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Abstract. Given a program P , an unfold/fold program transformation
system derives a sequence of programs P = P0, P1, : : : , Pn, such that
Pi+1 is derived from Pi by application of either an unfolding or a folding
step. Existing unfold/fold transformation systems for de�nite logic pro-
grams di�er from one another mainly in the kind of folding transforma-
tions they permit at each step. Some allow folding using a single (possibly
recursive) clause while others permit folding using multiple non-recursive
clauses. However, none allow folding using multiple recursive clauses that
are drawn from some previous program in the transformation sequence.
In this paper we develop a parameterized framework for unfold/fold
transformations by suitably abstracting and extending the proofs of ex-
isting transformation systems. Various existing unfold/fold transforma-
tion systems can be obtained by instantiating the parameters of the
framework. This framework enables us to not only understand the rel-
ative strengths and limitations of these systems but also construct new
transformation systems. Speci�cally we present a more general trans-
formation system that permits folding using multiple recursive clauses
that can be drawn from any previous program in the transformation se-
quence. This new transformation system is also obtained by instantiating
our parameterized framework.

1 Introduction

Some of the most extensively studied transformation systems for de�nite logic
programs are the so called unfold/fold transformation systems. At a high level
unfold and fold transformations can be viewed as follows. De�nite logic pro-
grams consist of de�nitions of the form A:� � where A is an atom and � is a
positive boolean formula over atoms. Unfolding replaces an occurrence of A in
a program with � while folding replaces an occurrence of � with A. Folding is
called reversible if its e�ects can be undone by an unfolding, and irreversible

? The work of Abhik Roychoudhury, C.R. Ramakrishnan and I.V. Ramakrishnan was
partially supported by NSF grants CCR-9711386 and EIA-9705998. The work of K.
Narayan Kumar was partially supported by NSF grant CDA-9805735.



389

otherwise. An unfold/fold transformation system for de�nite logic programs was
�rst described in a seminal paper by Tamaki and Sato [20]. In the urry of re-
search activity that followed, a number of unfold/fold transformation systems
were developed. Kanamori and Fujita [8] proposed a transformation system that
was based on maintaining counters to guide folding. Maher described a system
that permits only reversible folding [10]. The basic Tamaki-Sato system itself was
extended in several directions (e.g., to handle folding with multiple clauses [7],
negation [1, 18, 19]) and applied to practical problems (e.g., [2, 3, 12]). (See [11]
for an excellent survey of research on this topic over the past decade).

Correctness of Unfold/Fold Transformations Correctness proofs for unfold/fold
transformations consider transformation sequences of the form P0; P1; : : : ; where
P0 is an initial program and Pi+1 is obtained from Pi by applying an unfolding
or folding transformation. The proofs usually show that all programs in the
transformation sequence have the same least Herbrand model. It is easy to verify
that transforming Pi to Pi+1 using unfolding or folding is partially correct, i.e.,
the least model of Pi+1 is a subset of that of Pi. It is also easy to show, by
induction on the structure of the proof trees, that unfolding transformation is
totally correct, i.e., it preserves the least model. However, as illustrated below,
indiscriminate folding may introduce circularity in de�nitions, thereby replacing
�nite proof paths with in�nite ones.

Consider the sequence of programs in Figure 1. In the �gure, P1 is derived by
unfolding the occurrence of q(X) in the �rst clause of P0. P2 is derived from P1 by
folding the literal q(X) in the body of the second clause of predicate p into p(X)

using the clause p(X) :- q(X) in P0. Alternatively, consider the transformation
sequence in �gure 2. By folding q(X) in the second clause of p in P1 (using the
second clause de�ning q in P1), we obtain program P 0

2. Now folding q(X) in the
second clause of q in P 0

2 (using second clause of p in P1), we get program P 0
3,

whose least model di�ers from that of P0.

Transformation Systems with Irreversible Folding If the folding transformation
is reversible, then since its e�ect can be undone by an unfolding, any partially
correct unfold/fold transformation sequence is also totally correct. However, for
reversibility, folding at step i of the transformation can only use the clauses
in Pi. Therefore reversibility is a restrictive condition that seriously limits the

p(X):-q(X).

q(a).

q(f(X)):-q(X).

p(a).

p(f(X)):-q(X).

q(a).

q(f(X)):-q(X).

p(a).

p(f(X)):-p(X).

q(a).

q(f(X)):-q(X).

Program P0 Program P1 Program P2

Fig. 1. An example of correct unfold/fold transformation sequence
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power of unfold/fold systems by disallowing many correct folding transforma-
tions, such as the one used to derive P2 from P1. Hence almost all research on
unfold/fold transformations have focused on constructing systems that permit
irreversible folding. In such systems folding at step i can use clauses that are
not in Pi. For example, in the original and extended Tamaki-Sato systems [20,
21] folding always uses clauses in P0 whereas in the Kanamori-Fujita system [8]
the clauses can come from any Pj (j � i). But ensuring total correctness of
irreversible transformation sequences is di�cult. In order to ensure that fold-
ing is still totally correct, these systems permit folding using only clauses with
certain (syntactic) properties. For instance, the original Tamaki-Sato system
permits folding using a single clause only (conjunctive folding) and this clause
is required to be non-recursive. In [7] the above system was extended to allow
folding with multiple clauses (disjunctive folding) but all the clauses are required
to be be non-recursive. Kanamori and Fujita [8] as well Tamaki and Sato in a
later paper [21] gave two di�erent approaches for conjunctive folding using re-
cursive clauses. But the design of a transformation system that allows folding
in the presence of both disjunction and recursion has remained open so far. We
will describe such a system in this paper.

