
AN INTRODUCTION TO THEAN INTRODUCTION TO THE
λ-CALCULUS AND TYPE THEORY
CS5209CS5209
Aquinas Hobor and Martin Henz

FIRST QUESTION

Wh i “ ”? What is a “λ”?

22

FIRST QUESTION

Wh i “ ”? What is a “λ”?

 Greek letter “lambda”. Pronounced like “L”

 Lower case: λ
 Upper case: Λ

33

SECOND QUESTION

Wh i h l l b ? What is the λ-calculus about?

44

SECOND QUESTION

Wh i h l l b ? What is the λ-calculus about?

 It is a method for writing and reasoning about
functions.

 Functions, of course, are central to both
th ti d t imathematics and computer science.

Th id d l d b Al Ch h i  The ideas were developed by Alonzo Church in
the 1930s during investigations into the
foundations of mathematics 5foundations of mathematics. 5

THIRD QUESTION

 What is type theory?

66

THIRD QUESTION

 What is type theory?

 A method of classifying computations according
to the types (kinds, sorts) of values produced.

 You are already familiar with the basics:
i i int myint;

 Object myobject;

 Analogous to units in scientific computation.
77

TOPICS COVERED TODAY

 Untyped lambda calculus

 Simply-typed lambda calculus

 Polymorphic lambda calculus (System F)

88

THE UNTYPED λ-CALCULUS (SYNTAX)
S t i i l l th ki d f t Syntax is very simple; only three kinds of terms:

 = (V i bl) e = x, y, z, … (Variables)
λx. e (Functions)
e e (Application)e1 e2 (Application)

Examples:Examples:
 x
 λx. x
 z y
 (λx. x) (λy. y) 9() (y y) 9

THE UNTYPED λ-CALCULUS (SEMANTICS)
 Semantics is also very simple – only one rule!

(λ x. e1) e2  [x → e2] e1

We substitute the term e2 for x in the term e1.

Examples:
 (λx. x) (λy. y)  (λy. y)
 (λx. x x) (λy. y)  (λy. y) (λy. y)

 (λy. y)
1010

MORE EXAMPLES (RENAMING)
() ()  (λx. λy. x y) (λy. y) z 

(λy. (λy. y) y) z 

(λy. y) z 

z

First question: what is the difference between
(λy. y) and (λx. x)?

Convention: these are identical: lambda terms are
equal to any “uniform” renaming.

1111

MORE EXAMPLES (RENAMING)
Our convention means we can rename as we like:

 (λx. λy. x y) (λy. y) z 

(λy. (λa. a) y) z 

(λa. a) z 

z

This process helps avoid variable-capture, etc.

1212

MORE EXAMPLES (EVALUATION ORDER)
C id thi lConsider this example:

((λx. x) (λy. y)) ((λa. a) (λb. b))

There are multiple ways that it could evaluate:

1. (λy. y) ((λa. a) (λb. b))
1. ((λa. a) (λb. b))

b b λb. b
2. (λy. y) (λb. b)
 λb. b λb. b

2. ((λx. x) (λy. y)) (λb. b)
1. (λy. y) (λb. b)

λb b 13
 λb. b 13

OBSERVATION

 There are lots!

 But they lead to the same place – do we care?

 For now, leave this question aside. We will
choose to follow the convention used in

i l t l t programming languages: to evaluate e1 e2,

E l t fi t til it h λ t1. Evaluate e1 first until it reaches a λ-term
2. Evaluate e2 as far as you can

D h b i i 143. Do the substitution 14

SEE THIS BEHAVIOR IN C
S th t f i f ti i t t f ti Suppose that f is a function pointer to a function
that takes a single integer argument.

How does this line behave?

(*f) (3 + x);

1. Dereference f
2. Add 3 + x

C ll th f ti ith th lt3. Call the function with the result

This is called call-by-value 15This is called, call-by-value 15

CALL-BY-VALUE, FORMALLY

e1  e1’
e1 e2  e1’ e2

e2  e2’
(λ x. e1’) e2  (λ x. e1’) e2’

(λ x. e1’) v  [x → v] e1’ 1616

PROGRAMMING IN THE LAMBDA CALCULUS

Si h t ll d ibi i ki d f  Since what we are really describing is a kind of
computation, there is a natural question: how can
we encode the standard ideas in programming?we e co e e s a a eas p og a g?

