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Abstract. We show how the problem of verifying parameterized sys-
tems can be reduced to the problem of determining the equivalence of
goals in a logic program. We further show how goal equivalences can be
established using induction-based proofs. Such proofs rely on a power-
ful new theory of logic program transformations (encompassing unfold,
fold and goal replacement over multiple recursive clauses), can be highly
automated, and are applicable to a variety of network topologies, includ-
ing uni- and bi-directional chains, rings, and trees of processes. Unfold
transformations in our system correspond to algorithmic model-checking
steps, fold and goal replacement correspond to deductive steps, and all
three types of transformations can be arbitrarily interleaved within a
proof. Our framework thus provides a seamless integration of algorith-
mic and deductive veri�cation at �ne levels of granularity.

1 Introduction

Advances in Logic Programming technology are beginning to inuence the de-
velopment of new tools and techniques for the speci�cation and veri�cation of
concurrent systems. For example, constraint logic programming has been used
for the analysis and veri�cation of hybrid systems [Urb96] and more recently
for model checking in�nite-state systems [DP99]. Closer to home, we have used
a tabled logic-programming system to develop XMC, an eÆcient and exible
model checker for �nite-state systems [RRR+97]. XMC is written in under 200
lines of tabled Prolog code, which constitute a declarative speci�cation of CCS
and the modal mu-calculus at the level of semantic equations. Despite the high-
level nature of XMC's implementation, its performance is comparable to that
of highly optimized model checkers such as Spin [Hol97] and Mur' [Dil96] on
examples selected from the benchmark suite in the standard Spin distribution.

More recently, we have been investigating how XMC's model-checking ca-
pabilities can be extended beyond �nite-state systems. Essentially, this can be
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done by enhancing the underlying resolution strategy appropriately at the level of
meta-programming, and without the undue performance penalties typically asso-
ciated with the concept of meta-programming. In this sense, XMC can be viewed
as a programmable veri�cation engine. For example, we have shown in [DRS99]
how an eÆcient model checker for real-time systems can be attained through the
judicious use of a constraint package for the reals on top of tabled resolution.

In this paper, we expand on this theme even further. In particular, we exam-
ine how the tabled-resolution approach to model checking �nite-state systems
can be extended to the veri�cation of parameterized systems. A parameterized
system represents an in�nite family of systems, each instance of which is �nite
state. For example, an n-bit shift register is a parameterized system, the param-
eter in question being n. In general, the veri�cation of parameterized systems
lies beyond the reach of traditional model checkers and it is not at all trivial (or
even possible) to adapt them to verify parameterized systems.

The main idea underlying our approach is to reduce the problem of verify-
ing parameterized systems to one of determining equivalence of goals in a logic
program. We then establish goal equivalences by inducting on the size of proofs
of ground instances of goals. To derive such induction proofs we were required
to substantially generalize the well-established theory of logic program trans-
formations encompassing unfold, fold and goal-replacement transformations. In
particular, in a recent paper [RKRR99b] we developed a new transformation sys-
tem that allows folding using multiple recursive clauses, which seems essential
for proving properties of parameterized systems.

In our framework, unfold transformations, which replace instances of clause
left-hand sides with corresponding instances of clause right-hand sides, represent
resolution. They thereby represent a form of algorithmic model checking; viz.
the kind of algorithmic, on-the-y model checking performed in XMC. Unfold
transformations are used to evaluate away the base case and the �nite portions
of the induction step in an induction proof. Fold transformations, which replace
instances of clause right-hand sides with corresponding instances of clause left-
hand sides, and goal replacement transformations, which replace a goal in a
clause right-hand side with a semantically equivalent goal, represent deductive
reasoning. They are used to simplify a given program so that applications of the
induction hypothesis in the induction proof can be recognized.

Using our approach, we have been able to prove liveness and safety properties
of a number of parameterized systems. Moreover, our approach does not seem
limited to any particular kind of network topology, as the systems we considered
have included uni- and bi-directional chains, rings, and trees of processes. The
primary bene�ts can be summarized as follows.