To generalize in this direction one needs to �rst understand the strengths
and limitations of the above systems. The key observation is that, although the
book-keeping needed to determine permissible foldings appear radically di�erent
in the di�erent systems, there is a striking similarity in how the transformations
are proved correct. Essentially, these systems associate some measure with di�er-
ent program elements, namely, atoms and clauses to determine whether folding
is permissible in that step (e.g., \foldable" ag in [20], descent levels/strata num-
bers in [21], and counters in [8]). Moreover, they ensure that each transformation
step maintains an invariant relating proofs in the derived program to the vari-
ous measures (e.g., the notions of rank-consistency in [8, 20], weight-consistency
in [7] and �-completeness in [21]). This raises another interesting question: can
we exploit the similarities in the correctness proofs of irreversible unfold/fold
systems to develop an abstract framework. Such a framework will specify the
obligations that must be satis�ed to ensure total correctness and hence can sim-
plify construction of unfold/fold systems to the extent that one is relieved of the
burden of giving correctness proofs. We propose such a framework in this paper.

p(X):-q(X).

q(a).

q(f(X)):-q(X).

p(a).

p(f(X)):-q(X).

q(a).

q(f(X)):-q(X).

p(a).

p(f(X)):-q(f(X)).

q(a).

q(f(X)):-q(X).

p(a).

p(f(X)):-q(f(X)).

q(a).

q(f(X)):-p(f(X)).

Program P0 Program P1 Program P
0

2 Program P
0

3

Fig. 2. An example of incorrect unfold/fold transformation sequence
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Summary of Results In this paper, we develop a general transformation
framework for de�nite logic programs parameterized by certain abstract mea-
sures by suitably abstracting and extending the measures used in [7, 8, 20, 21] (see
Section 2). We relax the invariants needed in the proofs to permit approximation
of measure values. This is the key idea that enables us to fold using multiple
recursive clauses. We prove the correctness of transformations in the framework
based only on the properties of the abstract measures. We show that various
existing unfold/fold transformation systems can be derived from the framework
by instantiating these abstract measures (see Section 3). We also show how the
framework can be extended to include the Goal Replacement transformation
(see Section 4).

The parameterized framework presented in this paper is useful for under-
standing the strengths and limitations of existing transformation systems. It
also enables the construction of new unfold/fold systems. As evidence we obtain
SCOUT (Strata and COunter based Unfold/fold Transformations), a transfor-
mation system that permits disjunctive folding using recursive clauses. The de-
velopment of SCOUT was based on two crucial observations made possible by
the framework. First, when instantiating the framework to obtain the Kanamori-
Fujita system, it is easy to see that the counters (the measure used in their
system) may come from any linearly ordered set; this permits us to incorporate
strati�cation into the counters to obtain a system that generalizes the extended
Tamaki-Sato system [21] as well as the Kanamori-Fujita system. Secondly, the
framework enables us to maintain approximate counters; we can hence generalize
the combination of the Kanamori-Fujita and the extended Tamaki-Sato systems
to fold using multiple recursive clauses.

2 A Parameterized Transformation Framework

We now describe our parameterized unfold/fold transformation framework and
illustrate the abstractions by drawing analogies to the Kanamori-Fujita system.

We assume familiarity with the standard notions of terms, models, substitu-
tions, uni�cation, most general uni�er (mgu), de�nite clauses, SLD resolution,
and proof trees [9]. We will use the following symbols (possibly with primes
and subscripts): P to denote a de�nite logic program; M(P ) its least Herbrand
model; C and D for clauses; A;B to denote atoms and literals and � for mgu.

2.1 Unfolding and Folding

The unfolding and folding rules are de�ned as follows:

Rule 1 (Unfolding) Let C be a clause in Pi and A an atom in the body of C.
Let C1; : : : ; Cm be the clauses in Pi whose heads are uni�able with A with most
general uni�er �1; : : : ; �m. Let C

0
j be the clause that is obtained by replacing

A�j by the body of Cj�j in C�j (1 � j � m). Assign (Pi�fCg)[fC
0
1; : : : ; C

0
mg

to Pi+1. 2
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Rule 2 (Folding) Let fC1; : : : ; Cmg � Pi where Cl denotes the clause
A:� Al;1; : : : ; Al;nl ; A

0
1; : : : ; A

0
n, and fD1; : : : ; Dmg � Pj (j � i) where Dl is the

clause Bl:� Bl;1; : : : ; Bl;nl . Further, let:
1. 81 � l � m 9�l 81 � k � nl Al;k = Bl;k�l
2. B1�1 = B2�2 = � � � = Bm�m = B

3. D1; : : : ; Dm are the only clauses in Pj whose heads are uni�able with B.
4. 81 � l � m, �l substitutes the internal variables

1 of Dl to distinct variables
which do not appear in fA;B;A0

1; : : : A
0
ng.

Then Pi+1 := (Pi � fC1; : : : ; Cmg) [ fC
0g where C 0 � A:� B;A0

1; : : : ; A
0
n: 2

D1; : : : ; Dm are the folder clauses, C1; : : : ; Cm are the folded clauses, and B is
the folder atom. A folding step is conjunctive whenever both the folder and folded
clauses are singleton sets and is disjunctive otherwise. Note that in the latter step
a set of folded clauses is simultaneously replaced by a single clause using a set
of folder clauses. We say that P0; P1; : : : ; Pn is an unfold/fold transformation
sequence if the program Pi+1 is obtained from Pi (i � 0) by application of
an unfold or a fold rule. Partial correctness of an unfold/fold transformation
sequence (Theorem 1) is established by showing that a proof T of any ground
atom A 2 M(Pi+1), has a corresponding proof T 0 in Pi. This can be proved by
induction on the structure of T .