 For example, if-then-else?p ,

 Definitions:
 fls ≡ λx. λy. y
 tru ≡ λx. λy. x
 if ≡ λb λt λe b t e if ≡ λb. λt. λe. b t e

(convention: “a b c” is “(a b) c”) 17(convention: a b c is (a b) c) 17

IF-THEN-ELSE

D fi iti Definitions:
 fls ≡ λx. λy. y
 tru ≡ λx λy xtru ≡ λx. λy. x
 if ≡ λb. λt. λe. b t e

if tru a b =
(λb. λt. λe. b t e) (λx. λy. x) a b 

(λt. λe. (λx. λy. x) t e) a b 

(λe. (λx. λy. x) a e) b 

(λx. λy. x) a b 

(λy. a) b 
18a 18

IF-THEN-ELSE

D fi iti Definitions:
 fls ≡ λx. λy. y
 tru ≡ λx λy xtru ≡ λx. λy. x
 if ≡ λb. λt. λe. b t e

if fls a b =
(λb. λt. λe. b t e) (λx. λy. y) a b 

(λt. λe. (λx. λy. y) t e) a b 

(λe. (λx. λy. y) a e) b 

(λx. λy. y) a b 

(λy. y) b 

b 19b 19

WHAT ABOUT NUMBERS?
 Definitions:

 zero ≡ λx. λy. y
λ λ  one ≡ λx. λy. x y

 two ≡ λx. λy. x (x y)
 three ≡ λx λy x (x (x y)) three ≡ λx. λy. x (x (x y))

 succ ≡ λn. λx. λy. x (n x y)y (y)

 Notice: “zero” and “fls” are the same!

 This is common in computer science… 20 This is common in computer science… 20

CALCULATING WITH NUMBERS

 Definitions:
 zero ≡ λx. λy. y

λ λ  one ≡ λx. λy. x y
 succ ≡ λn. λx. λy. x (n x y)

succ zero =
(λn λx λy x (n x y)) (λx λy y) (λn. λx. λy. x (n x y)) (λx. λy. y) 

λx. λy. x ((λx. λy. y) x y)

Is this the same as “one”?
2121

EVALUATION ORDER, REVISTED

 (())succ zero = λx. λy. x ((λx. λy. y) x y)
one = λx. λy. x y

Obviously these are not identical…
but look at what happens when we apply both to
the arguments “a” and “b”…

2222

EVALUATION ORDER, REVISITED

 λ λ ((λ λ))succ zero = λx. λy. x ((λx. λy. y) x y)
one = λx. λy. x y

(λx. λy. x ((λx. λy. y) x y)) a b 

(λy a ((λx λy y) a y)) b (λy. a ((λx. λy. y) a y)) b 

a ((λx. λy. y) a b) 

a ((λy y) b) a ((λy. y) b) 

a b

(λx. λy. x y) a b *

a b 2323

EVALUATION ORDER, REVISITED

 So while the functions are not the same, they are
similar: they will reach the same final result

 Maybe a more familiar example of this kind of
difference: both quicksort and mergesort produce difference: both quicksort and mergesort produce
the same result when applied to the same input –
but they are not the same function (different but they are not the same function (different
running time!)

 An interesting question: does the evaluation
order only effect the running time?

2424

MORE NUMBERS…
 Definitions:

 zero ≡ λx. λy. y
λ λ  one ≡ λx. λy. x y

 two ≡ λx. λy. x (x y)
 three ≡ λx λy x (x (x y)) three ≡ λx. λy. x (x (x y))

 succ ≡ λn. λx. λy. x (n x y)y (y)
 plus ≡ λn. λm. λx. λy. m x (n x y)
 mult ≡ λn. λm. λx. λy. n (m x) y
 …

25
 Possible to define subtraction, etc. etc.

25

OTHER COMPUTATION FEATURES…
O f t h ti d λ t  One feature you may have noticed: λ-terms are
anonymous. That is, the functions are unnamed.

 λ x. x

 int foo(int x) { return x; }

 Here, the function has a name (foo).
 There are other differences, too – like the types.
 We will discuss these later

 Observation: the lambda calculus is concise 26 Observation: the lambda calculus is concise. 26

NAMED VS. UNNAMED

 What do functions really need names for?

 For a function like foo, not much.

 But maybe another function wants to call it…

 … still, that issue can be worked around.

 More serious: what if you want a recursive
function? Then you need a way to call yourself.