{ Uniform framework. Our research has shown that �nite-state systems, real-
time systems, and, now, parameterized systems can be uniformly speci�ed
and veri�ed in the tabled logic programming framework.

{ Tighter integration of algorithmic and deductive model checking. Unfold, fold,
and goal-replacement steps can be arbitrarily interleaved within the veri�ca-
tion proof of a parameterized system. Thus our approach allows algorithmic



model checking computation (unfold) to be integrated with deductive reason-
ing (fold, goal replacement) at �ne levels of granularity. Also, since deductive
steps are applied lazily in our approach, �nite-state model checking emerges
as a special case of verifying parameterized systems.

{ High degree of automation. Although a fully automated solution to veri�-
cation of parameterized systems is not possible, for many cases of practical
interest, we have identi�ed certain heuristics that can be applied to our proof
system in order to completely automate the deduction involved.

The idea of using logic program transformations for proving goal equivalences
was �rst explored in [PP99] for logic program synthesis. Our work expands the
existing body of work in logic program transformations with more powerful trans-
formation rules and strategies that are central to veri�cation of parameterized
systems. Note that our transformation rules are also applicable for proving gen-
eral program properties.

Regarding related work in the veri�cation area, a myriad of techniques have
been proposed during the past decade for verifying parameterized systems, and
the related problem of verifying in�nite-state systems. [BCG89,EN95,ID99] re-
duce the problem of verifying a parameterized system to the veri�cation of an
\equivalent" �nite-state system. [WL89,KM95,LHR97] seek to identify a \net-
work invariant" that is invariant with respect to the given notion of parallel com-
position and stronger than the property to be established. The network-invariant
approach is applicable to parameterized systems consisting of a number of copies
of identical components (or components drawn from some �nite set) that are
composed in parallel. Another approach [CGJ95] aims to �nitely represent the
state space and transition relation of the entire family of �nite-state systems
comprising a given parameterized system, and has been used in [KMM+97] to
extend symbolic model checking [McM93] to the veri�cation of parameterized
systems. This method requires the construction of a uniform representation for
each class of networks, and the property in question must have a proof that is
uniform across the family of networks.

Perhaps the work most closely related to our own involves the use of the-
orem provers for verifying parameterized systems. Rajan et al. [RSS95] have
incorporated a mu-calculus model checker as a decision procedure within the
PVS theorem prover [OSR92]. Inductive proofs can be established by the prover
via calls to the model checker to verify �nite subparts. Graf and Saidi [GS96]
combine a custom-built speci�cation/deduction system with PVS to formalize
and verify invariant properties of in�nite-state systems.

The key di�erence between our approach and these is that we enhance model
checking with deductive capabilities, rather than implement model checking as
a decision procedure in a deductive system. In particular, the underlying eval-
uation mechanism for model checking in XMC is essentially unfolding, and we
have enhanced this mechanism with folding and goal-replacement transforma-
tions. In our approach, deductive steps are deployed only on demand and hence
do not a�ect the eÆcacy of the algorithmic model-checking. More importantly
our framework demonstrates that a tabled constraint logic-programming system



can form the core of a veri�cation engine that can be programmed to verify prop-
erties of various avors of concurrent systems including �nite-state, real-time,
and parameterized systems.

2 Parameterized System Veri�cation as Goal Equivalence

In this section, we discuss how veri�cation of temporal properties of parameter-
ized systems can be reduced to checking equivalence of goals in a logic program.

gen([1]).

gen([0|X]) :- gen(X).

trans([0,1|T], [1,0|T]).

trans([H|T], [H|T1]) :- trans(T, T1).

thm(X) :- gen(X), live(X).

live(X) :- X = [1| ].

live(X) :- trans(X, Y), live(Y).

System description Property description

Fig. 1. Example: Liveness in a unidirectional token-passing chain.

