinct objects (including object 1 itself) that reside
on these k1 machines is at most z1 = (l − 1)k1 + 1. Namely,
there can only be at most z1 objects that are correlated with
object 1. We then exclude these z1 objects, and pick (out
of the remaining n − z1 objects) a second object with the
smallest replication degree to include in the set. Obviously,
this second object must have a replication degree of no larger
than kz1+1. We can continue such process and keep adding
objects to the set until we run out of objects. We will even-
tually reach the following theorem with an elementary proof.
The only slightly tricky part in the proof is to appropriately
avoid circular arguments.

123

Optimal inter-object correlation when replicating for availability 379

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ky4
ky3

ky2
ky1

ky5

kxkx 21
kx 3

2 2 2 2 3 3 3 3 4 4 5 5 5 5

kkk x21 3
 z = 2 + 1 = 5 xx z = 2 + 1 = 7 z = 2 + 1 = 1121 3

k k k k k k k k k k k k k k

Fig. 6 Illustrating the definitions of xi , zi , and yi in Theorems 12 and 13. We assume l = 3 and N = n = 14 in the example

Theorem 12 When t = n, for any assignment α, we have:
FP(α) ≥ 1 − (1 − pkx1)(1 − pkx2) . . . (1 − pkxu),

where xi is recursively defined as following and u is the
maximum index such that xu ≤ n:
⎧
⎨

⎩

x1 = 1
zi = (l − 1)kxi + 1 for i ≥ 1
xi+1 = xi + zi for i ≥ 1

Proof Figure 6 illustrates the definitions for xi and zi . We
find integers x ′

1, x ′
2, . . . , x ′

u′ (where 1 = x ′
1 < x ′

2 < · · · <

x ′
u′ ≤ n) in the following way. We start from the sequence of

objects “1, 2, . . . n”. We pick the first object in the sequence
(i.e., object 1) and let x ′

1 be the name of that object (i.e.,
let x ′

1 = 1). We then delete from the sequence all objects
that are correlated with object x ′

1 in the given assignment α

(including object 1 itself). We next pick the first object in the
remaining sequence and let x ′

2 be the name of that object. We
then again delete from the remaining sequence all objects that
are correlated with object x ′

2 in α. The process is repeated
until the sequence becomes empty. Let x ′

u′ be the name of
the last object picked.

Obviously, all these objects x ′
1, x ′

2, . . . , x ′
u′ are mutually

independent. Thus the probability that they are all available

is exactly (1 − p
kx ′

1)(1 − p
kx ′

2) . . . (1 − p
kx ′

u′). In order for
assignment α to be available under t = n, all these objects
must be available. So we immediately have:

FP(α) ≥ 1 − (1 − p
kx ′

1)(1 − p
kx ′

2) . . . (1 − p
kx ′

u′)

To prove the theorem, it suffices to show that u′ ≥ u and
xi ≥ x ′

i for 1 ≤ i ≤ u, which would imply:

FP(α) ≥ 1 − (1 − p
kx ′

1)(1 − p
kx ′

2) . . . (1 − p
kx ′

u′)

≥ 1 − (1 − pkx1)(1 − pkx2) . . . (1 − pkxu)

Define z′
i to be the number of objects deleted from the

object sequence after we find object x ′
i , for 1 ≤ i ≤ u′. Let

w = min(u, u′). We prove via induction the following for
1 ≤ i ≤ w:
{

x ′
i ≤ xi

z′
i ≤ zi

(7)

For the induction base, we trivially have x ′
1 = 1 ≤ 1 =

x1 and z′
1 ≤ (l − 1)k1 + 1 = z1. Now assume the above

inequalities hold up to i and we consider i + 1. We already
have z′

j ≤ z j for all 1 ≤ j ≤ i . This means that

i∑

j=1

z′
j ≤

i∑

j=1

z j = xi+1 − 1

Object x ′
i+1 is the first object in the sequence of “1, 2, . . . , n”,

after deleting from the sequence some (unknown) set of∑i
j=1 z′

j objects. Thus we obviously have x ′
i+1 ≤ ∑i

j=1 z′
j +

1 = xi+1. In any assignment, there can be at most
(l−1)kx ′

i+1
+1 objects that are correlated with object x ′

i+1. So

we immediately have z′
i+1 ≤ (l − 1)kx ′

i+1
+ 1. Now because

x ′
i+1 ≤ xi+1 and also because k j is monotonically increasing

with j , we have z′
i+1 ≤ (l −1)kx ′

i+1
+1 ≤ (l −1)kxi+1 +1 =

zi+1. This completes the inductive step.
We have proved that Inequality (7) holds. We prove via