Theorem 1 (Partial Correctness) Let P0; P1; : : : ; Pi be a program transfor-
mation sequence where M(Pj) = M(P0) for all 0 � j � i. If Pi+1 is obtained
from Pi by applying either unfolding or folding, then M(Pi+1) �M(Pi). 2

2.2 Measures, Measure-Consistent Proofs and Total Correctness

Total correctness of an unfold/fold transformation sequence is established by
inducting on some well-founded order to construct a proof in Pi+1 for any atom
A in M(Pi). To see the subtleties in showing total correctness, consider trans-
forming Pi to Pi+1 using a conjunctive folding step. To construct a proof of A
(the head of the folded clause) in Pi+1, we need a proof of B (the folder atom)
in Pi+1. But the existence of such a proof can be established (by induction hy-
pothesis) only if B is less than A in the well-founded order on which we are
inducting. Note that if the folder clause is picked from Pj , j < i, we cannot use
simple well-founded orders like size of proof trees in Pi, since proof of B in Pi
can be larger in size than the proof of A in Pi. Here we develop an abstract
formulation of certain well-founded orders (which we call measures) on which
we can induct to establish total correctness.

It is worth noting that we do not attempt to translate every proof of A in
Pi to a proof of A in Pi+1. Instead, following [8, 20, 21] we consider a \special
proof" called strongly measure-consistent proof (see De�nition 6) of A in Pi
and construct a proof of A in Pi+1. The induction proof for establishing total
correctness is completed by showing that the proof of A in Pi+1 thus constructed
is itself strongly measure consistent.

1 Variables appearing in the body of a clause, but not its head
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Recall that irreversible folding steps need to be constrained in order to pre-
serve the semantics. In order to enforce these constraints, we maintain some
book-keeping information as we perform the transformations, formalized using
the following notions of Measure structure, Atom measure, and Clause measure.

De�nition 1 (Measure Structure) A Measure Structure is a 4-tuple � =
hM;�;�;Wi where hM;�i is a commutative group with 000 2 M as its identity
element, � is a linear order on M, � is monotone w.r.t. �, and W is a subset
of fx 2M j 000 � xg, over which � is well-founded.

We will refer toM, the �rst component of the measure structure, as the measure
space. We let � denote � or =. Moreover, we use 	 to denote the inverse
operation of the group hM;�i. We also use 	 as a binary operator, a	b meaning
a� (	b) (where (	b) is the inverse of b). The Kanamori-Fujita system [8] keeps
track of integer counters. Thus the measure structure is hZ;+; <;Ni, where Z
and N are the set of integers and natural numbers respectively, + denotes integer
addition, and < is the arithmetic comparison operator.

De�nition 2 (Atom Measure) An atom measure � of a program P w.r.t. a
measure structure � is a partial function from the Herbrand base of P to W such
that it is total on the least Herbrand model of P . For our purposes, it su�ces to
use the same atom measure for each program in a transformation sequence.

In the Kanamori-Fujita system, the atom measure of any Pi in the transforma-
tion sequence is the number of nodes in the shortest proof tree of A in the initial
program P0. The proof of total correctness for folding will induct on the atom
measure, relating the atom measure of A (the head of the folded clauses) with
the atom measure of B (the folder atom).

De�nition 3 (Clause Measure) A clause measure (lo; hi) of a program P

w.r.t. a measure structure � is a pair of total functions from clauses of P to M
such that 8C 2 P lo(C) � hi(C).

In the Kanamori-Fujita system, lo and hi are the same and map each clause to
its corresponding counter value. However, as we will see later, to allow disjunctive
folding we will need the two distinct functions lo and hi. Henceforth, we denote
the clause measure of a program Pi by (ilo; 

i
hi). We will now develop the idea

of \special proofs" mentioned earlier. For that purpose, we need the de�nition:

De�nition 4 (Ground Proof of an Atom) Let T be a tree, each of whose
nodes is labeled with a ground atom. Then T is a ground proof in program P , if
every node A in T satis�es the condition : A:� A1; :::; An is a ground instance
of a clause in P , where A1; :::; An (n � 0) are the children of A in T .

Consider transforming Pi to Pi+1 by a folding step (see �gure below). C and D

are the folded and folder clauses respectively and j < i.

.....
D : q:� q1; :::; qk
.....

.....
C : p:� q1; :::; qk; qk+1; :::; qn
.....

.....
C 0 : p:� q; qk+1; :::; qn
.....

Program Pj Program Pi Program Pi+1
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In order to show that p 2 M(Pi) ) p 2 M(Pi+1) by induction on �, we
would like to show that �(q) � �(p). The atoms p and q are related by what is
shared between the bodies of the clauses C and D. Hence we attempt to relate
their measures via the measures of bodies of C and D. Suppose D satis�es : (i)
�(q) �

P
1�i�k �(qi), then we can relate �(q) to the sum of the measures of

the body atoms of the folded clause C (since k � n). Further if C satis�es : (ii)
�(p) �

P
1�i�n �(qi), then we can establish that �(q) � �(p). If either (i) or

(ii) is a strict relationship then we can establish that �(q) � �(p). Relations (i)
and (ii) form the basis for the notions of weak and strong measure consistency .

De�nition 5 (Weakly Measure Consistent Proof) A ground proof T in
program Pi is weakly measure consistent w.r.t. atom measure � and clause mea-
sure (ilo; 

i
hi) if every ground instance A:� A1; :::; An of a clause C 2 Pi used

in T satis�es �(A) � ihi(C)�
P

1�l�n �(Al).