Modeling Parameterized Systems: Consider the parameterized system con-
sisting of a chain of n token-passing processes. In the system's initial state, the
process in the right-most position of the chain has the token and no other process
has a token. The system evolves by passing the token leftward. A logic program
describing the system is given in Figure 1. The predicate gen generates the initial
states of an n-process chain for all n. A global state is represented as an ordered
list ( a list in Prolog-like notation is of the form [Head|Tail] ) of zeros and ones,
each bit corresponding to a local state, and the head of the list corresponding
to the local state of the left-most process in the chain. Each process in the chain
is a two-state automaton: one with the token (an entry of 1 in the list) and the
other without the token (an entry of 0). The set of bindings of variable S upon
evaluation of the query gen(S) is f [1], [0,1], [0,0,1], : : : g. The predicate
trans in the program encodes a single transition of the global automaton. The
�rst clause in the de�nition of trans captures the transfer of the token from
right to left; the second clause recursively searches the state representation until
the �rst clause can be applied.
Liveness Properties: The predicate live in Figure 1 encodes the temporal
property we wish to verify: eventually the token reaches the left-most process.
The �rst clause succeeds for global states where the token is already in the left-
most process (a good state). The second (recursive) clause checks if a good state
is reachable after a (�nite) sequence of transitions. Thus, every member of the
family satis�es the liveness property if and only if 8 X gen(X)) live(X). More-
over, this is the case if 8 X thm(X), gen(X), i.e., if thm and gen are equivalent
(have the same least model). Clearly, testing the equivalence of these goals is
infeasible since the minimal model of the logic program is in�nite. However, we
present in Section 3 a proof methodology, based on program transformations,
for proving equivalences between such goals.



Safety Properties: We can model safety properties by introducing negation
into the above formulation for liveness properties, using the temporal-logic iden-
tity G � � :F :�. Although our program transformation systems have been
recently extended to handle programs with negation [RKRR99a], for simplicity
of exposition we present here an alternative formulation without negation. In
particular, we de�ne a predicate bad to represent states that violate the safety
property, show that the start states are not bad, and, �nally, show that bad

states are reachable only from other bad states. For instance, mutual exclusion
in the n-process chain can be veri�ed using the following program:

bad([1|Xs]) :- one more(Xs).

bad([ |Xs]) :- bad(Xs).

one more([1| ]).

one more([ |Xs]) :- one more(Xs).

bad start(X) :- gen(X), bad(X).

bad src(X,Y) :- trans(X, Y), bad(X).

bad dest(X,Y) :- trans(X, Y), bad(Y).

bad is true if and only if the given global state has more than one local state
with a token. Showing bad start(X), false establishes that the start states
do not violate the safety property. Showing that bad src(X) , bad dest(X)

establishes that states that violate the safety property can be reached only from
other states that violate the property. These two facts together imply that no
reachable state in the in�nite family is bad and thus establish the safety property.

A Note on the Model: XMC [RRR+97] provides a highly expressive process
description language based on value-passing CCS [Mil89] for specifying parame-
terized systems (although XMC is guaranteed to terminate only for �nite-state
systems). The above simpli�ed presentation (which we will continue to use in
the rest of this paper) is used to prevent a proliferation of syntax.

3 Goal Equivalence Proofs using Tableau

In this section we describe the basic framework to construct such equivalence
proofs. We begin by de�ning the relevant notations.

Notations: We assume familiarity with the standard notions of terms, mod-
els, substitutions, uni�cation, and most general uni�er (mgu) [Llo93]. A term
having no variables is called a ground term. Atoms are terms with a predicate
symbol at the root (true and false are special atoms), and goals are conjunc-
tions of atoms. Atoms whose subterms are distinct variables (i.e., atoms of the
form p(X1; : : : ; Xn), where p is a predicate symbol of arity n) are called open
atoms. We use the following notation (possibly with primes and subscripts): p; q
for predicate symbols; X;Y for variables; t; s for terms; X;Y for sequences of
variables; t; s for sequences of terms; A;B for atoms; �; � for substitutions; C;D
for Horn clauses; �; � for goals; and P for a de�nite logic program, which is a
set of Horn clauses. A Horn clause C is written as A :� B1; B2; : : : ; Bn. A, the
consequent, is called the head of C and the antecedent B1; B2; : : : ; Bn the body
of C. Note that we can write Horn clauses as A :� �. Semantics of a de�nite
logic program P is given in terms of least Herbrand models,M (P ). Given a goal



� and a program P , SLD resolution is used to prove whether instances of � are
inM (P ). This proof is constructed recursively by replacing an atom B in � with
�� where B0 :� � 2 P and � = mgu(B;B0). We use P0; P1; : : : ; Pn to denote a
program transformation sequence where Pi+1 is obtained from Pi by applying a
transformation. We call P0 as the original program.

