
8/18/2010

1

Software Debugging Software Debugging –– (1)(1)
Abhik Roychoudhury
National University of Singapore
abhik@comp.nus.edu.sg

CS5219 2010-11 by Abhik

ProgrammingProgramming

CS5219 2010-11 by Abhik

Creativity Precision+

Software constructionSoftware construction
From a design model
◦ In safety-critical domains – automotive, avionics.
◦ D0 178C – software in airborne systems.

Or, hand-constructed
◦ Usual practice – audio, video and other domains.
◦ UML models only for guidance.

CS5219 2010-11 by Abhik

ModelModel--driven engineeringdriven engineering

Requirements (English)

D i M d l (St t Di ?)
Alternate models?

Manual stepManual step

Desirable
Properties

User

CS5219 2010-11 by Abhik

Design Model (State Diagrams?)

Code

Tests

Dynamic

checking tools

Sequence Diag.

Semi-automated

Static checking
tools

Validation output

No model may be available.No model may be available.

CodeTest Suite
coverage Static

Analyzer Properties

Programmer

CS5219 2010-11 by Abhik

testing

Dynamic
Checker

Model

abstract

Static
Checker

Validation output

The The artart of debuggingof debugging

“A software bug (or just
"bug") is an error, flaw,
mistake, … in a computer
program that prevents it from
behaving as intended (e.g.,
producing an incorrect
result). … Reports detailing
bugs in a program are
commonly known as bug
reports, fault reports, …
change requests, and so
forth.”
--- Wikipedia

6

8/18/2010

2

More on the art…More on the art…

“Even today, debugging remains very much of an art. Much of
the computer science community has largely ignored the
debugging problem….. over 50 percent of the problems
resulted from the time and space chasm between symptom
and root cause or inadequate debugging tools.” (Hailpern & q gg g (p
Santhanam, IBM Sys Jnl, 41(1), 2002)

-> Need methods and tools to trace back to the root
cause of bug from the manifested error

-> What about the current tools?

7

Tools?Tools?

We should automatically
produce the bug report via
analysis of program and/or
execution trace

Bug report is a small
fragment of the program.

8

OrganizationOrganization
Dynamic checking of programs
◦ Dynamic slicing
◦ Hierarchical slicing
◦ Fault Localization

CS5219 2010-11 by Abhik

What is dynamic checking?What is dynamic checking?
Check program executions, not source code.
How to generate program executions?
◦ Testing (coverage based)
◦ Testing (specification based)

How to check program executions
◦ Data and control dependencies (slicing)
◦ By comparing against other program executions

(fault localization).

CS5219 2010-11 by Abhik

SW Debugging: Social aspectsSW Debugging: Social aspects

CS5219 2010-11 by Abhik

Software-controlled devices are ubiquitous ---
automotive control, avionics control and consumer electronics
Many of these software are safety-critical
⇒ should be validated extensively.

SW Debugging: EconomicsSW Debugging: Economics

How often do bugs appear ?
How many of them are critical?
How much money does a company gain by
using sophisticated debugging tools?using sophisticated debugging tools?
Could it be avoided simply by sparing one
more programmer?

CS5219 2010-11 by Abhik

8/18/2010

3

SW Debugging: EconomicsSW Debugging: Economics

SW project with 5 million LOC (note: Windows Vista is 50
million LOC !!)

Assume linear scaling up of errors
Actually could be more errors --- we make more mistakes as the SW
grows long and arduous.

CS5219 2010-11 by Abhik

1 hr to fix each major error
Actually much more

$40K salary per year 1000
5000000

13 * = 65,000
bugs

44
000,65

weeks = 1477 weeks = ≈
50
1477

30 years = $1.2 M

SW Debugging: toolsSW Debugging: tools
“Even today, debugging remains very much of an art. Much of the

computer science community has largely ignored the debugging
problem….. over 50 percent of the problems resulted from the
time and space chasm between symptom and root cause or
inadequate debugging tools.” (Hailpern & Santhanam, IBM Sys Jnl,
41(1) 2002)41(1), 2002)

-> Need methods and tools to trace back to the root cause of
bug from the manifested error

-> What about the current tools?

