
1

PVS theorem prover

CS 5219 2010-11 by Abhik 1

Abhik Roychoudhury
CS 5219

National University of Singapore

Theorem proving
Both specification and implementation can be
formalized in a suitable logic.
Proof rules for proving statements in the logic as
theorems

CS 5219 2010-11 by Abhik 2

theorems.
Application of proof rules user-guided.
Allows us to even verify designs which are under-
specified & not executable.

Very different from model checking.

We will study the PVS theorem prover.

PVS

Prototype Verification System
Language for specification
Parser

CS 5219 2010-11 by Abhik 3

Powerful type-checker
Reasons about termination also …

Decision procedures
Including a symbolic model checker

Proof Checker / Prover
We will primarily look at this one

What if …
… my program is written in a diff. lang.
from PVS spec. language ?

Embedding languages into theorem provers
A rich topic of study even to this date

CS 5219 2010-11 by Abhik 4

A rich topic of study even to this date
Deep and shallow embedding
Formalize only semantics of the lang. (shallow)
Formalize both syntax and semantics of the
specification/ programming lang. (deep)

To concentrate on proof rules & strategies, we will
consider the default specification language of PVS.

Using PVS
Provides expressive language based on
higher-order logic.
A design to be verified is described by means
of “theories”

CS 5219 2010-11 by Abhik 5

of “theories”.
Parameterized theories are possible, allowing
modularity and re-use.

Given a user-provided theory, PVS will
Parse
Type-check
Prove the theorems in the theory

An example theory
sum: THEORY

BEGIN
n: VAR nat
sum(n): RECURSIVE nat =

CS 5219 2010-11 by Abhik 6

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n-1)
ENDIF)

MEASURE id
closed_form: THEOREM

sum(n) = (n*(n+1))/2
END SUM

2

Declarations
Our example theory has three declarations

A declaration for variable n
A declaration for the function sum
A declaration for the theorem closed form

CS 5219 2010-11 by Abhik 7

A declaration for the theorem closed_form
This defines a closed form representation for
the output of the function sum.

The theory has no parameters.
The function sum is associated with a MEASURE
function …

Our tasks

Parse the theory declarations.
Type-check

This will try to prove termination of sum as well

CS 5219 2010-11 by Abhik 8

y p
(MEASURE function used here)
Generate proof obligations which need to
dispensed for type-checking

PVS type-checking is undecidable.

Prove theorem closed_form by inducting on n
We need to input proof rules for guiding the proof.

Interactive session

At this stage in the lecture:
Launch PVS and load the sum THEORY
Show the proof obligations for Type-

CS 5219 2010-11 by Abhik 9

Show the proof obligations for Type
checking
Prove the theorem closed_form
(Explain the purpose of each proof rule as
and when it is employed in the proof).

Lessons learnt from proof
PVS type-checking

Proves type consistency and termination of
functions by showing reduction in user-provided
measure function for recursive function calls

CS 5219 2010-11 by Abhik 10

PVS Prover
Proves sequents of the form

{-1} …. Antecedents
|-------------------------------

{1} …. Consequents

Lessons Learnt
PVS Prover constructs a proof tree of
closed_form

Nodes of the proof tree are sequents
Leaves are trivially true

CS 5219 2010-11 by Abhik 11

Leaves are trivially true.
Parent → Child node by applying a proof rule
An application of a proof rule can create several
children (of course !)
Mistakes made during proof (in choice of rules)
can be undone (extremely useful !!)
Other control commands to help navigate the
proof tree while constructing it.

Sequent
Each node of the PVS proof tree is a goal

{-1} A1
[-2] A2

|---------------

CS 5219 2010-11 by Abhik 12

|---------------
[1] B1
{2} B2

Stands for the proof obligation
A1 ∧ A2 ⇒ B1 ∨ B2

3

Sequent

Of the form
(A1 ∧… ∧ An) ⇒ (B1 ∨ … ∨ Bm)
¬(A1 ∧ … ∧ An) ∨ (B1 ∨… ∨ Bm)

CS 5219 2010-11 by Abhik 13

(¬A1 ∨… ∨ ¬An) ∨ (B1 ∨ … ∨ Bm)
The clausal form for a sequent.
Antecedents are negated (negative literals)
So, many proof rules manipulate antecedents and
consequents in a dual fashion

skolem , instantiate …

Sequent

(A1 ∧ … ∧ An) ⇒ (B1 ∨ … ∨ Bm)
A1, …, An are negatively numbered
B1,…, Bm are positively numbered
If A i k d { i} B i k d { i }

CS 5219 2010-11 by Abhik 14

If Ai is marked {-i} or Bi is marked { i }
Ai, Bi are unchanged from parent sequent in
the proof.

If Ai is marked [-i] or Bi is marked [i]
Ai, Bi are changed from parent sequent in the
proof.