contradiction that it is impossible for u′ < u. Notice that even
if u′ < u, we still have

∑u′
j=1 z′

j ≤ ∑u′
j=1 zi = xu′+1 − 1

from Inequality (7). Since u′+1 ≤ u and xu′+1 ≤ xu ≤ n, we
must have

∑u′
j=1 z′

j ≤ n − 1. This means that after picking
x ′

u′ , we will have deleted at most n − 1 objects from the
original sequence. Thus there is at least one object and we
should be able to pick x ′

u′+1. Contradiction. ��
The lower bound in Theorem 12 of course, applies to

homogeneous replication degree as well. In such case, the
lower bound will be 1 − (1 − pk)

 n
(l−1)k+1 �. When p is small,

this is roughly n
l·k pk and is about k times smaller/weaker than

the lower bound of 1 − e−(n/ l)pk ≈ n
l pk from Theorem 3.

9.2 Approaching the lower bound using generalized PTN

We would like to show that some appropriate generalization
of the PTN assignment will approach the lower bound on
FP() within some factor. Figure 7 provides an example for
how we generalize PTN. We use k1 machines to hold objects
1 through l, where each machine holds exactly l objects and
each object exactly has k1 replicas on these machines. Since
k1 ≤ k2 ≤ · · · ≤ kl , It is possible that the replication degree
ki of some object i (2 ≤ i ≤ l) is larger than k1, but we

123

380 H. Yu, P. B. Gibbons

= 2 y2
ky4

ky5ky1
k1

 1 2 3

 1 2 3

 4 5 6

 4 5 6

 7 8 9

 7 8 9

 7 8 9

10 11 12

10 11 12

10 11 12

10 11 12

13 14

13 14

13 14

13 14

13 14

ky3 == = kk= kk4 = 2 7 = 3 10 13= 4 = 5= k

Fig. 7 Illustrating the definition of PTN under heterogeneous replica-
tion degrees. We assume the same N , n, l, and ki ’s as in Fig. 6. Each box
corresponds to a machine, which holds exactly three objects. Notice that

objects 5, 6, 9, 11, and 12 each need one additional replica, according
to their replication degrees. These five additional replicas can be place
in an arbitrary way into the five empty “slots” in figure

will not assign the additional ki − k1 replicas of that object
for now. Next we use kl+1 machines to hold objects (l + 1)

through 2l. Again, some objects may need to have more than
kl+1 replicas. We continue such process until we are done
with object n. Finally, remember that some objects (between
object 2 and object n) may need to have more replicas, and we
also need to assign objects n + 1 through N . We will simply
assign all these additional replicas to the remaining “slots”
on the machines in an arbitrary way. Because l ·s = ∑N

i=1 ki ,
we are guaranteed to have enough “slots” to hold all these
left-over replicas. It is easy to see that when k1 = k2 =
· · · = kn = k, our new PTN definition is exactly the same
as the old PTN definition, which means that it is indeed a
generalization.

Notice that strictly speaking, according to the above defi-
nition, PTN is not a single assignment any more. Rather, it
is a set of assignments where each assignment corresponds
to a specific way of assigning the left-over replicas to the
remaining “slots”. To simplify notation, when we write PTN
below, we mean any assignment in the above set. We will
show that all assignments in the set actually have the same
failure probability and are near-optimal. In other words, how
we assign the left-over replicas of objects 2 through n or
how many left-over replicas they have does not affect fai-
lure probability. Intuitively, this is because objects 1, (l + 1),
(2l + 1), . . . (with replication degree of k1, kl+1, k2l+1, . . .)
are the “bottleneck” for availability.