CS5219 2010-11 by Abhik

jdb on windows XPjdb on windows XP

CS5219 2010-11 by Abhik

VB watch debuggerVB watch debugger

CS5219 2010-11 by Abhik

So, what did we see?So, what did we see?

Command line tool for Java
◦ User can set breakpoints, and
◦ Replay an execution, and
◦ Watch it at the breakpoints.

Lack of GUI is not the issue here.
◦ Can easily collect and visualize more program info.

Lack of automation is the problem!
◦ Need automated trace analysis.

CS5219 2010-11 by Abhik

Program SlicingProgram Slicing

b=1;
y=1;
If (a>1){

1
2
3

CS5219 2010-11 by Abhik

(){
if (b>1){

x=2;
}

}
printf (“%d”, x);

4
5

6

8/18/2010

4

Program SlicingProgram Slicing

b=1;
y=1;
If (a>1){

1
2
3

C t l

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

Program SlicingProgram Slicing

b=2;
y=1;
If (a>1){

1
2
3Control

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

Program Dependence Program Dependence GraphGraph

Constructed for the program. Node can be statements or
instructions. Edges denote control and data dependencies.

CS5219 2010-11 by Abhik

Statement

Control / Data
Dependence

A

B

Program SlicingProgram Slicing

CS5219 2010-11 by Abhik

Statement

Control / Data
Dependence

Slicing Criterion

Program SlicingProgram Slicing

CS5219 2010-11 by Abhik

Statement

Control / Data
Dependence

Slicing Criterion

Static vs Dynamic SlicingStatic vs Dynamic Slicing

Static Slicing
◦ source code
◦ statement
◦ static dependence

CS5219 2010-11 by Abhik

p

Dynamic Slicing (useful for debugging)
◦ a particular execution
◦ statement instance
◦ dynamic dependence

8/18/2010

5

Dynamic Slicing for DebuggingDynamic Slicing for Debugging

Program

Input

Exec. Trace
Instrument

CS5219 2010-11 by Abhik

Output

OK Unexpected, debug it

Dynamic Slice =
Bug Reportcriterion

Dynamic
Slicing

Dynamic SliceDynamic Slice
Set slicing criterion
◦ (Variable v at first instance of line 70)
◦ The value of variable v at first instance of line 70 is

unexpected.

D i liDynamic slice
◦ Closure of

Data dependencies &
Control dependencies

◦ from the slicing criterion.

CS5219 2010-11 by Abhik

Dynamic data dependenciesDynamic data dependencies

V := 1;

…

U := V

An edge from a variable usage to the
latest definition of the variable.

CS5219 2010-11 by Abhik

A[i] := 1;

…

U := A[j]

Do we consider this data dependence edge ?

Remember that the slicing is for an input, so the addresses
are resolved. In the trace, we have the memory addresses
instead of the names A[i], A[j].

We thus define data dependences corresponding to
memory locations rather than variable names.

Static Control dependenciesStatic Control dependencies

Post-dominated: I,J – nodes in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I
I

NO

CS5219 2010-11 by Abhik

J

EXIT

J

EXIT

YES

Static control dependenciesStatic control dependencies

I
I not post-dom by J

U, V post-dom by J

Control dependence

CS5219 2010-11 by Abhik

U

V

J

EXIT

I -> J

Dynamic control dependenciesDynamic control dependencies
X is dynamically control dependent on Y if
◦ Y occurs before X in the execution trace
◦ X’s stmt. is statically control dependent on Y’s stmt.
◦ No statement Z between Y and X is such that X’s

stmt. is statically control dependent on Z’s stmt.

Captures the intuition:
◦ What is the nearest conditional branch statement

that allows X to be executed, in the execution
trace under consideration.

CS5219 2010-11 by Abhik

8/18/2010

6

Dynamic SliceDynamic Slice

1. void setRunningVersion(boolean runningVersion)

2. if(runningVersion) {
3. savedValue = value;

}

CS5219 2010-11 by Abhik

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
} Slicing Criterion

Jslice: a dynamic slicing toolJslice: a dynamic slicing tool
GUI (a Eclipse plug-in)

Execute the program Select

Kaffe JVM

Instrument

Bug Report

CS5219 2010-11 by Abhik

Compact Bytecode Trace
Criterion = (Inp, Var, Line#)

Dynamic Slicing

Set of bytecodes

(Stack simulation)Reverse Translate

Class Files

http://jslice.sourceforge.net

Issues for such a slicing toolIssues for such a slicing tool
Online trace compression – beyond
conventional string compression.