3.1 Tableau Construction

The goal equivalence problem is: given a logic program P and a pair of goals �; �,
determine if � and � are semantically equivalent in P : i.e., whether for all ground
substitutions �, �� 2 M (P ) , �� 2 M (P ). This problem is undecidable in
general and we attempt to provide a deductive system for identifying equivalence.

We now develop a tableau-based proof system for establishing goal equiva-
lence. Our proof system is analogous to SLD resolution. Let � = hP0; P1; : : : ; Pii
be a sequence of logic programs such that Pj+1 is obtained fromPj (1 � j < i) by
the application of a rule in our tableau. Further let M (P0) = M (P1) = M (P2) =
: : : = M (Pi). An e-atom is of the form � ` � � � where � and � are goals,
and represents our proof obligation: that � and � are semantically equivalent in
any program in � . An e-goal is a (possibly empty) sequence of e-atoms (e-atoms
and e-goals correspond to atoms and goals in standard resolution).

(Ax)
� ` � � �

where � �= �

(Tx)
� ` � � �

�;Pi+1 ` � � �
where M(Pi+1) =M(Pi)

(Gen)
� ` � � �

�;Pi+1 ` � � �; P0 ` �0 � �0
where M(Pi+1) =M(Pi) if �

0 � �0

Fig. 2. Rules for constructing equivalence tableau.

The three rules used to construct equivalence tableau are shown in Figure 2.
The axiom elimination rule (Ax) is applicable whenever the equivalence of goals
� and � can be established by some automatic mechanism, denoted by � �= �.
Axiom elimination is akin to the treatment of facts in SLD resolution. The
program transformation rule (Tx) attempts to simplify a program in order to
expose the equivalence of goals. We use this rule when we apply a (semantics-
preserving) transformation that does not add any equivalence proof obligations
e.g. unfolding, folding. The sub-equivalence generation rule (Gen) replaces an
e-atom with new e-atoms which are (hopefully) simpler to establish. This step
is akin to standard SLD resolution step. Note that the proof of �0 � �0 may
involve a transformation sequence di�erent from, and not just an extension of,
� . A successful tableau for an e-goal E0 is a �nite sequence E0; E1; : : : ; En where
Ei+1 is obtained from Ei by applying Ax/Tx/Gen and En is empty.



Theorem 1 Let E0; E1 : : : ; En be a successful tableau, P0 be a (de�nite) logic
program and E0 = hP0i ` � � �. For all ground substitutions �, �� 2M (P0),
�� 2M (P0), i.e. � and � are equivalent in the least Herbrand model of P0.

The tableau, however, is not complete. There can be no such complete tableau
(which can be proved using a reduction in [AK86]).

Theorem 2 The problem of determining equivalence of predicates described by
logic programs is not recursively enumerable.

3.2 Program Transformations

The Tx and Gen rules of our proof system require us to transform a pro-
gram Pi into a program Pi+1. This is accomplished by applying logic program
transformations that include unfolding, folding, goal replacement and de�nition
introduction.

For a simple illustration of program transformations, consider Figure 3.
There, program P1 is derived from P0 by unfolding the occurrence of r in the
de�nition of q. P2 is derived from P1 by folding t,s in the de�nition of p using
the de�nition of q. While unfolding is semantics preserving, indiscriminate fold-

p :- t, s.

q :- r , s.

r :- t.

...

p :- t, s .

q :- t, s.

r :- t.

...

p :- q.

q :- t, s.

r :- t.

...

Program P0 Program P1 Program P2

Fig. 3. Example of an unfold/fold transformation sequence.

ing may introduce circularity, thereby removing �nite proof paths. e.g. folding
t,s in the de�nition of q in P2 using the de�nition of p in P0 results in a program
p :- q. q :- p. r :- t. .... This removes p and q from the least model.