2727

NONTERMINATING COMPUTATION

C t i ti t ti ? Can we express nonterminating computation?

 Y ! Yes!

 Consider the term: diverge ≡ (λx x x) (λx x x) Consider the term: diverge ≡ (λx. x x) (λx. x x)

(λx x x) (λx x x) (λx. x x) (λx. x x) 

[x → (λx. x x)] x x =
(λx. x x) (λx. x x) () ()
(λx. x x) (λx. x x) 

… 2828

NONTERMINATING COMPUTATION

 What if we want a more general form of
nontermating computation?

 We can define a term
fi (ill h l t)fix ≡ … (will show later)

Now let’s suppose we want to define the factorial
function, written in pseudo-form like this:

fact ≡ λx. if (iszero x) 1 (mult x (fact (pred x)))
2929

NONTERMINATING COMPUTATION

f t λ if (i) 1 (lt (f t (d)))fact ≡ λx. if (iszero x) 1 (mult x (fact (pred x)))

Th bl ith thi d fi iti i th t i The problem with this definition is that in
mathematics we are not allowed to write circular
definitionsdefinitions…

We could write one iteration as follows:We could write one iteration as follows:

λf. λx. if (iszero x) 1 (mult x (f (pred x)))() (((p)))

Now “f” is being used as the recursive call. 30g 30

NONTERMINATING COMPUTATION

λf λ if (i) 1 (lt (f (d)))λf. λx. if (iszero x) 1 (mult x (f (pred x)))

Wh t t i t “ti th k t” d thi i h t What we want is to “tie the knot” – and this is what
fix does!

fix (λ f. e) * [f → (fix (λ f. e))] e

So, for example,

fix (λf. λx. if (iszero x) 1 (mult x (f (pred x)))) *

λx. if (iszero x) 1 (mult x ((fix (λf. λx. if (iszero x) 31() ((((()
1 (mult x (f (pred x)))))(pred x)))

31

NONTERMINATING COMPUTATION

 fix thus lets us write recursive functions

 So what does fix actually look like?

fix ≡ λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

fbody ≡ (λf. λx. if (iszero x) 1 (x * (f (x - 1))))

fix fbody *

λx. if (iszero x) 1 (x * ((fix fbody) (x - 1))))
3232

EVALUATION ORDER, REVISTED AGAIN

 The presence of recursive and nonterminating
computation means that evaluation order is important;
consider: consider:

tru zero (λx diverge)  *tru zero (λx. diverge) 

zero (under the call-by-value rules)

If we are allowed to evaluate functions anywhere:

tru zero (λx. diverge)  *

t (λ di) (b l l ti di) 33tru zero (λx. diverge) (by always evaluating diverge) 33

AN INTERESTING THEOREM

 Except for running-time analysis and the
possibility of divergence, evaluation order does
not affect the final result of computationnot affect the final result of computation.

 That is why it is ok to define succ in a way such  That is why it is ok to define succ in a way such
that “succ zero” is not equal to “one” – but on any
(terminating) input, they are the same.(terminating) input, they are the same.

3434

AN INTERESTING QUESTION

 We have lots of features normally found in
programming languges:

If th l If-then-else
 Functions
 Recursion Recursion
 Arithmetic
 …

 How powerful is the lambda calculus?p

3535

AN INTERESTING QUESTION

 We have lots of features normally found in
programming languges:

If th l If-then-else
 Functions
 Recursion Recursion
 Arithmetic
 …

 How powerful is the lambda calculus?p

3636

CHURCH-TURING THESIS

Says:

 Turing Machines (the standard theoretical model
f i) d h l bd l l h for computation) and the lambda calculus have
the same computational power.

 Thus, any algorithm you would like can be
encoded and run in the lambda calculusencoded and run in the lambda calculus.

3737

TOPICS COVERED TODAY

 Untyped lambda calculus

 Simply-typed lambda calculus

 Polymorphic lambda calculus (System F)

3838

SIMPLY-TYPE LAMBDA CALCULUS

 Observation: writing programs is hard

 Lots of bugs!

 Most bugs are “stupid errors”
 Forget to cast a number
 Use a pointer instead of dereferencing it
 Forget to check boundary condition

3939

UNITS

 The same kinds of problems occur in other areas

 Physics:
 When you are learning physics, they teach you units

kil d N  kilograms, meters, seconds, Newtons, etc.