De�nition 6 (Strongly Measure Consistent Proof) A ground proof T in
program Pi is strongly measure consistent w.r.t. atom measure � and clause
measure (ilo; 

i
hi) if every ground instance A:� A1; :::; An of a clause C 2 Pi

used in T satis�es 81 � l � n �(Al) � �(A) and �(A) � ilo(C)�
P

1�l�n �(Al)

De�nition 7 (Measure Consistent Proof) A ground proof T in program
Pi is said to be measure consistent w.r.t. atom measure � and clause measure
(ilo; 

i
hi), if it is strongly and weakly measure consistent w.r.t. � and (ilo; 

i
hi).

We point out that our abstract notion of measure consistency relaxes the con-
crete notion of rank consistency of [8]. While rank consistency of [8] imposes
a strict equality constraint on �(A), measure consistency only bounds it from
above and below. As we will show later, this facilitates maintenance of approx-
imate information. This is the central idea that permits us to do disjunctive
folding using recursive clauses. For proving total correctness, we need :

De�nition 8 (Measure consistent Program) A program P is measure con-
sistent w.r.t. atom measure � and clause measure (lo; hi), if for all A 2M(P ),
we have : (1) All ground proofs of A in P are weakly measure consistent w.r.t. �
and (lo; hi) (2) A has a ground proof in P which is strongly measure consistent
w.r.t. � and (lo; hi)

We are now ready to de�ne the abstract conditions on folding and constraints on
how the clause measures are to be updated after an unfold/fold step. For each
clause C obtained by applying an unfold/fold transformation on program Pi, we
derive a lower bound on i+1hi (C) and an upper bound on i+1lo (C), denoted by

GLB i+1(C) and LUB i+1(C) respectively. We will see later that the conditions
on when the rules become applicable, as well as these bounds will be based on
the requirements of the proof of total correctness.

We assume that for any atom A (not necessarily ground), �min(A) denotes
a lower bound on the measure of any provable ground instantiation of A i.e.
8� �min(A) � �(A�). We use �min in the folding condition of rule 4 below.
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Rule 3 (Measure Preserving Unfolding) Let Pi+1 be obtained from Pi by
an unfolding transformation as described in Rule 1. Then, 81 � j � m

i+1lo (C 0
j) � GLB i+1(C 0

j) = ilo(C)� ilo(Cj) (1)

i+1hi (C 0
j) � LUB i+1(C 0

j) = ihi(C)� ihi(Cj) (2)

The clause measure of all other clauses in Pi+1 are inherited from Pi. 2

Rule 4 (Measure Preserving Folding) Let Pi+1 be obtained from Pi by a
folding transformation as described in Rule 2, such that 81 � l � m: 

j
hi(Dl) �

ilo(Cl)�
P

1�k�n �min(A
0
k).

2 Then,

i+1lo (C 0) � GLB i+1(C 0) = min
1�l�m

( ilo(Cl)	 
j
hi(Dl) ) (3)

i+1hi (C 0) � LUB i+1(C 0) = max
1�l�m

(ihi(Cl)	 
j
lo(Dl)) (4)

and the clause measure of all other clauses in Pi+1 are inherited from Pi. 2

It should be noted that the above rules do not prescribe unique values for upper
and lower clause measures for the clauses generated by the transformations.
Instead, they only specify bounds of these values; the values themselves are
chosen only when instantiating the framework to a concrete system.

Observe from the de�nition of atom measures that we can always assign 0 to
�min. However, by setting a more accurate estimate of �min, we can allow more
folding steps. As an example, consider any conjunctive folding step where the
folded clause C 2 Pi has more body atoms than the folder clause D 2 Pj , and

ilo(C) = 
j
hi(D). Such a folding step will not be allowed if 8A �min(A) = 0.

The Need for Approximate Clause Measures : In the Kanamori-Fujita system, a
counter (corresponding to our clause measure) is associated with every clause.
Roughly speaking, the counter associated with a clause C 2 Pi where C �
A:� A1; : : : ; An indicates the number of interior nodes in the smallest proof tree
in P0 that derives A1; : : : ; An from A. Thus, it is the amount saved (in terms
of proof tree size, compared to the smallest proof in P0) whenever C is used in
a proof in Pi. The folding rule is applicable provided the savings accrued in the
folded clause is more than that in the folder clause.

To see why a single counter is inadequate for disjunctive folding, consider the
following example:

C1: p :- r, t. (x1)
C2: p :- s, t. (x2)
C3: q :- r. (x3)
C4: q :- s. (x4)

C 0: p :- q, t. (?)
C3: q :- r. (x3)
C4: q :- s. (x4)

Program Pi Program Pi+1

2 Intuitively, if the clause measure of Cl \exceeds" the clause measure of Dl then we
can fold Cl using Dl.
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Pi+1 is obtained from Pi by folding fC3; C4g into fC1; C2g. Now, the savings
due to C 0 in a proof of Pi+1 depends on whether C3 or C4 is used to resolve q
in that proof. Since this information is unknown at transformation time, we can
only keep approximate information about savings. In our framework we choose
to approximate the savings by the closed interval [lo; hi].

We now have the necessary machinery for establishing total correctness of a
sequence of unfold/fold transformations.

Lemma 1 (Preserving Weak Measure Consistency) Let P0; : : : ; Pi be a
transformation sequence of measure consistent programs such that M(P0) =
M(Pj) for all 0 � j � i. Let Pi+1 be obtained from Pi by applying measure-
preserving unfolding or measure-preserving folding. Then, all ground proofs of
Pi+1 are weakly measure consistent.