We now present the program transformations informally. For a formal de-
scription, the reader is referred to [RKRR99b]. With each clause C in program
Pi of the transformation sequence, we associate a pair of integer counters that
bound the size of a shortest proof of any ground atom A derived using C in
program Pi relative to the size of a shortest proof of A in P0. Thus the counters
keep track of potential reductions in proof lengths. Conditions on counters are
then used to determine if a given application of folding is semantics preserving.

Unfolding of an atom A in the body of a clause in Pi is shown in Figure 4a.
The conditions for applying the transformation are : (i) A1; : : : ; An are the only
clause heads in Pi which unify with A, and (ii) �j is the mgu of A and Aj for all
1 � j � n. Note that these conditions are taken directly from resolution, which
means that unfolding is essentially a resolution step.



B : ��; A ; �0:

A1 : ��1:
A2 : ��2:
...
An : ��n:

=)

B�1 : �(�; �1, �
0)�1.

B�2 : �(�; �2, �
0)�2.

...
B�n : �(�; �n, �

0)�n.
A1 : ��1:
...
An : ��n:

Pj:

A1 : ��
0

1:

...
An : ��0

n:

Pi:

B : ��; �1, �
0:

B : ��; �2, �0:

...
B : ��; �n, �

0:

=)B : ��; A ; �0.

(a) Unfolding (b) Folding

Fig. 4. Schema for unfold/fold transformations.

Folding replaces an occurrence of the body of a clause with its head. The
clause where the replacement takes place is called the folded clause and the
clauses used to perform the replacement are called the folder clauses. The folding
schema is illustrated in in Figure 4b, where the clauses ofB are the folded clauses,
and the clauses of A are the folder clauses. The folder clauses may come from
some earlier program Pj(j � i) in the transformation sequence. The conditions
for applying the transformation are1: (i) �l is an instance of �

0

l with substitution
�l for all 1 � l � n (ii) there is an atom A such that 81 � l � n Al�l = A and
the folder clauses are the only clauses in Pj whose heads unify with A.

Goal replacement replaces an atom B in a clause A :� �;B� in program Pi
with a semantically equivalent atom B0 to obtain the clause A :� �;B0; �. Note
that such a replacement can change lengths of proofs of A arbitrarily. To obtain
the counters associated with the new clause we need to estimate the changes in
proof lengths. In practice, we do so by using techniques based on Integer Linear
Programming. Details appear in [Roy99].

Theorem 3 ([RKRR99b]) Let P0; P1; : : : ; PN be a sequence of de�nite logic
programs where Pi+1 is obtained from Pi by an application of unfolding, folding,
or goal replacement. Then M (Pi) =M (P0), 1 � i � N .

De�nition-introduction transformation adds clauses de�ning a new predicate to
a program Pi. This transformation is used to generate \names" for goals. Note
that after de�nition introduction, M (Pi+1) 6= M (Pi) since a new predicate is
added to Pi+1. But for every predicate p in Pi, and all ground terms t, p(t) 2
M (Pi), p(t) 2M (Pi+1). The tableau presented earlier can be readily extended
to include such transformations.

1 In addition, certain other conditions need to be imposed including conditions on the
counters of the folder and folded clauses; we do not mention them here.



3.3 Checking Goal Equivalence from Syntax

Recall that the axiom elimination rule (Ax) is applicable whenever we can me-
chanically establish the equivalence of two goals. We now develop a syntax-based
technique to establish the equivalence of two open atoms, i.e., atoms of the form
p(X) and q(X).

p(X) :- r(X).

p(X) :- e(X,Y), p(Y).

r(X) :- b(X).

q(X) :- s(X).

q(X) :- e(X,Y), q(Y).

s(X) :- b(X).