Theorem 13 When t = n, we have:
FP(PTN) = 1 − (1 − pky1)(1 − pky2) . . . (1 − pkyv),

where yi is recursively defined as following and v is the maxi-
mum index such that yv ≤ n:
{

y1 = 1
yi+1 = yi + l for i ≥ 1

Proof Figure 6 illustrates the definition for yi and Fig. 7 illus-
trates the corresponding PTN assignment. In PTN, if object
1 is available, then all objects from object 1 thorough object

l must be available. Similarly, if object (l + 1) is available,
then all objects (l + 1) through 2l must be available. Thus, if
objects y1, y2, . . . , yv are all available, then all the n objects
must be available. The availability of the assignment is thus
at least (1− pky1)(1− pky2) . . . (1− pkyv). On the other hand,
for the assignment to be available, object 1, (l + 1), (2l + 1),
…, must all be available. Further because they are mutually
independent, we know that the availability of the assignment
is at most (1 − pky1)(1 − pky2) . . . (1 − pkyv). ��

We would like to draw a clean connection between the
lower bound from Theorem 12 and FP(PTN) from Theo-
rem 13. The connection is somewhat obscure. After several
unsuccessful attempts, we conjectured that the two values are
roughly k apart. We formalize and prove such claim in the
next. We will only consider sufficiently small p, where the
lower bound from Theorem 12 approaches

∑u
i=1 pkxi and

the FP(PTN) from Theorem 13 approaches
∑v

j=1 pky j .
Figure 6 helps to give an intuitive comparison between the

two summations. Namely, there are more yi ’s than xi ’s, and
both sequences tend to spread out (though in different ways)
over the region of [1, n]. To compare the two summations,
we would like to somehow convert y j ’s into xi ’s. For any
1 ≤ i ≤ u, we define the interval covered by xi to be the
interval of [xi , xi+1−1]. If a certain y j falls within the interval
covered by xi , we say that y j is covered by xi . We group all
y j ’s into groups where each group is covered by a distinct xi .
For example, in Fig. 6, y1 and y2 are covered by x1, y3 and
y4 are covered by x2, while y5 is covered by x3. Obviously,
all y j ’s covered by an xi are at least as large as that xi . When
upper bounding FP(PTN), we can treat all these y j ’s as xi .
We will also show that the number of y j ’s covered by xi

is at most kxi . All these will lead to the following useful
transformation:

Lemma 5
v∑

j=1

pky j ≤
u∑

i=1

(kxi · pkxi),

where xi and y j are as defined in Theorems 12 and 13.

123

Optimal inter-object correlation when replicating for availability 381

Proof The interval covered by xi is of size xi+1 − xi =
(l−1)kxi +1. Because consecutive yi ’s are l apart, the number
of y j ’s that fall within an interval of size (l − 1)kxi + 1 is at
most

1 +
⌊

(l − 1)kxi

l

⌋

= 1 +
⌊

kxi − kxi

l

⌋

≤ 1 + kxi − 1 = kxi

Any y j covered by xi is at least as large as xi , thus for any
given i , we have:

∑

j : xi ≤y j <xi+1

pky j ≤ kxi · pkxi

Finally we have:
v∑

j=1

pky j =
u∑

i=1

⎛

⎝
∑

j : xi ≤y j <xi+1

pky j

⎞

⎠ ≤
u∑

i=1

(kxi · pkxi)

��
Besides Lemma 5, our proof next will also use a well-

known elementary inequality, the Chebyshev sum inequality.
For completeness, we include this inequality below:

Theorem 14 Chebyshev Sum Inequality For any two
sequences where 0 ≤ a1 ≤ a2 ≤ · · · ≤ an and 0 ≤ b1 ≤
b2 ≤ · · · ≤ bn, we have:
a1b1 + · · · + anbn

n
≥ a1 + · · · + an

n
· b1 + · · · + bn

n
. (8)

Similarly, for any two sequences where 0 ≤ a1 ≤ a2 ≤ · · · ≤
an and b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, we have:

a1b1 + · · · + anbn

n
≤ a1 + · · · + an

n
· b1 + · · · + bn

n
. (9)

Theorem 15 For any assignment α and any constant posi-
tive constant ε, when t = n and when p is sufficiently small,
we have:

FP(PTN) ≤ (1 + ε) ·
∑u

i=1 kxi

u
· FP(α),

where xi ’s are as defined in Theorem 12.