Proof Sketch. The proof proceeds by induction on the size of ground proofs
of Pi+1. Let T be a ground proof of some ground atom A in Pi+1, and let
A:� A1; :::; An (where n � 0) be the ground instance of a clause C 2 Pi+1 that
is used at the root of the proof T . Then the subproofs of A1; :::; An in T are
weakly measure consistent by induction hypothesis.

Hence, it su�ces to show that, �(A) � i+1hi (C) �
P

1�l�n �(Al). To show
this, we consider three cases: (1) C was inherited from Pi. (2) C was obtained
from Pi by unfolding; and (3) C was obtained from Pi by folding. In each of these
three cases, we can show the above inequality by assuming M(Pi+1) � M(Pi)
(which follows from theorem 1). 2

Theorem 2 (Total Correctness) Let P0; P1; : : : ; Pi be a transformation se-
quence of measure consistent programs such that M(P0) = M(Pj) for all 0 �
j � i. Let Pi+1 be obtained from Pi by applying measure-preserving unfolding
or measure-preserving folding. Then, (i) M(Pi+1) = M(Pi) and (ii) Pi+1 is a
measure-consistent program.

Proof. By theorem 1, we haveM(Pi+1) �M(Pi), and by lemma 1 we know that
all ground proofs of Pi+1 are weakly measure consistent. Hence it is su�cient
to prove that (1) M(Pi) � M(Pi+1) and (2) 8A 2 M(Pi+1), A has a strongly
measure consistent proof in Pi+1.

Consider any ground atom A 2M(Pi). Since Pi is measure consistent, A has
a strongly measure consistent proof T in Pi. We now construct a strongly measure
consistent proof T 0 of A in Pi+1. Construction of T 0 proceeds by induction on
atom measures. Let C be a clause used at the root of T . Let A:� A1; :::; An

(where n � 0) be the ground instantiation of C at the root of T . Since T is
strongly measure consistent �(Ai) � �(A), for all 1 � i � n. Hence, we have
strongly measure consistent proofs T 0

1; :::; T
0
n of A1; :::; An in Pi+1. We construct

T 0 by considering the following cases:
Case 1: C is inherited from Pi into Pi+1
T 0 is constructed with A:� A1; :::; An at its root and T 0

1; :::; T
0
n as its children.

This proof T 0 is strongly measure consistent.
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Case 2: C is unfolded.
Let A1 be the atom in the body of C which is unfolded. Let the clause used to
resolve A1 in T be C1 and the ground instance of C1 used be A1:� A1;1; :::; A1;l1 .
By de�nition of unfolding, A:� A1;1; :::; A1;l1 ; A2; :::; An is a ground instance of
a clause C 0

1 in Pi+1 with i+1lo (C 0
1) � ilo(C)� ilo(C1). Also, �(A1;j) � �(A1) �

�(A), for all 1 � j � l1. Thus, we have strongly measure consistent proofs
T 0
1;1; :::; T

0
1;l1

of A1;1; :::; A1;l1 in Pi+1. The proof T
0 is now constructed by apply-

ing A:� A1;1; :::; A1;l1 ; A2; :::; An at the root, and putting T 0
1;1; :::; T

0
1;l1

; T 0
2; :::; T

0
n

as the children. Since T is strongly measure consistent,

�(A) � ilo(C) �
P

1�j�n �(Aj) and �(A1) � ilo(C1)�
P

1�j�l1
�(A1;j)

=) (�(A) � �(A1)) � ilo(C)� ilo(C1)�
P

1�j�n �(Aj)�
P

1�j�l1
�(A1;j)

=) �(A) � i+1lo (C 0
1)�
P

2�j�n �(Aj)�
P

1�j�l1
�(A1;j)

Hence, T 0 is a strongly measure consistent proof in Pi+1.

Case 3: C is folded.
Let C (potentially with other clauses) be folded, using folder clauses from Pj ,
j � i, to clause C 0 in Pi+1. Assume that A1; :::; Ak are the instances of the folded
atoms in C. Then, C 0 has a ground instance of the form A:� B;Ak+1; :::; An

where B:� A1; :::; Ak is a ground instance of a folder clause D 2 Pj .
3 Since

M(Pi) = M(Pj) and A1; :::; Ak are provable in Pi they must also be provable
in Pj . Moreover, since D 2 Pj , B 2 M(Pj) = M(Pi). Since Pj is measure

consistent, �(B) � 
j
hi(D) �

P
1�l�k �(Al).

Now, by the strong measure consistency of T ,

�(A) � ilo(C) �
P

1�l�k �(Al)�
P

k+1�l�n �(Al)

� ilo(C) � (�(B) 	 
j
hi(D))�

P
k+1�l�n �(Al) � � � � � � (�)

� (ilo(C)	 
j
hi(D)) � �(B)�

P
k+1�l�n �min(Al)

� �(B) (by condition of measure preserving folding)

Now, by induction hypothesis, B has a strongly measure consistent proof T 0
B in

Pi+1. We construct T 0, the proof of A in Pi+1, with A:� B;Ak+1; :::; An at its
root, and T 0

B; T
0
k+1; :::; T

0
n as its children. To show that T 0 is strongly measure

consistent, note that i+1lo (C 0) � (ilo(C)	
j
hi(D)) according to the de�nition of

measure preserving folding, as C and D are folded and folder clauses. Combining
this with (*) we get,

�(A) � i+1lo (C 0)� �(B) �
P

k+1�l�n �(Al)

This completes the proof. 2

Note that by applying measure preserving unfolding/folding to program Pi,
we can generate a clause which is also inherited from Pi. It is straightforward
to adjust the clause measures of Pi+1 that will still ensure that Pi+1 remains
measure consistent (details are omitted).