Consider the example program given above. We can infer that r(X) � s(X)

since r and s have identical de�nitions. Then, we can infer q(X) � p(X), since
their de�nitions are \isomorphic". Formally:

De�nition 1 (Syntactic Equivalence) A syntactic equivalence relation,
P
�,

is an equivalence relation on the set of predicates of a program P such that for

all predicates p; q in P , if p
P
� q then:

1. p and q have same arity, and
2. Let the clauses de�ning p and q be fC1; : : : ; Cmg and fD1; : : : ; Dng, re-
spectively. Let fC 0

1; : : : ; C
0

mg and fD0

1; : : : ; D
0

ng be such that C0

l (D0

l) is ob-
tained by replacing every predicate symbol r in Cl (Dl) by s, where s is the

name of the equivalence class of r (w.r.t.
P
�). Then there exist two functions

f : f1; : : : ;mg ! f1; : : : ; ng and g : f1; : : : ; ng ! f1; : : : ;mg such that:
(a) 81 � i � m C 0

i is an instance of D0

f(i), and

(b) 81 � j � n D0

j is an instance of C0

g(j).

The largest syntactic equivalence relation can be computed by starting with all
predicates in the same class, and repeatedly splitting the classes until a �xed
point is reached. Syntactic equivalence is sound w.r.t. semantic equivalence, i.e.

Lemma 4 Let P be a program and
P
� be the syntactic equivalence relation. For

all predicates p; q, if p
P
� q, then p(X) � q(X).

4 Automated Construction of Equivalence Tableau

We describe an algorithmic framework for creating strategies to automate the
construction of the tableau. The objective is to: (a) �nd equivalence proofs that
arise in veri�cation with limited user intervention, and (b) apply deduction rules
lazily, i.e. a proof using the strategy is equivalent to algorithmic veri�cation for
�nite-state systems.

In our framework, the tableau rules and associated transformations are ap-
plied in the following order. Given an e-atom � ` � � �, the proof is complete
whenever the axiom elimination rule (Ax) is applicable. Hence, we �rst choose
to apply Ax. When the choice is between the Tx and Gen rules, we choose
the former since Tx allows unfolding, i.e. resolution. This will ensure that our



algorithm Prove(A;B: open atoms, � :prog. seq.)
begin
let � = hP0; : : : ; Pii
(* Ax rule *)

if (A = p(X) ^B = q(X) ^ p
Pi� q) then

return true

else nondeterministic choice
(* Tx rule *)
case FIN (h�;unfold(Pi)i): (* Unfolding *)
return Prove(A;B; h�;unfold(Pi)i)

case Folding is possible in Pi:
return Prove(A;B; h�; fold(Pi)i)

(* Gen rule *)
case Conditional folding is possible in Pi:
let (A0;B0) = new atom equiv for fold(Pi)
return replace and prove(A;B; hA0;B0i; � )

case Conditional equivalence is possible in Pi:
let (�;�) = new goal equiv for equiv(A;B;Pi)
return replace and prove(A;B; h�;�i; � )

end choices
end

Fig. 5. Algorithmic framework for automated construction of tableau.

strategies will perform algorithmic veri�cation, a' la XMC, for �nite-state sys-
tems. For in�nite-state systems, however, uncontrolled unfolding will diverge.
To create �nite unfolding sequences we impose the �niteness condition FIN in
De�nition 2. If FIN prohibits any further unfolding we either apply the folding
transformation associated with Tx or use the Gen rule. Care must be taken,
however, when Gen is chosen. Recall from the de�nition of Gen that � � � in
Pi+1 implies � � � in Pi only if we can prove a new equivalence �0 � �0 in P0.
SinceGen itself does not specify the goals in the new equivalence, its application
is highly nondeterministic. We limit the nondeterminism by using Gen only to
enable Ax or Tx rules.

De�nition 2 (Finiteness condition) An unfolding transformation sequence
� = hP0; : : : ; Pi; : : : i satis�es FIN (� ) if and only if for the clause C and atom
A selected for unfolding at Pi: (i) A is distinct modulo variable renaming from
any atom B which was selected in unfolding some clause D 2 Pj(j < i) where C
is obtained by repeated unfolding of D (ii) the term size of A is bounded a-priori
by a constant.