Proof We only need to show that lim p→0 FP(PTN)/FP(α)

≤ ∑u
i=1 kxi /u. We have:

lim
p→0

FP(PTN)

FP(α)
≤

∑v
j=1 pky j

∑u
i=1 pkxi

(from Theorems 12 and 13)

≤
∑u

i=1(kxi · pkxi)
∑u

i=1 pkxi
(from Lemma 5)

≤
∑u

i=1 kxi

u
[from Inequality (9)]

��
Corollary 2 For any assignment α and any constant positive
constant ε, when t = n and when p is sufficiently small, we
have FP(PT N) ≤ (1 + ε) · kn · FP(α).

Proof Directly from Theorem 15. ��
The quantity of

∑u
i=1 kxi

u is the average replication degree
of those u objects we picked. Because these u objects are

spread across all n objects, in many cases,
∑u

i=1 kxi
u is related

to k:

Corollary 3 For any assignment α and any constant positive
constant ε, when t = n, xu+1 = n + 1, and p is sufficiently
small, we have FP(PTN) ≤ (1 + ε) · k · FP(α).

Proof Given Theorem 15, we only need to prove that
∑u

i=1 kxi
u

≤ k. Notice that if xu+1 = n+1, we must have n = ∑u
i=1 zi .

From Eq. (8), we have:
∑u

i=1 kxi

u
≤

∑u
i=1 kxi zi

∑u
i=1 zi

=
∑u

i=1 kxi zi

n
≤

∑n
i=1 ki

n
= k

��
Figure 6 helps to provide a better intuition into the role

of the condition xu+1 = n + 1. In Fig. 6, xu = x3 = 13,
xu+1 = x4 = 24, and n = 14. Thus the (last) interval covered
by xu (i.e., [13, 23]) is not fully “populated” with 11 ki ’s.
Rather, the interval only has k13 and k14. Notice that if we
did have k15 through k23, they would all be at least as large as
k14. Thus the non-existence of k15 through k23 brings down
the average and thus invalidates Corollary 3.

A closer examination however, shows that the requirement
of xu+1 = n + 1 is overly restrictive. After all, only the very
last interval is impacted if xu+1 > n + 1. When we have a
lot of objects (and machines), the number of intervals will
be large as well. The effect of the last interval should then be
diminished:

Corollary 4 For any assignment α and any constant positive
constant ε, when t = n, n is sufficiently large,9 and p is
sufficiently small, we have FP(PTN) ≤ (1 + ε) · k · FP(α).

Proof Given Theorem 15, it suffices to show that
∑u

i=1 kxi
u ≤

k when n → ∞. The basic idea is to extend the current ki

sequence so that the extended sequence can satisfy the condi-
tion in Corollary 3. Then we will show that such extension
does not affect k for n → ∞.

Define n′ = xu+1 − 1. We have:

lim
n→∞

n′ − n

n
= lim

n→∞
xu + zu − 1 − n

n

≤ lim
n→∞

n + zu − 1 − n

n

< lim
n→∞

zu

n
≤ lim

n→∞
(l − 1)kn + 1

n
= 0

9 Similarly as in Sect. 5, for “sufficiently large” n, we assume that l
is fixed and ki is upper bounded by some constant for all i , while s
changes with n (and N). As explained earlier, this follows the practical
meaning of the problem.