Wh d l l ti t ld th t it i  When you do a calculation, you are told that it is
very important to keep track of the units:
 3 m * (2 kg / m) = 6 kg 3 m * (2 kg / m) = 6 kg

 Why? 40 Why? 40

UNITS

 3 m * (2 kg / m) = 6 kg

 Because it lets you do a “sanity check” on the
result – if you are expecting kilograms, but get
meters per second you have made a mistake!meters per second – you have made a mistake!

Th it l l ti (* k / k) h  The unit calculations (m * kg / m = kg) are much
simpler than the numerical calculations

4141

UNITS IN PROGRAMMING

 Types are the units in a programming language

 You know many of these from C, Java, etc.:

 int (integers)
 bool (Booleans)
 char* (pointers to characters)

 The compiler automatically checks for a misuse,
helping to find bugs.

4242

ADDING TYPES TO THE LAMBDA CALCULUS

Fi t l t’ dd f t t First, let’s add a few extra terms:
e = …

T (B l t t t)T (Boolean true constant)
F (Boolean false constant)

Now let’s define some types:
t = bool (Boolean type)t bool (Boolean type)

t → t (function type)

Our notation for lambda terms is a bit different:
λx : t. e 4343

ADDING TYPES TO THE LAMBDA CALCULUS

Our notation for lambda terms is a bit different:
λx : t. e

The idea is that this function can only be applied to
arguments that have type t.

How do we know what the type of an arguments is?

4444

TYPING RULES

 We can define a series of inductive typing rules
that tell us how to type lambda terms:

A context Γ is a function from variables to types.

() Γ(x) = t
Γ ` x : t

4545

TYPING RULES

 We can define a series of inductive typing rules
that tell us how to type lambda terms:

Boolean values are easy to type.

T b l F b lΓ ` T : bool Γ ` F : bool

4646

TYPING RULES

 We can define a series of inductive typing rules
that tell us how to type lambda terms:

How do we type function application?

 Γ ` e1 : t1 → t2 Γ ` e2 : t1

Γ ` e1 e2 : t2

4747

TYPING RULES

 We can define a series of inductive typing rules
that tell us how to type lambda terms:

All that is missing is how to type lambda terms:

Γ, (x : t1) ` e : t2

() Γ ` (λ x : t1. e) : t1 → t2

4848

TYPING RULES

 W d fi i f i d ti t i g l th t  We can define a series of inductive typing rules that
tell us how to type lambda terms:

Let’s see all of the typing rules together now:

Γ(x) = tΓ(x) = t
Γ ` T : bool Γ ` F : bool Γ ` x : t

Γ ` e1 : t1 → t2 Γ ` e2 : t1
Γ ` e e : tΓ ` e1 e2 : t2

Γ, (x : t1) ` e : t2 49
Γ ` (λ x : t1. e) : t1 → t2

49

USING THE TYPING RULES

 Consider the term
(λ f : bool → bool. f T) (λ b : bool. b)

Prove that in any context Γ, this has type bool.

(see blackboard!)

5050

WHY ARE TYPES IMPORTANT?
 Informally, we have noticed that type errors

indicate bugs in the program.

 e.g. “T F” does have any type since “T” is of type
bool and not of type bool → tbool, and not of type bool → t2

I th thi f l th t ? Is there something more formal that we can say?

5151

WHY ARE TYPES IMPORTANT?
 Yes!

 “Well-typed programs don’t go wrong”

 Recall from the Hoare logic lecture (and the HW),
the idea of safety: a state σ is safe if for any
reachable state ’ that state can either take reachable state σ , that state can either take
another step or has reached some well-defined
final value (As opposed to “getting stuck” for final value. (As opposed to getting stuck , for
example with “T F”.)

5252

WHY ARE TYPES IMPORTANT?
 Yes!

 “Well-typed programs don’t go wrong”

 We say that a type system is sound if all well-
typed programs are safe.

 Examples of sound type systems:
 Simply-typed lambda calculus
 Java

ML 53 ML 53

WHY ARE TYPES IMPORTANT?
 Examples of unsound type systems:

 C
C++ C++

 Python

 In these systems, the type system may help out a
little – but a lack of type errors does not mean little but a lack of type errors does not mean
safety: in C, it’s easy to segfault

5454

HOW CAN WE PROVE A TYPE SYSTEM IS
SOUND?
U ll t t i f ltUsually, we want to prove a pair of results:

Definition: a term e is a value if e ∈ {λ term T F}Definition: a term e is a value if e ∈ {λ-term, T, F}

 Progress: if {} ` e : t then either e is a value (λ Progress: if {} ` e : t, then either e is a value (λ-
term, T, F), or there exists an e’ such that e  e’.
 For example, this will not be true if there is a type t

such that {} ` T F : t
 {} here is the empty context

 Preservation: if {} ` e : t and e  e’, then {} ` e’ : t
 That is, well-typed terms remain well-typed 55That is, well typed terms remain well typed 55

PROVING SAFETY

 Safety follows due to the combination of Progress
and Preservation.