3 Recall that in the folding transformation, all clauses in Pj whose head is uni�able
with B are folder clauses.
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3 Constructing Concrete Unfold/Fold Systems by
Instantiating the Framework

To construct a concrete unfold/fold transformation system from our abstract
framework, the following parameters need to be instantiated :

1. a measure structure �;

2. atom measure � and �min;

3. clause measure (lo; hi) for clauses in the initial program P0 such that P0
is measure consistent; and

4. functions to compute the clause measure of new clauses obtained by the
transformations such that they satisfy the constraints imposed by equa-
tions (1) through (4) (refer Rules 3 and 4).

Note that there are no further proof obligations. Once the above four elements
are de�ned, total correctness of the transformation system is guaranteed by the
framework.

3.1 Existing Unfold/fold Systems

We �rst show how our framework can be instantiated to obtain the Kanamori-
Fujita and the extended Tamaki-Sato systems. To the best of our knowledge,
these are the only two existing systems that allow folding using recursive clauses.
However in both of these systems folding is conjunctive.

The Kanamori-Fujita System [8]: This system can be obtained as an in-
stance of our framework as follows:

1. � = hZ;+; <;Ni. This measure structure corresponds to the use of integer
counters in [8].

2. �(A) = number of nodes in the smallest proof of A in P0, and for any atom
A, �min(A) = 1. Thus, �(A) denotes the rank of A described in [8].

3. 8C 2 P0 0lo(C) = 0hi(C) = 1. Since all clause measures are 1, it follows
immediately from the de�nition of atom measures that the smallest proofs
of any ground goal G are strongly measure consistent, and all proofs in P0
are weakly measure consistent. Hence P0 is measure consistent.

4. 8C 2 Pi+1 � Pi (i.e., new clauses in Pi+1), 
i+1
lo (C) = GLB i+1(C) and

i+1hi (C) = LUB i+1(C). Under the given measure structure, it is immediate
that the above de�nition is identical to the computation on counters in [8].

Furthermore, the measure preserving folding rule (Rule 4) is applied only when
both folder and folded clauses are singleton sets. It is easy to see a one-to-one
correspondence between the conditions on unfold/fold transformations of the
above instantiation and the Kanamori-Fujita system.
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The Extended Tamaki-Sato System [21]: In this system all the predicate
symbols are partitioned into n strata. In the initial program a predicate from
stratum j is de�ned using only predicates from strata � j. We can obtain this
system as an instance of our framework as follows:

1. � = hZn;�;�;Nn i where � denotes coordinate-wise integer addition of n-
tuples of integers, and � denotes the lexicographic < order over n-tuples
of integers. The n-tuples in the measure structure will correspond to the n
strata of the original program.

2. �(A) = min(fw(T ) j T is a proof of A in P0g), where w(T ) is the weight of
the proof T de�ned as an n-tuple hw1; : : : ; wni such that 81 � j � n, wj is
the number of nodes of predicates from stratum j in T . �(A) corresponds to
the notion of weight-tuple measure of A de�ned in [21].
For any atom A, �min(A) = 0 = h0; : : : ; 0i.

3. 8C 2 P0, 
0
lo(C) = 0hi(C) = hw1; : : : ; wni, where C � A:� A1; : : : ; An and

for 1 � j � n, wj = 1 if the predicate symbol of A is from stratum j, and 0
otherwise.
For any A 2M(P0), the proof T that de�nes �(A) (item 2 above) is strongly
measure consistent. Weak measure consistency of ground proofs in P0 is
established by induction on their size.

4. 8C 2 Pi+1�Pi, 
i+1
hi (C) = LUB i+1(C) and i+1lo (C) = approx (GLB i+1(C)).

The function approx reduces a measure as follows. Let u = hu1; : : : ; uni
and kmin be the smallest index k such that uk > 0. Then approx (u) =
hu01; : : : ; u

0
ni where u

0
kmin

= 1 and is 0 elsewhere.

As in the Kanamori-Fujita system, here also the measure preserving folding
rule is applied only when both folder and folded clauses are singleton sets.

To establish the correspondence between the above instantiation and the
extended Tamaki-Sato system, recall that the latter associates a descent level
with each clause of every program in a transformation sequence. If a clause C in
Pi has the descent level k, then with the above instantiation, 

i
lo(C) = hl1; : : : ; lni

where lk = 1 and 0 elsewhere; i.e. the only non-zero entry in its lower clause
measure appears in the kth position. Thus our lower clause measure precisely
captures the information that is kept track of by the extended Tamaki-Sato
system.

Assigning Measure Structures and Clause Measures Observe that our frame-
work does not prescribe exact values to the clause measures. Instead it bounds
the clause measures from above and below. So an important aspect of our in-
stantiation involves assigning values to the clause measures that satisfy these
constraints. From an abstract point of view, the Kanamori-Fujita system uses
a relatively coarse measure space (Z) but within this space it maintains accu-
rate clause measures (integer counters). Our instantiation reects this by not
relaxing the bounds while updating the clause measures (see step 4 of the in-
stantiation). On the other hand, the extended Tamaki-Sato system uses a more
�ne-grained measure space (Zn). But this measure space is not completely uti-
lized since clause measures are the descent level of clauses, which can be simply
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represented by an integer. Therefore in step 4 of our instantiation we accord-
ingly loosened the bound. As far as the Gergatsoulis-Katzouraki [7] and original
Tamaki-Sato systems [20] are concerned, �rst note that they do not permit fold-
ing using recursive clauses. These systems use coarse measure spaces. Moreover
they do not even fully utilize these measure spaces as is evident from the lesser
amount of book keeping performed by them. By choosing a coarse measure struc-
ture and relaxing the bounds along lines similar to the extended Tamaki-Sato
system we have been able to instantiate these two systems as well. Details are
omitted.