◦ Full trace is never stored.

Program dependence analysis on compressed Program dependence analysis on compressed
trace – no decompression.

Analysis at low-level (byte-code) to support
third-party software.

◦ Managing stack architecture.

CS5219 2010-11 by Abhik

OrganizationOrganization
Dynamic checking of programs
◦ Dynamic slicing
◦ Hierarchical slicing
◦ Fault Localization

CS5219 2010-11 by Abhik

Problem with dynamic slicingProblem with dynamic slicing
Huge overheads
◦ Backwards slicing requires trace storage.
◦ Jslice tool for Java

Online trace compression & traversal
http://jslice sourceforge nethttp://jslice.sourceforge.net

Dynamic Slice is still too large …
◦ … for human comprehension
◦ Now

CS5219 2010-11 by Abhik

An exampleAn example

1 public static void main(String[] args) {
…….

2. init(db);
3 operate(db);
4. output (db)

SPECJVM
DB program

CS5219 2010-11 by Abhik

5. return;
}

init(.. db) {
db= ..
….

}

operate (… db) {
db =..

…
}

output (db) {
……
print(db...);

}

8/18/2010

7

Divide trace into phasesDivide trace into phases

1 public static void main(String[] args) {
…….

2. init(db);
3 operate(db);
4. output (db);
5 return; }

CS5219 2010-11 by Abhik

5. return; }

main()

init()

db

operate()
db

output()
db

Report interReport inter--phase dependenciesphase dependencies

main()

CS5219 2010-11 by Abhik

init()

db

operate()
db

output()
db

Intra-phase control and data dependencies are suppressed.

Inter-phase dep. form input-output relationships.

Programmer zooms into …Programmer zooms into …

… one phase by inspecting the phase outputs

-> (may/may not involve re-executing program)

main()

CS5219 2010-11 by Abhik

init()

db

operate()
db

output()
db

read_db()
current_record

insert()

entries[2]

exit()

Re-exec phase 1 and
observe db

Parallel Dependence ChainsParallel Dependence Chains
main()

f1() f2()

y

f3()

CS5219 2010-11 by Abhik

()

x1

()
x2

x1 = f1();

x2 = f2();

x3 = f3();

y = x1 + x2 + x3;

print y --- Criterion

()
x3

…
y

Hierarchical dynamic slicingHierarchical dynamic slicing
Compute “phases” of an exec. trace
◦ Control structure boundaries

Augment dynamic slicing algorithm
◦ Mark inter-phase dependencies
◦ Compute only reachable nodes from selected inter-phase Compute only reachable nodes from selected inter phase

dependency.

Programmer intervention
◦ Select the first suspicious inter-phase dep.
◦ Comprehension guides computation.

CS5219 2010-11 by Abhik

Phase DetectionPhase Detection

Divide an exec. trace at boundaries of
◦ Loops
◦ Method calls
◦ Loop iterationsp
◦ …

and recursively again at these control structure
boundaries.

CS5219 2010-11 by Abhik

8/18/2010

8

Programmer InterventionProgrammer Intervention

main()

init() operate() output()

CS5219 2010-11 by Abhik

So farSo far
Program Slicing
◦ Static Slicing
◦ Dynamic Slicing

One of the oldest debugging methods around.
Hi hi l D i Sli i◦ Hierarchical Dynamic Slicing

Tackling the large dynamic slice in real-life programs.

Now …
◦ Relevant Slicing (why?)

While dynamic slice is large, it may still leave out
some statements which are useful for explaining a
given observable error.