 Informally: Safety = Progress + Preservation

 Theorem: if {} ` e : t, then e is safe.

5656

PROOF

We assume {} ` e0 : t. By Progress, either e0 is a value,
 th i t h th t or there exists e1 such that e0  e1.

By Preservation {} ` e : t Thus by Progress either eBy Preservation, {} ` e1 : t. Thus, by Progress, either e1

is a value, or there exists e2 such that e1  e2.

By Preservation, {} ` e2 : t. Thus, by Progress, either e1

is a value or there exists e such that e  eis a value, or there exists e3 such that e2  e3.

… this is doing induction on the * relation … 57… this is doing induction on the  relation … 57

PROVING PROGRESS

I d ti th t i j d t Induction on the typing judgment

Γ(x) = tΓ(x) = t
Γ ` T : bool Γ ` F : bool Γ ` x : t

Γ ` e1 : t1 → t2 Γ ` e2 : t1Γ ` e1 : t1 → t2 Γ ` e2 : t1
Γ ` e1 e2 : t2

Γ, (x : t1) ` e : t2
Γ ` (λ x : t1. e) : t1 → t2 58(1) 1 2 58

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Cases 1 and 2:

{} ` T : bool {} ` F : bool

In these cases, e = T or e = F – and so e is already
a value! So we are done.

5959

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 3:

{}(x) = t
{} ` x : t

This case is impossible, since the empty context
“{}” does not map x to anything! So we are done.

6060

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 5 (we will come back to case 4):

{x : t1} ` e : t2
{} ` (λ x : t1. e) : t1 → t2

This case is just like cases 1 & 2: λ-terms are
already values! So we are done.

6161

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 4 (the only case where we must do work):

{} ` e1 : t1 → t2 {} ` e2 : t1

{} ` e1 e2 : t2

Our induction hypothesis tells us that either e1

steps or is a value. If it steps to e1’, we are done
(since call-by-value means that e1 e2  e1’ e2). 6262

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 4 (the only case where we must do work):

{} ` e1 : t1 → t2 {} ` e2 : t1

{} ` e1 e2 : t2

Our induction hypothesis tells us that either e1

steps or is a value. If it is a value, then e1 must
be a lambda-term (e1 = λ x. e1’) since T and F have

63
type bool, not type t1 → t2.

63

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 4 (the only case where we must do work):

{} ` λx. e1’ : t1 → t2 {} ` e2 : t1

{} ` (λx. e1’) e2 : t2

Our induction hypothesis tells us that either e2

steps or is a value. If it steps to e2’, we are done
(call-by-value means that (λx. e1’) e2  (λx. e1’) e2’). 6464

PROVING PROGRESS

S {} W d i d iSuppose {} ` e : t. We do induction:

Case 4 (the only case where we must do work):

{} ` λx. e1’ : t1 → t2 {} ` e2 : t1

{} ` (λx. e1’) e2 : t2

Our induction hypothesis tells us that either e2

steps or is a value. If e2 is a value, then we have

65
(λx. e1’) e2  [x → e2] e1’

65

PROVING PROGRESS

S h d b i d ti ! So we have proved progress by induction!

Γ(x) = tΓ(x) = t
Γ ` T : bool Γ ` F : bool Γ ` x : t

Γ ` e1 : t1 → t2 Γ ` e2 : t1Γ ` e1 : t1 → t2 Γ ` e2 : t1
Γ ` e1 e2 : t2

Γ, (x : t1) ` e : t2
Γ ` (λ x : t1. e) : t1 → t2 66(1) 1 2 66

PROVING PRESERVATION

 How do we prove preservation? By induction on
the step relation:

e1  e1’
’ e1 e2  e1’ e2

e2  e2’
(λ x : t. e1’) e2  (λ x. e1’) e2’