123

382 H. Yu, P. B. Gibbons

We consider a second sequence of k′
i ’s for 1 ≤ i ≤ n′, where

k′
i = ki for 1 ≤ i ≤ n and k′

i = kn for n < i ≤ n′. Obviously,
this second sequence satisfies the condition in Corollary 3 and
we have:
∑u

i=1 k′
xi

u
≤

∑n′
i=1 k′

i

n′
We also have:

lim
n→∞

∑n′
i=1 k′

i

n′ = lim
n→∞

∑n
i=1 k′

i + ∑n′
i=n+1 k′

i

n + (n′ − n)

= lim
n→∞

∑n
i=1 ki
n + (n′−n)kn

n

1 + n′−n
n

= lim
n→∞

∑n
i=1 ki

n
= k

Finally, we have for n → ∞:
∑u

i=1 kxi

u
=

∑u
i=1 k′

xi

u
≤

∑n′
i=1 k′

i

n′ = k

��
It may appear that many inequalities we use so far (such

as Lemma 5, Theorem 14, and other transformations) are
quite loose and ad hoc. A natural question is whether we
can strengthen the k factor in Corollary 4 by using tighter
inequalities. That is unfortunately impossible, as all inequa-
lities become equalities when k1 = k2 = · · · = kn . Thus to
improve the factor of k, it is necessary to improve the lower
bound in Theorem 12.

10 Conclusion

This paper has proved a series of strong results regarding
the best and the worst assignments (from object replicas
to machines) in terms of the availability they provide to
multi-object operations. Quite different from classic research
on replica placement, here the availability difference arises
from inter-object correlation (even when machine failures are
independent and identical). There are many ways to further
generalize our model (e.g., consider all possible t values or
using erasure coding). Obtaining results under these genera-
lizations is part of our future work.

Acknowledgments We thank Suman Nath for various discussions
related to this paper. We also thank Avishai Wool and the anonymous
reviewers of PODC’07 for many helpful comments on the paper. This
work is partly supported by NUS grant R-252-050-284-101 and R-252-
050-284-133.

Appendix

Lemma 6 Consider the RAND distribution and a given
object A. Without loss of generality assume that machine

1, 2, . . . , k each holds a replica of A. For any given object
B (B �= A) and any i (1 ≤ i ≤ k), we have:
Pr [machines 1 through k hold exactly i replicas of B]

<

(
k2

s

)i

Proof By symmetry, we have:

Pr [machines 1 through k hold exactly i

replicas of B]/
(

k

i

)

= Pr [first i machines hold i replicas of B and

the next k − i machines do not hold B]
< Pr [machine 1 holds B]
×Pr [machine 2 holds B | machine 1 holds B]
× · · · × Pr [machine i holds B | machine

1 . . . (i − 1) hold B] (10)

To simplify notation, we define the event “machine 0 holds
B” to be an event that always happens. We will prove that
for any 1 ≤ j ≤ i :

Pr [machine j holds B|machine 0 . . . (j − 1) hold B]
<

k − j + 1

s − j + 1
(11)

It is important to understand that Inequality (11) is not tri-
vial. To see why, consider an example where we have three
objects A, B, C , where each object has two replicas. There
are three (numbered) machines where each machine holds
two objects. Imagine that we already know that machines 1
and 2 hold A, and machine 1 additionally holds a replica of
B. There are three empty “slots” remaining, one “slot” from
machine 2 and two “slots” from machine 3. The tricky part
is that the second replica of B does not go into the three
“slots” with equal probability. In fact, the second replica of
B can never reside on machine 2, since that would cause
machine 3 to hold two copies of C . Thus here we actually
have Pr [machine 2 holds B|machine 0 . . . 1 hold B] = 0.

After A is already assigned to machines 1 through k,
we define a remainder assignment to be a one-to-k map-
ping from the remaining n − 1 (numbered) objects to the s
(numbered) machines. Among these s machines, machines
1 through k will each take l − 1 objects (except object A),
while the rest of the machines will each take l objects. To
prove Inequality (11), for a given j and any j ≤ r ≤ s, we
define xr to be the number of remainder assignments where
machines 0 through (j −1) hold B and machine r also holds
B. Let x be the number of remainder assignments where
machines 0 through (j −1) hold B. For each remainder assi-
gnments where machines 0 through (j − 1) hold B, B has
k − (j − 1) = k − j + 1 additional replicas besides those