3.2 SCOUT| A New Unfold/fold System

We now construct SCOUT, an unfold/fold transformation system for de�nite
logic programs that allows disjunctive folding using recursive clauses. It incor-
porates the notion of strata from the extended Tamaki-Sato system into the
counters of the Kanamori-Fujita system. Thus with every clause it maintains a
pair of strati�ed counters as the clause measure. The instantiation is as follows.
We assume that the predicate symbols appearing in the initial program P0 are
partitioned into n strata, as in the extended Tamaki-Sato system.

1. � = hZn;�;�;Nn i where � denotes coordinate-wise integer addition of n-
tuples of integers, and � denotes the lexicographic < order over n-tuples of
integers.

2. �(A) is de�ned exactly as in the instantiation of the extended Tamaki-Sato
system above. For any atom A we set �min(A) = hw1; : : : ; wni where wj = 1
if A is from stratum j and 0 elsewhere.

3. Clause measure of clauses in P0 is de�ned exactly as in the instantiation of
the extended Tamaki-Sato system above. Therefore the proofs of measure
consistency are also identical.

4. 8C 2 Pi+1 � Pi, 
i+1
lo (C) = GLB i+1(C) and i+1hi (C) = LUB i+1(C).

SCOUT provides a solution to two important (and orthogonal) problems
that have thus far remained open: folding using clauses that have disjunctions
as well as recursion, and combining the strati�cation-based (extended) Tamaki-
Sato system with the counter-based Kanamori-Fujita system thereby obtaining
a single system that strictly subsumes either of them even when restricted to
conjunctive folding (See [13] for a formal proof of this claim).

It is interesting to note that by simple inspection of the instantiations, one can
see that when the number of strata is 1 and only conjunctive folding is permitted,
SCOUT collapses to the Kanamori-Fujita system. Collapsing SCOUT to other
existing unfold/fold systems by varying the number of strata and extending the
parameters (e.g. measure structure) remains an interesting open problem.

4 Goal Replacement

Augmenting an unfold/fold transformation system with the goal replacement
rule makes it more powerful. In this section we incorporate goal replacement to
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our parameterized framework. Goal replacement allows semantically equivalent
conjunctions of atoms to be freely interchanged. We formally de�ne it below.
For a conjunction of atoms A1; :::; An, we use the notation vars(A1; :::; An) to
denote the set of variables in A1; :::; An.

Rule 5 (Goal Replacement) Let C be a clause A:� A1; : : : ; Ak; G in Pi, and
G0 be an atom such that vars(G) = vars(G0) � vars(A;A1; :::; Ak). Suppose
for all ground instantiation � of G;G0 we have Pi ` G� , Pi ` G0�. Then
Pi+1 := (Pi � fCg) [ fC

0g where C 0 � A:� A1; : : : ; Ak; G
0. 2

Note that although we replace a single atom G by another atom G0 (where G and
G0 do not contain any internal variables), we can replace conjunctions of atoms
using a sequence of folding, goal replacement and unfolding transformations.

The above transformation is partially correct (a formal proof appears in [13]).
However, if goal replacement is applied to a measure consistent program Pi it
is totally correct. But then we also need to ensure that the resulting program
Pi+1 is measure consistent. If this is ensured, then even if goal replacement is
interleaved with irreversible folding total correctness will be preserved. Formally,

Rule 6 (Measure Preserving Goal Replacement) Suppose program Pi+1
is obtained from program Pi by applying the goal replacement transformation
as described in Rule 5. Let there exist �; �0 2 M (where measure structure is
� = hM;�;�;Wi) such that for all ground instantiation � of G;G0, we have:
(i) � � �(G�) 	 �(G0�) � �0 (ii) ilo(C)� � �

P
1�p�k �min(Ap) � 000. Then

i+1lo (C 0) � ilo(C)� � (5)

i+1hi (C 0) � ihi(C)� �0 (6)

The clause measures of the other clauses of Pi+1 are inherited from Pi. 2

We now present a formal proof of total correctness and preservation of measure
consistency of the above rule.

Theorem 3 Let Pi+1 be derived from Pi by applying measure preserving goal
replacement as described in rule 6. If Pi is measure consistent, then M(Pi) =
M(Pi+1) and Pi+1 is also measure consistent.

Proof. Since measure preserving goal replacement is a special case of the goal
replacement transformation in rule 5, we have M(Pi+1) � M(Pi) by partial
correctness of rule 5. Therefore it is su�cient to prove that : (1) all ground proofs
of Pi+1 are weakly measure consistent (2) M(Pi) �M(Pi+1) (3) 8B 2M(Pi+1)
there exists a strongly measure consistent proof of B in Pi+1. We prove proof
obligation (1) separately. Proof obligations (2) and (3) are proved by showing
that : 8B 2M(Pi) there exists a strongly measure consistent proof of B in Pi+1.
This is su�cient since we know M(Pi+1) �M(Pi).