Hence, when no further unfoldings are possible, we apply any possible folding.
If no foldings are enabled, we check if there are new atom equivalences that will
enable a folding step. We call this a conditional folding step. Note that atom
equivalences may be of the form p(t) � q(s), where t and s are sequences of
arbitrary terms, whereas the test for syntactic equivalence is only done on open



atoms. We therefore introduce new de�nitions to convert them into open atoms.
Finally, we look for new goal equivalences, which, if valid, can lead to syntactic
equivalence. This is called as a conditional equivalence step. In such a step, an
equivalence proof on arbitrary goals is �rst converted into equivalence between
open atoms by introducing new de�nitions.

The above intuitions are formalized in AlgorithmProve (see Figure 5). Given
a program transformation sequence � , and a pair of open atoms A;B, algorithm
Prove attempts to prove that � ` A � B. Algorithm Prove uses the following
functions. Function replace and prove constructs proofs for sub-equivalences cre-
ated by applying theGen rule. replace and prove(A;B; h�; �i; � ) �rst introduces
de�nitions for � and �, then proves the equivalence hP0i ` � � � by invoking
Prove, then replaces � by � and �nally invokes Prove to complete the proof
of � ` A � B. Functions unfold (P ) and fold(P ) apply unfolding and folding
transformations respectively to programP and return a new program.Whenever
conditional folding is possible, the function new atom equiv for fold(P ) �nds the
pair of atoms whose replacement is necessary to do the fold operation. Similarly,
when conditional equivalence is possible, new goal equiv for equiv (A;B; P ) �nds
a pair of goals �; � s.t. syntactic equivalence of A and B can be established after
replacing � with � in P .

Note that Prove terminates as long as the number of de�nitions introduced
(i.e., new predicate symbols added) is �nite. If multiple cases of the nonde-
terministic choice are enabled, then Prove tries them in the order speci�ed in
Figure 5. If none of the cases apply, then evaluation fails, and backtracks to the
most recent unexplored case. There may also be nondeterminism within a case;
for instance, many fold transformations may be applicable at the same time. By
providing selection functions to pick from the applicable transformations, one
can implement concrete strategies from Prove. Details appear in [Roy99].

4.1 Example: Liveness Property in Chains

Recall the logic program of Figure 1 which formulates a liveness property about
token-passing chains, namely, that the token eventually reaches the left-most
process in any arbitrary length chain. To establish the liveness property, we
prove thm(X)� gen(X) by invoking Prove(thm(X); gen(X); hP0i). The proof tree
is illustrated in Figure 6 (dashed arrows in the �gure denote multiple applications
of the transformation annotating the arrow). Prove �rst unfolds the clauses of
thm to obtain:

thm([1]).

thm([0|X]) :- gen(X), X = [1| ].

thm([0|X]) :- gen(X), trans(X,Y), live([0|Y]).

Since no unfolding or folding is applicable, conditional folding is done giving rise
to the (sub)-equivalence live([0|Y]) � live(Y). Since live([0|Y]) is not an
open atom, a new de�nition live'(Y) :- live([0|Y]) is added to P5 to yield
P6. Then Prove folds the third clause of thm using this de�nition and recursively
invokes Prove(live'(X); live(X); hP0i) to establish live'(X) � live(X). This
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Fig. 6. Proof tree for liveness property in chains.

subproof appears in the left branch of Figure 6. Finally, Prove replaces live'(X)
with live(X) in the clauses of thm and completes the proof of thm(X) � gen(X)

by applying two folding steps.
It is interesting to observe in Figure 6 that the unfolding steps that transform

P0 to P5 and P7 to P10 are interleaved with folding steps. This illustrates how
we interleave algorithmic model-checking steps with deduction steps.

4.2 Example: Mutual exclusion in token rings

Algorithm Prove generates a proof for mutual exclusion in a n-process token
ring. The token ring is described by the following logic program:

gen([0,1]). trans(X,Y) :- trans1(X,Y).

gen([0|X]) :- gen(X). trans([1|X],[0|Y]) :- trans2(X,Y).

trans1([0,1|T],[1,0|T]). trans2([0], [1]).

trans1([H|T],[H|T1]) :- trans1(T,T1). trans2([H|X],[H|Y]) :- trans2(X,Y).