(λ x : t. e1’) v  [x → v] e1’
6767

PROVING PRESERVATION

S {} d ’ W d i d i Suppose {} ` e : t and e  e’. We do induction:

Only case where we evaluate is e = e1 e2.
Examination of the typing rules tells us:

{} ` e1 : t1 → t2 and {} ` e2 : t1

6868

PROVING PRESERVATION

S {} d ’ W d i d i Suppose {} ` e : t and e  e’. We do induction:

Case 1 (we know {} ` e1 : t
1
→ t2) :

e1  e1’
e1 e2  e1’ e2

By induction hypothesis, {} ` e
1
’ : t

1
→ t

21 1 2

Thus, we can type e
1
’ e

2
in the same way as e

1
e

2
.

6969

PROVING PRESERVATION

S {} d ’ W d i d i Suppose {} ` e : t and e  e’. We do induction:

Case 2 (we know {} ` e2 : t1):

e2  e2’
(λ x : t1. e1’) e2  (λ x : t1. e1’) e2’

By induction hypothesis, {} ` e
2
’ : t

12 1

Thus, we can type (λ x : t1. e1’) e2
’ in the same way

702
as (λ x : t1. e1’) e2

.
70

PROVING PRESERVATION

S {} d ’ W d i d i Suppose {} ` e : t and e  e’. We do induction:

Case 3 ({} ` λ x : t1. e1’ : t1→ t2 and {} ` v : t1):

(λ x : t1. e1’) v  [x → v] e1’

To type (λ x : t1. e1’), we typed it assuming that x
had type t1. Since v does have type t1, that
typing judgment will still hold.

7171

PROVING PRESERVATION

 Thus, we have proved Preservation by induction
on the step relation.

e1  e1’
’ e1 e2  e1’ e2

e2  e2’
(λ x : t. e1’) e2  (λ x. e1’) e2

(λ x : t. e1’) v  [x → v] e1’
7272

COMPUTATIONAL POWER, REVISTED

 An interesting question: has adding the types
changed the computational power?

 (Of course, we can’t add more power – the
question is have we lost power!)question is, have we lost power!)

7373

COMPUTATIONAL POWER, REVISTED

A i t ti ti h ddi th t  An interesting question: has adding the types
changed the computational power?

 Answer: yes! In fact, we can no longer express
nonterminating computation.g p

 (see board for why “diverge” is not typable)

 Theorem: If {} ` e : t, then e will step (in some
fi it b f t) t lfinite number of steps) to a value.

 Proof: (we have mercy and will spare you!) 74 Proof: (we have mercy and will spare you!) 74

SO WHAT CAN WE DO?
 Two basic choices (not mutually exclusive):

1. Add a new kind of term called “fix” as a
primitive in the language. “fix” will not be
definable in the simply typed calculus but it definable in the simply-typed calculus, but it
will be usable in it.
 This is what is done in most programming This is what is done in most programming

languages! Coding up your own recursion
technique (e.g., with explicit function pointers) is

 i l dvery rare in real code.
2. Add more complex types

 For example recursive types 75 For example, recursive types 75

ADDING MORE TYPES

Th i t i th t lt t d b  There is a tension that results: types are good because
they reduce bugs and provide guarantees of safety –
but they are bad because they reduce the number of
allowable programs.

 Here we have covered two basic types: bool and  Here we have covered two basic types: bool and
function. However, real programming languages
have lots of other types:
 Integers
 Strings
 Pointers
 Recursive types
 Arrays
 Objects 76 Objects 76

ADDING MORE TYPES

 For the rest of this lecture, we will focus on one
particular kind of addition, which is polymorphic
types (also known as generics)types (also known as generics)

7777

TOPICS COVERED TODAY

 Untyped lambda calculus

 Simply-typed lambda calculus

 Polymorphic lambda calculus (System F)

7878

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

7979

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

 λ x : bool. x

8080

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

 λ x : bool. x
 b l b l  λ x : bool → bool. x

8181

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

 λ x : bool. x
 b l b l  λ x : bool → bool. x

 λ x : bool → (bool → bool). x

8282

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

 λ x : bool. x
 b l b l  λ x : bool → bool. x

 λ x : bool → (bool → bool). x
 λ x : (bool → bool) → bool. x

8383

WHY POLYMORPHIC TYPES

 Consider the identity function in the untyped
lambda calculus: λx. x

 How would we write this in the typed calculus?