CS5219 2010-11 by Abhik

Relevant SlicingRelevant Slicing

b=10;
x=1;
If (a>1){

1
2
3

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

Relevant SlicingRelevant Slicing

b=1;
x=1;
If (a>1){

1
2
3

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

Relevant SlicingRelevant Slicing

b=1;
x=1;
if (a>1){

1
2
3

input: a=2

Source of Failure

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

Dynamic Slice

Execution is omitted

Potential DependencePotential Dependence

b=1;
x=1;
If (a>1){

1
2
3

input: a=2

CS5219 2010-11 by Abhik

(){
if (b>1){

x=2;
}

}
printf (“%d”, x);

4
5

6

8/18/2010

9

Relevant SliceRelevant Slice

b=1;
x=1;
if (a>1){

1
2
3

input: a=2

P t ti l

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf(“%d”, x);

4
5

6

Potential
Dependence Dynamic Data

Dependence

Program SliceProgram Slice

b=1;
x=1;
if (a>1){

1
2
3

input: a=2
Static Dynamic Relevant

1
2
3

2
1
2

CS5219 2010-11 by Abhik

if (a>1){
if (b>1){

x=2;
}

}
printf (“%d”, x);

3
4
5

6

3
4
5

6 6

4

6

Program SlicingProgram Slicing

Static slice

CS5219 2010-11 by Abhik

Dynamic slice

Static slice

Relevant slice

OrganizationOrganization

Dynamic checking of programs
◦ Dynamic slicing
◦ Hierarchical slicing
◦ Fault Localization

CS5219 2010-11 by Abhik

More on debuggingMore on debugging
Dynamic slicing analyzes the problematic
execution trace.
◦ Problematic: output is unexpected
◦ OK: output is as expected.

53

Alternatively:
◦ We could compare a given problematic trace with

an OK trace to localize the source of error.

Fault Localization: overviewFault Localization: overview

Compare Execution

Failing Run Successful Run

54

Compare Execution

Difference As bug report

Developer

8/18/2010

10

Comparing executionsComparing executions

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;

h ld b

55

5. }
6. …..

should be

if ((m >= 0) && (lastm!=m))

Comparing executionsComparing executions

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;

56

Failing run Successful run

5. }
6. …..

4. lastm m;
5. }
6. …..

Fault localizationFault localization

Choose

Successful Run Pool Testing

Change Failing
InputGenerate

57

Compare Execution

Failing Run Successful Run

Difference As bug report

Difference Metric

Example programExample program
1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5 if ()

ProgramProgram

Copyright (c) 2009, Abhik Roychoudhury 58

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Comparing executionsComparing executions
1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)
6 if (d)

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)
6 if (d)

59

Execution run Execution run ππ Execution run Execution run ππ11

6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Set of statementsSet of statements
S = Set of statements executed in ππ
◦ {1,3,5,6,7,10}
S1 = Set of statements executed in ππ1
◦ {1,3,4,5,6,9,10}
If f O

60

If ππ is faulty and π1 is OK

◦ Bug report = S – S1 = {4,7}
Choice of the execution run to compare with
is very important.
◦ We will see a method in the next lecture to take

care of this problem!

8/18/2010

11

Do not take “statement sets”Do not take “statement sets”
while(…){ Trace 1 Trace 2

if (c1){ if (c1) if (c1)
S1;} S1 S2

else{ S3 S3
S2; if (c1) if (c1)

} S2 S1
S3; S3 S3

}
Stmts(Trace1)–Stmts(Trace2)=φ

CS5219 2010-11 by Abhik

Another difference metricAnother difference metric

Failing Run

π1, π2π

Successful Runs

Number of Branches

Location of Branches

62

diff_1 diff_2

Compare

Location of Branches

Difference b/w traces shownDifference b/w traces shown
1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5 if (c)

63

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Trace alignment and differencesTrace alignment and differences

64

Comparison of differencesComparison of differences

< <

CS5219 2010-11 by Abhik

diffdiff diffdiff’’

<

diffdiff diffdiff’’

<

For more …For more …
Dynamic Slicing & Relevant Slicing
◦ http://www.comp.nus.edu.sg/~abhik/pdf/toplas07.pdf
◦ http://www.comp.nus.edu.sg/~abhik/pdf/JSlice-TR.pdf (for more

details)

Hierarchical Dynamic Slicing
◦ http://www.comp.nus.edu.sg/~abhik/pdf/issta07.pdf

Software Fault Localization
◦ http://www.comp.nus.edu.sg/~abhik/pdf/cc06.pdf

CS5219 2010-11 by Abhik