123

Optimal inter-object correlation when replicating for availability 383

replicas on machines 0 through (j − 1). Thus that remain-
der assignment is counted in (k − j + 1) different xi ’s. This
means

∑s
r= j xr = (k − j + 1)x . For j ≤ r ≤ s, define:

pr = Pr [machine r holds B|machine 0 . . . (j − 1) hold B]
= xi

x

By symmetry, we know that p j = p j+1 = · · · = pk and
pk+1 = · · · = ps . Also, we have p j + p j+1 + · · · + pk +
pk+1 + · · · + ps = k − j + 1. Thus to prove Inequality (11)
or equivalently p j < (k − j + 1)/(s − j + 1), it suffices to
show that p j < ps , which we prove in the following.

Let � be the set of remainder assignments where machines
1 through j hold object B, and let � be the set of remain-
der assignments where machines 1 through j − 1 and also
machine s hold object B. To prove that p j < ps , it suf-
fices to show that |�| < |�|. Define �′ = � − (� ∩ �) and
�′ = �−(�∩�). In turn, it suffices to prove that |�′| < |�′|.
We define �′

w for 0 ≤ w ≤ l −2 to be the subset of �′ where
machine j and machine s have exactly w objects in com-
mon. Obviously, �′

w’s are all disjoint and �′ = ∪l−2
w=0�

′
w.

Similarly, define �′
w for 0 ≤ w ≤ l − 1 to be the subset of

�′ where machine j and machine s have exactly w objects
in common. We again have �′ = ∪l−1

w=0�
′
w. To prove that

|�′| < |�′|, it suffices to show that |�′
w| < |�′

w| for any
0 ≤ w ≤ l − 2.

For the purpose of counting, we define a many-to-many
mapping between �′

w and �′
w. Consider any remainder assi-

gnment γ ∈ �′
w. We can obtain another remainder assi-

gnment λ ∈ �′
w by swapping B on machine j with some

other object C on machine s as long as C is not already on
machine j . There are exactly l − w choices for C . Similarly,
for any remainder assignment λ ∈ �′

w, we can obtain another
remainder assignment γ ∈ �′

w by swapping B on machine s
with some other object C on machine j as long as C is not
already on machine s. There are exactly l − w − 1 choices
for C . We say that γ is the pre-image of λ and λ is the after-
image of γ . Each γ has exactly l − w after-images, while
each λ has exactly l −w − 1 pre-images. Thus it must be the
case that |�′

w| < |�′
w|.

We just proved that p j < ps , which implies that Inequa-
lity (11) holds. This means:

p j <
k − j + 1

s − j + 1
≤ k

s
(because 1 ≤ j ≤ k ≤ s)

Together with Inequality (10), we have:

Pr [machines 1 through k hold exactly i replicas of B]

<

(
k

i

)

·
(

k

s

)i

<

(
k2

s

)i

��
Lemma 7 Consider the RAND distribution and a given
object A. Without loss of generality assume that machines

1 through k each hold a replica of A. Let random variable
z (1 ≤ z ≤ k) denote the maximum number of replicas that
these k machines hold for any other object. Then for any a
where 1 ≤ a ≤ k. we have Pr [z ≥ a] < n

∑k
i=a(kl/n)i .

Proof Lemma 6 shows that for any given object B (B �= A),
the probability of these k machines holds exactly i replicas
of B is at most (k2/s)i . Take a summation for i from a to k,
and also apply a union bound across all possible B’s:

Pr [z ≥ a] < n
k∑

i=a

(k2/s)i = n
k∑

i=a

(kl/n)i

��
Lemma 8 For any given two machines in the RAND assign-
ment, the probability that they hold exactly the same set of
objects is less than (l/n)l .

Proof We consider two scenarios where the first scenario
requires that the two machines hold exactly the same set of
objects while the second scenario does not have such require-
ment. Recall that a machine is never allowed to hold multiple
replicas of the same object. In the first scenario, the number of
ways to assign object replicas to the two machines is

(n
l

)
. For

each such way, let x be the number of possible remainder
assignments, where a remainder assignment is the assign-
ment of the remaining object replicas to the remaining n − 2
machines. In the second scenario, the number of ways to
assign the objects to the two machines is

(n
l

)(n
l

)
(remember

that k ≥ 2). For each such way, let y be the number of pos-
sible remainder assignments.