As in the case of chains (see Section 2), we represent the global state of a ring
as a list of local states. Processes with tokens are in local state 1 while processes
without tokens are in state 0. trans is now divided into two parts: trans1 which
transfers the token to the left neighbor in the list, and trans2which transfers the
token form the front of the list to the back, thereby completing the ring. Mutual
exclusion, a safety property, is modeled using the predicates bad, bad start, etc.
as discussed in Section 2. These predicates, along with those listed above, form
the initial program P0. Recall that a safety proof can be completed by showing
bad start � false and bad src � bad dest. Figure 7 illustrates the proofs
generated by Prove to demonstrate these equivalences.
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Fig. 7. Proof trees for mutual exclusion in token rings.

Invocation of Prove(bad start(X); false; hP0i) performs unfoldings to ob-
tain program P3 where bad start is de�ned using a single clause, namely:
bad start([0|X]) :- gen(X), bad(X). Prove now folds using the original
de�nition of bad start to obtain P4 where bad start is de�ned by the clause:
bad start([0|X]) :- bad start(X). Since bad start is de�ned by a single
self-recursive clause, it is detected as failed, and hence bad start � false.

An invocation of Prove(bad src(X); bad dest(X); hP0i) performs unfoldings,
to get program P10 where the de�nitions of bad src and bad dest are:

bad src([0,1,1|X], [1,0,1|X]).

bad src([0,1,H|T], [1,0,H|T]) :- one more(T).

bad src([1|X],[1|Y]) :- trans1(X,Y), one more(X).

bad src([H|X],[H|Y]) :- trans1(X,Y), bad(X).

bad src([1,1|X],[0,1|Y]) :- trans2(X,Y).

bad src([1,H|X],[0,H|Y]) :- trans2(X,Y), one more(X).

bad dest([0,1,1|X], [1,0,1|X]).

bad dest([0,1,H|T], [1,0,H|T]) :- one more(T).

bad dest([1|X],[1|Y]) :- trans1(X,Y), one more(Y).

bad dest([H|X],[H|Y]) :- trans1(X,Y), bad(Y).

bad dest([1,1|X],[0,1|Y]) :- trans2(X,Y), one more(Y).

bad dest([1,H|X],[0,H|Y]) :- trans2(X,Y), bad(Y).

Now, to show bad src � bad dest, Prove applies conditional equivalence
steps, generating the following (sub)-equivalences:
trans1(X,Y), one more(X) � trans1(X,Y), one more(Y)

trans1(X,Y), bad(X) � trans1(X,Y), bad(Y)

trans2(X,Y), one more(Y) � trans2(X,Y)

trans2(X,Y), one more(X) � trans2(X,Y), bad(Y)



We now show the proof of the �rst of the above. Proofs of the other three
(sub)-equivalences proceed similarly, and are omitted. Since the goals are not
open atoms, the following de�nitions are created to obtain program P12.

s1(X, Y) :- trans1(X,Y), one more(X).

s2(X, Y) :- trans1(X,Y), one more(Y).

Since no new unfolding is applicable at P12, the clauses of bad src and bad dest

are folded using the above two clauses to obtain P14. Prove(s1(X); s2(X); hP0i)
is then invoked by Prove as a subproof. This subproof is completed after a
sequence of unfoldings (to reach program P21) and two foldings, yielding P23:

s1([0,1|X], [1,0|X]).

s1([1|X],[1|Y]) :- trans1(X,Y).

s1([H|X],[H|Y]) :- s1(X,Y).

s2([0,1|X], [1,0|X]).

s2([1|X],[1|Y]) :- trans1(X,Y).

s2([H|X],[H|Y]) :- s2(X,Y).

s1
P23� s2 and hence s1(X) � s2(X).

5 Concluding Remarks

A preliminary prototype implementation of our transformation system, built on
top of our XSB tabled logic-programming system [XSB99], has been completed.
So far we have been able to automatically verify a number of examples including
the ones described in this paper. Our plan now is to investigate the scalability
of our system on more complex problems such as parameterized versions of the
Rether protocol [DSC99] and the Java meta-locking protocol [BSW00].
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