 λ x : bool. x
 b l b l  λ x : bool → bool. x

 λ x : bool → (bool → bool). x
 λ x : (bool → bool) → bool. x
 λ x : (bool → bool) → (bool → bool). x

8484

WHY POLYMORPHIC TYPES

 b l  λ x : bool. x
 λ x : bool → bool. x
 λ x : bool → (bool → bool). x
 λ x : (bool → bool) → bool. x
 λ x : (bool → bool) → (bool → bool). x

 This is very annoying! All of these functions
have very similar execution behavior – why do we
h t it i ?have to write so many copies?

I h hi d ? 85
 Is there something we can do? 85

WHY POLYMORPHIC TYPES

 b l  λ x : bool. x
 λ x : bool → bool. x
 λ x : bool → (bool → bool). x
 λ x : (bool → bool) → bool. x
 λ x : (bool → bool) → (bool → bool). x

 This is very annoying! All of these functions
have very similar execution behavior – why do we
h t it i ?have to write so many copies?

Y h l i i ll d l hi 86
 Yes – the solution is called polymorphic types. 86

ADDING POLYMORPHIC TYPES TO THE
LAMBDA CALCULUS

 First, let’s add a few extra terms:
e = …

Λ t. e (Type function)
e [t] (Type application)

Now let’s add some types:
t = α (type variable)

∀ α. e (polymorphic type)

8787

A EXAMPLE

These can seem a little weird, so an example:

The polymorphic identity function is:

idα ≡ Λ t. λ x : t. x

This function has type ∀ α. α→ α

How do we use idα?

8888

A EXAMPLE

id Λ idα ≡ Λ t. λ x : t. x

How do we use idα?

We first apply it to a particular type t. For
example:

idα [bool] T ≡

(Λ t. λ x : t. x) [bool] T 

8989

A EXAMPLE

id Λ idα ≡ Λ t. λ x : t. x

How do we use idα?

We first apply it to a particular type t. For
example:

idα [bool] T ≡

(Λ t. λ x : t. x) [bool] T 

(λ x : bool. x) T 
90

T
90

A EXAMPLE

id Λ idα ≡ Λ t. λ x : t. x

How do we use idα?

idα [bool → bool] (idα [bool]) ≡

(Λ t. λ x : t. x) [bool → bool] (idα [bool]) 

(λ x : bool → bool. x) (idα [bool]) 

(λ x : bool → bool. x) ((Λ t. λ x : t. x) [bool]) 

(λ x : bool → bool. x) (λ x : bool. x) 

λ x : bool. x
9191

TYPING RULES IN SYSTEM F
Now that we understand a bit better how the terms
work in this calculus, the next question is, what
do the typing rules look like?

We will extend the context Γ to keep track of which
type variables are being used. The empty context
{} contains no variables, and we can add a variable
X by writing “Γ, X”

9292

TYPING RULES IN SYSTEM F
N th t d t d bit b tt h th tNow that we understand a bit better how the terms
work in this calculus, the next question is, what
d th t i l l k lik ?do the typing rules look like?

There are two rules that are very similar to theThere are two rules that are very similar to the
rules for function abstraction / application

Γ, X ` e : t
Γ ` Λ X. e : ∀ X. t

Γ ` e1 : ∀ X. t1 931 1
Γ ` e1 [t2] : [X → t2] t1

93

USING THE TYPING RULES

 Consider the term
(Λ t. (λ f : bool → t. f T)) [bool] (λ b : bool. b)

Prove that in any context Γ, this has type bool.

(see blackboard!)

9494

SOUNDNESS OF SYSTEM F
 Is this calculus sound?

 Yes! And the proof is similar to the one for the
simply-typed calculus given earlier:

 Progress (by induction on typing judgment)
P ti (b i d ti t l ti) Preservation (by induction on step relation)

 Safety = Progress + Preservation

 You can work out the details if you like.
9595

EXPRESSIVE POWER OF SYSTEM F
 The polymorphic lambda calculus is clearly more

powerful (can type more programs) than the
simply typed lambda calculus Is it as powerful simply-typed lambda calculus. Is it as powerful
as the untyped lambda calculus?

 No – in fact, every program in this calculus will
terminate… this is not easy to proveterminate… this is not easy to prove

 In fact a lot of functions that you would think of  In fact, a lot of functions that you would think of
as recursive can be expressed here

96

 General recursion, however, is not possible
96

QUESTIONS?
 That’s it for this topic!

9797