Proof rules
PVS uses a sequent calculus.
Proof rules are of the form
Γ1 |- Δ1, …, Γk |- Δk

CS 5219 2010-11 by Abhik 15

Γ |- Δ

Initial sequent is |- A
No antecedent, consequent is A (the theorem to
be proved)

Proof tree construction
Γ1 |- Δ1, …, Γk |- Δk

Γ |- Δ

Proof rule

CS 5219 2010-11 by Abhik 16

Γ |- Δ

Γ1 |- Δ1 Γk |- Δk…

An application of the proof rule

Top-down and bottom-up

Top-down proof construction (described here)
Start with theorem to be proved
“Simplify” it using proof rules of the prover

CS 5219 2010-11 by Abhik 17

Iterate until all introduced obligations have been
proved.

Bottom-up proof construction (Inefficient !)
Deduce all that you can starting from facts
(axioms) and applying proof rules repeatedly
Check whether desired theorem proved

Our experience so far …
What are the rules we saw in the proof of
“closed_form” in Sum theory ?

induct (Automatically employ ind. Scheme)
d (i li i f ti d fi iti)

CS 5219 2010-11 by Abhik 18

expand (inlining function definition)
skolem (Removing Universal Quantification)
flatten (Disjunctive simplication)
Other simple rewrites and decision procedures
(captured by the grind command)

4

Some Proof rules in PVS

Structural Rules
Re-arrange formulae in a sequent

Propositional rules

CS 5219 2010-11 by Abhik 19

Propositional rules
Simplification in propositional logic
Removing disjunctions and conjunctions by
creating new sequents in the children node
of the proof tree
Typical rules: flatten, split, prop

Some Proof Rules in PVS
Quantifier rules

Introduction and elimination of universal /
existential quantification.
F ll f d d ti l f di t l i

CS 5219 2010-11 by Abhik 20

Follow from deduction rules of predicate logic.
Widely used rules

generalize (introduces universal quantification).
skolem (removes universal quantification).
instantiate (removes existential quantification).

Another Interactive Proof

Let us use the proof rules we learnt
We will prove

∀x: (P(x) ∧ Q(x)) ⇒ (∀x: P(x) ∧ ∀x: Q(x))

CS 5219 2010-11 by Abhik 21

∀x: (P(x) ∧ Q(x)) ⇒ (∀x: P(x) ∧ ∀x: Q(x))

Some Proof Rules in PVS
Using Definitions etc.

expand (use defs)
Use, rewrite (invoke lemmas in a proof)

Decision Procedures

CS 5219 2010-11 by Abhik 22

Decision Procedures
assert, grind: Employ as much as possible
model-check: CTL model checking !!

Induction
induct: automatically find ind. Schema
rule-induct : induction schema user provided

In addition …
The control rules are useful for the user to “control”
proof tree construction

fail : propagate failure to parent (failed proof path,
will trigger new proof attempts)

CS 5219 2010-11 by Abhik 23

will trigger new proof attempts)
quit , trace: obvious !!
undo : Correct past mistakes in choosing proof
rules !
Postpone : Useful for managing branches in a
proof step.

“Postpone”
Γ |- Δ

CS 5219 2010-11 by Abhik 24

Γ1 |- Δ1

Postpone this proof
Γ2 |- Δ2 Editor now displays

this sequent

5

Some useful information
Your theory files can import other theories (e.g.
certain mathematical functions etc.)

Do not need specify everything from scratch.
P f t t i

CS 5219 2010-11 by Abhik 25

Proof strategies
Users can write scripts to instruct the prover to
apply its rules in a certain order.
Strategies may not be just sequence of rules

backtracking is allowed since it is difficult to
predict a good strategy for a given obligation

Proof strategies
(try step1 step2 step3)

Apply step1
If step1 fails then apply step2

CS 5219 2010-11 by Abhik 26

If step2 also fails, then apply step3
(if condition step1 step2)

Conditonal selection
Many other variations can be programmed

then (sequencing), repeat (iteration)
Much of these not needed for simple low-level
proofs

A final example
stacks [t : TYPE] : THEORY
BEGIN

stack : TYPE
push : [t stack -> stack]

CS 5219 2010-11 by Abhik 27

push : [t, stack -> stack]
pop : [stack -> stack]
x, y : VAR t
s : VAR stack
pop_push : AXIOM pop(push(x, s)) = s
thm: THEOREM pop(pop(push(x, push(y, s)))) = s

END stacks

Not definitional
Note that the stack operations have not been
defined at all.

The stack theory is also parameterized.
I t d t i ti f th ti

CS 5219 2010-11 by Abhik 28

Instead certain properties of the operations
are defined

These properties are enough to prove thm
No executable model of stacks was needed
(as in model checking)

Of course theorem provers can work if the exec.
description of stacks is provided as well.

Wrapping up
Reading:

http://pvs.csl.sri.com/documentation.shtml
The Manuals have lot of info., check

S t G id

CS 5219 2010-11 by Abhik 29

System Guide
Prover Guide
Language Reference

In the above order of preference.
The Language reference is not so important, one can learn
as you work along.

Additional (Optional) Reading

PVS is only one prover
Several others

HOL, Isabelle – Higher order Logic

CS 5219 2010-11 by Abhik 30

Nqthm, ACL2 – First order logic
…

Comparison of HOL/PVS -- Mike Gordon
http://www.cl.cam.ac.uk/users/mjcg/PVS.html