First, we prove that all ground proofs of Pi+1 are weakly measure consistent.
The proof proceeds by induction on the size of ground proofs in Pi+1. Let T be
a ground proof of a ground atom B in Pi+1. If the clause used at the root of T
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is not the new clause C 0, then the proof follows by induction hypothesis and the
measure consistency of Pi. If the clause used at the root of T is C 0, then let the
ground instance of C 0 used at the root of T be A�:� A1�; : : : ; Ak�;G

0�. By in-
duction hypothesis, the proofs of A1�; : : : ; Ak�;G

0� in T are weakly measure con-
sistent. It su�ces to show that �(A) � i+1hi (C 0)�

P
1�l�k �(Al�)��(G

0�) Now,
G0� 2 M(Pi+1) ) G0� 2 M(Pi). Hence by rule 5 we have G� 2 M(Pi). Also,
81 � l � k Al� 2 M(Pi) (as M(Pi+1 �M(Pi)). Then, A�:� A1�; : : : Ak�;G� is
a ground instantiation of C which appears at the root of some ground proof in
Pi. Since Pi is measure consistent we have

�(A) � ihi(C)�
P

1�l�k �(Al�)� �(G�)

� ihi(C)�
P

1�l�k �(Al�)� ( �(G0�)� �0 )

� i+1hi (C 0)�
P

1�l�k �(Al�)� �(G0�)

Now, we prove that 8B 2M(Pi) there is a strongly measure consistent proof
of B in Pi+1. Since Pi is measure consistent, it su�ces to translate a strongly
measure consistent proof T of B in Pi to a strongly measure consistent proof T 0

of B in Pi+1 for all B 2M(Pi). We do this translation by induction on the atom
measures. If the clause used at the root of T is not C (where C is the clause in
Pi that is replaced) then the proof follows from the de�nition of strong measure
consistency and induction hypothesis. Let C be the clause used at the root of T
(a strongly measure consistent proof of A in Pi) and let A�:� A1�; : : : ; Ak�;G�

be the ground instance of C used. Then, by strong measure consistency of T ,
�(Al�) � �(A�) for all 1 � l � k. By induction hypothesis, we then have strongly
measure consistent ground proofs T 0

1; : : : ; T
0
k of A1�; : : : ; Ak� in Pi+1. Also, by

strong measure consistency of T

�(A) � ilo(C)�
P

1�l�k �(Al�) � �(G�)

� ilo(C)�
P

1�l�k �(Al�) � ( �(G0�)� � ) � � � � � � (�)

� ( ilo(C)�
P

1�l�k �min(Al�)� � )� �(G0�)

� �(G0�) (By condition (ii) of rule 6)

Then, by induction hypothesis, G0� has a proof T 0
G0� in Pi+1. The ground proof

T 0 is constructed with A�:� A1�; : : : ; Ak�;G
0� at the root (this is a ground

instance of C 0, the new clause in Pi+1) and T 0
1; : : : ; T

0
k; T

0
G0� as its children. To

show that this proof T 0 is measure consistent, note that i+1lo (C 0) � ilo(C)� �.
Combining this with (*), we get

�(A) � i+1lo (C 0)�
X

1�l�k

�(Al�)� �(G0�)

This completes the proof. 2

Observe that, similar to the goal replacement transformation in [8, 20, 21] the
conditions under which rule 6 may be applied are not testable at transformation
time. For testability we need to (1) determine whether G and G0 are semantically
equivalent, and (2) estimate � and �0 such that the clause measures of Pi+1 can
be computed.



403

Semantic equivalence is undecidable in general and can be conservatively
approximated using program analysis. To estimate � and �0 observe that any �0

which dominates the atom measure of all ground atoms satis�es the conditions of
Rule 6. However, such a �0 may not always exist in the given measure structure.
In such cases, we can extend the measure structure � = hM;�;�;Wi to hZ�
M;�0;�0;N �Wi, where 8z1; z2 2 Z and 8m1;m2 2 M (z1;m1) �

0 (z2;m2) =
(z1+z2;m1�m2), and �

0 is the lexicographic ordering of pairs from Z�M. Atom
measures in this extended measure space are of the form (0; w) (where w 2 W).
We set �0 = (1;000), which is lexicographically greater than all atom measures.
Also, in certain cases we can de�ne a lower bound of � as follows. Let B be the
atom in the body of a clause in Pi that is replaced and let fC1; : : : ; Cng be the
clauses in Pi that unify with B. Then, � � min1�k�n(

i
lo(Ck)� �min(hd(Ck))),

where hd(Ck) is the head atom of Ck (for details see [14]).
The above steps de�ne a procedure to add goal replacement to any arbitrary

unfold/fold system instantiated in our framework. More importantly, this is done
by simply manipulating the measures; the proofs of correctness of the augmented
transformation system follow immediately from the proofs of our framework.

5 Conclusion

The development of a parameterized framework for unfold/fold transformations
has several important implications. It enables us to compare existing transfor-
mation systems and modify them without redoing the correctness proofs (e.g.,
extending measures for goal replacement in Section 4). It also facilitates the
development of new transformations systems. For instance, we derived SCOUT
which permits folding using multiple recursive clauses. Such a transformation
system is particularly important for verifying parameterized concurrent systems
(such as a n-process token ring for arbitrary n) using logic program evaluation
and deduction [4, 16].

In [15], we have extended the work reported in this paper to obtain general-
ized unfold/fold transformation systems for normal logic programs. Aravindan
and Dung [1] developed an approach to parameterize the correctness proofs of
the original Tamaki-Sato system with respect to various semantics based on the
notion of semantic kernels. Incorporating the idea of semantic kernel into our
framework yields a framework that is parameterized with respect to the measure
structures as well as semantics.

In future, it would be interesting to study whether we can develop similar
parameterized unfold/fold transformation frameworks for other programming
paradigms such as functional and concurrent constraint programming languages
[5, 17] as well as process algebraic speci�cation languages (e.g. CCS) [6].
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