We would like to prove that x is always smaller than or
equal to y. In the first scenario, after we assign objects to the
two machines, we let k − 2 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ k
denote the number of remaining replicas for the n objects.
Obviously, a1 = · · · = al = k −2 and al+1 = · · · = an = k.
The value of x does not depend on the identities of the objects,
and is uniquely determined by the sequence a1a2 . . . an . We
define k − 2 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ k similarly in the
second scenario. We know that a1 ≤ b1, . . . , al ≤ bl and
al+1 ≥ bl+1, . . . , an ≥ bn . Again, the value of y is uniquely
determined by the sequence b1b2 . . . bn .

The sequence b1b2 . . . bn contains at most three distinct
values: k − 2, k − 1, and k. There must be an even number
of bi ’s with a value of k − 1. We associate the first k − 1
with the last k − 1 and call that a pair. We then consider the
remaining values and form a second pair, and so on. We will
prove that x ≤ y via an induction on the number of pairs.

For the induction base, if the number of pairs is 0, then the
two sequences a1a2 . . . an and b1b2 . . . bn are the same. Since
the identities of the objects do not affect the accounting, we
have x = y.

Now assume that x ≤ y if the number of pairs is d, and we
need to prove that x ≤ y if the number of pairs is d + 1. For

123

384 H. Yu, P. B. Gibbons

the sequence b1b2 . . . bn , let (bi , b j) be the first pair formed
where i < j . Without loss of generality, we number the
objects such that bi corresponds to the number of remaining
replicas for object i . We construct a third sequence c1c2 . . . cn

from b1b2 . . . bn by changing bi from k − 1 to k − 2 and b j

from k − 1 to k. Let z be the number of possible remainder
assignments for sequence c1c2 . . . cn . Because c1c2 . . . cn has
d pairs, based on our inductive assumption, we know that
x ≤ z. In the next, we will prove that z ≤ y, thus finishing
the inductive step.

For any machine (except the given two machines) holding
objects i and/or j , there are three possibilities: the machine
holds i only, the machine holds j only, the machine holds
both i and j . For any remainder assignment for sequence
c1c2 . . . cn , let ui be the number of machines (except the given
two machines) holding only object i . Similarly define u j .
Because ci = k − 2 and c j = k, we must have that 0 ≤ ui =
u j −2 < u j ≤ k. For any remainder assignment for sequence
b1b2 . . . bn , let vi be the number of machines (except the
given two machines) holding only object i . Similarly define
v j . Because bi = b j = k − 1, we must have 0 ≤ vi = v j ≤
k − 1.

For any given integer w where 2 ≤ w ≤ k, we consider the
set � of all remainder assignments for sequence c1c2 . . . cn

where u j = w and the set � of all remainder assignments
for sequence b1b2 . . . bn where v j = w − 1. For the purpose
of counting, we construct a many-to-many mapping from �

to �. An assignment γ ∈ � is mapped to another assignment
λ ∈ � if we can obtain λ by picking one of the u j machines
in γ that hold object j only and substituting object j with
object i on that machine. We say that γ is the pre-image of
λ and λ is the after-image of γ . Each γ has exactly u j = w

after-images, while each λ has exactly vi = v j = w − 1
pre-images. Thus it must be the case that |�| < |�|. Since
this is true for all w, we know that z ≤ y. This finishes the
proof for x ≤ y.

Finally, the probability that the 2 machines hold exactly
the same set of objects is thus (

(n
l

) · x)/(
(n

l

)(n
l

) · y) < (l/n)l .
��

References

1. Adya, A., Bolosky, W.J., Castro, M., Cermak, G., Chaiken, R.,
Douceur, J.R., Howell, J., Lorch, J.R., Theimer, M., Wattenhofer,
R.P.: FARSITE: federated, available, and reliable storage for an
incompletely trusted environment. In: USENIX OSDI (2002)

2. Alon, N., Spencer, J.H.: The probabilistic method. Wiley,
New York (2000)

3. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of
a serverless distributed file system deployed on an existing set of
desktop PCs. In: ACM SIGMETRICS (2000)

4. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.:
Wide-area cooperative storage with CFS. In: ACM SOSP (2001)

5. Douceur, J.R., Wattenhofer, R.P.: Competitive hill-climbing stra-
tegies for replica placement in a distributed file system. In: DISC
(2001)

6. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system.
In: ACM SOSP (2003)

7. Haeberlen, A., Mislove, A., Druschel, P.: Glacier: highly durable,
decentralized storage despite massive correlated failures. In: USE-
NIX NSDI (2005)

8. Janson, S.: Poisson approximations for large deviations. Random
Struct Algorithm 1, 221–230 (1990)

9. Janson, S., Luczak, T., Rucinski, A.: An exponential bound for
the probability of nonexistence of a specified subgraph in a ran-
dom graph. In: Karo’nski, M., Jaworski, J., Ruci’nski, A. (eds.)
Random Graphs’87. Wiley, New York (1990)

10. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D.,
Panigrahy, R.: Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web.
In: ACM STOC (1997)

11. Kistler, J., Satyanarayanan, M.: Disconnected operation in the
coda file system. ACM Trans. Comput. Syst. 10(1), 3–25 (1992)

12. Knuth, D.E.: The Art of Computer Programming, vol 1. Addison
Wesley, Reading (1997)

13. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells,
C., Zhao, B.: OceanStore: an architecture for global-scale per-
sistent storage. In: ACM ASPLOS (2000)

14. Pang, J., Gibbons, P.B., Kaminsky, M., Seshan, S., Yu, H.: Defrag-
menting DHT-based distributed file systems. In: Proceedings
of International Conference on Distributed Computing Systems
(2007)

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.:
A scalable content-addressable network. In: ACM SIGCOMM
(2001)

16. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R.,
Yin, L., Yu, F.: Data-centric storage in sensornets with GHT: a
geographic hash table. Mobile Netw. Appl. 8(4), 427–442 (2003)

17. van Renesse, R., Schneider, F.B.: Chain replication for supporting
high throughput and availability. In: USENIX OSDI (2004)

18. Rowstron, A., Druschel, P.: Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems. In: ACM
Middleware (2001)

19. Santos, J., Muntz, R., Ribeiro-Neto, B.: Comparing random data
allocation and data striping in multimedia serviers. In: ACM SIG-
METRICS (2000)

20. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.:
Chord: a scalable peer-to-peer lookup service for internet appli-
cations. In: ACM SIGCOMM (2001)

21. Szalay, A., Kunszt, P., Thakar, A., Gray, J., Slutz, D.: Designing
and mining multi-terabyte astronomy archives: the sloan digital
sky survey. In: ACM SIGMOD (2000)

22. TPC Benchmark. http://www.tpc.org/
23. Valiant, L.G.: The complexity of enumeration and reliability pro-

blems. SIAM J. Comput. 8(3), 410–421 (1979)
24. Yu, H., Gibbons, P.B., Nath, S.: Availability of multi-object ope-

rations. In: USENIX NSDI (2006)
25. Yu, H., Vahdat, A.: Minimal replication cost for availability. In:

ACM PODC (2002)

123

http://www.tpc.org/

	Optimal inter-object correlation when replicating for availability
	Abstract
	1 Introduction
	2 Related work
	3 Formal model and assumptions
	4 Challenges
	5 Best and worst assignments for t = n = N
	5.1 Upper and lower bounds
	5.2 Approaching upper and lower bounds

	6 Best and worst assignments for t = l+1 < n = N
	7 A deeper look
	7.1 Impossibility of remaining optimal across all values of t
	7.2 Removing constant factors when t = n = Nand k=l=2

	8 Extending the previous results to n < N
	9 Heterogeneous replication degrees
	9.1 Lower bound
	9.2 Approaching the lower bound using generalized PTN

	10 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

