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Theorem proving
Both specification and implementation can be 
formalized in a suitable logic.
Proof rules for proving statements in the logic as 
theorems
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theorems. 
Application of proof rules user-guided.
Allows us to even verify designs which are under-
specified & not executable.

Very different from model checking.

We will study the PVS theorem prover.

PVS

Prototype Verification System
Language for specification
Parser
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Powerful type-checker 
Reasons about termination also … 

Decision procedures 
Including a symbolic model checker

Proof Checker / Prover
We will primarily look at this one 

What if …
… my program is written in a diff. lang.  
from PVS spec. language ?

Embedding languages into theorem provers
A rich topic of study even to this date
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A rich topic of study even to this date
Deep and shallow embedding
Formalize only semantics of the lang. (shallow)
Formalize both syntax and semantics of the 
specification/ programming lang. (deep)

To concentrate on proof rules & strategies, we will 
consider the default specification language of PVS.

Using PVS
Provides expressive language based on 
higher-order logic.
A design to be verified is described by means 
of “theories”
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of “theories”.
Parameterized theories are possible, allowing 
modularity and re-use.

Given a user-provided theory, PVS will
Parse
Type-check
Prove the theorems in the theory

An example theory
sum: THEORY

BEGIN
n: VAR nat
sum(n): RECURSIVE nat =
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sum(n): RECURSIVE nat =
( IF n = 0 THEN 0 ELSE n + sum(n-1)
ENDIF )

MEASURE  id
closed_form: THEOREM 

sum(n) = (n*(n+1))/2
END SUM
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Declarations
Our example theory has three declarations

A declaration for variable n
A declaration for the function sum
A declaration for the theorem closed form
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A declaration for the theorem closed_form
This defines a closed form representation for 
the output of the function sum.

The theory has no parameters.
The function sum is associated with a MEASURE 
function …

Our tasks

Parse the theory declarations.
Type-check

This will try to prove termination of sum as well 
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y p
(MEASURE function used here)
Generate proof obligations which need to 
dispensed for type-checking 

PVS type-checking is undecidable.

Prove theorem closed_form by inducting on n
We need to input proof rules for guiding the proof.

Interactive session

At this stage in the lecture:
Launch PVS and load the sum THEORY
Show the proof obligations for Type-
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Show the proof obligations for Type
checking
Prove the theorem closed_form
( Explain the purpose of each proof rule as  
and when it is employed in the proof ).

Lessons learnt from proof
PVS type-checking

Proves type consistency and termination of 
functions by showing reduction in user-provided 
measure function for recursive function calls
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PVS Prover
Proves sequents of the form

{-1} ….                               Antecedents
|-------------------------------

{1}  ….                              Consequents

Lessons Learnt
PVS Prover constructs a proof tree of 
closed_form

Nodes of the proof tree are sequents
Leaves are trivially true
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Leaves are trivially true.
Parent → Child node by applying a proof rule
An application of a proof rule can create several 
children (of course !)
Mistakes made during proof (in choice of rules) 
can be undone (extremely useful !!)
Other control commands to help navigate the 
proof tree while constructing it.

Sequent
Each node of the PVS proof tree is a goal

{-1} A1
[-2] A2

|---------------
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|---------------
[1] B1
{2} B2

Stands for the proof obligation
A1 ∧ A2 ⇒ B1 ∨ B2
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Sequent

Of the form
( A1 ∧… ∧ An) ⇒ (B1 ∨ … ∨ Bm )
¬(A1 ∧ … ∧ An) ∨ (B1 ∨… ∨ Bm)
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(¬A1 ∨… ∨ ¬An)  ∨ ( B1 ∨ … ∨ Bm  )
The clausal form for a sequent.
Antecedents are negated (negative literals)
So, many proof rules manipulate antecedents and 
consequents in a dual fashion

skolem , instantiate …

Sequent

( A1 ∧ … ∧ An ) ⇒ ( B1 ∨ … ∨ Bm )
A1, …, An are negatively numbered
B1,…, Bm are positively numbered
If A i k d { i} B i k d { i }
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If Ai is marked {-i} or Bi is marked { i }
Ai, Bi are unchanged from parent sequent in 
the proof.

If Ai is marked [-i] or Bi is marked [ i ]
Ai, Bi are changed from parent sequent in the 
proof.

Proof rules
PVS uses a sequent calculus.
Proof rules are of the form
Γ1 |- Δ1,  …, Γk |- Δk
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----------------------------------
Γ |- Δ

Initial sequent is  |- A
No antecedent, consequent is A (the theorem to 
be proved)

Proof tree construction
Γ1 |- Δ1,  …, Γk |- Δk
----------------------------------

Γ |- Δ

Proof rule
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Γ |- Δ

Γ1 |- Δ1 Γk |- Δk…

An application of the proof rule

Top-down and bottom-up

Top-down proof construction (described here)
Start with theorem to be proved
“Simplify” it using proof rules of the prover
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Iterate until all introduced obligations have been 
proved.

Bottom-up proof construction (Inefficient !)
Deduce all that you can starting from facts 
(axioms) and applying proof rules repeatedly
Check whether desired theorem proved

Our experience so far …
What are the rules we saw in the proof of 
“closed_form” in Sum theory ?

induct (Automatically employ ind. Scheme)
d ( i li i f ti d fi iti )
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expand ( inlining function definition)
skolem (Removing Universal Quantification)
flatten (Disjunctive simplication)
Other simple rewrites and decision procedures 
(captured by the grind command)
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Some Proof rules in PVS

Structural Rules
Re-arrange formulae in a sequent 

Propositional rules
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Propositional rules
Simplification in propositional logic
Removing disjunctions and conjunctions by 
creating new sequents in the children node 
of the proof tree
Typical rules:  flatten, split, prop

Some Proof Rules in PVS
Quantifier rules

Introduction and elimination of universal / 
existential quantification.
F ll f d d ti l f di t l i
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Follow from deduction rules of predicate logic.
Widely used rules

generalize (introduces universal quantification).
skolem (removes universal quantification).
instantiate (removes existential quantification).

Another Interactive Proof

Let us use the proof rules we learnt
We will prove

∀x: (P(x) ∧ Q(x)) ⇒ (∀x: P(x) ∧ ∀x: Q(x))
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∀x: (P(x) ∧ Q(x)) ⇒ (∀x: P(x)  ∧ ∀x: Q(x)) 

Some Proof Rules in PVS
Using Definitions etc.

expand (use defs)
Use, rewrite (invoke lemmas in a proof)

Decision Procedures
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Decision Procedures
assert, grind: Employ as much as possible
model-check:  CTL model checking !!

Induction
induct: automatically find ind. Schema
rule-induct : induction schema user provided

In addition …
The control rules are useful for the user to “control” 
proof tree construction

fail : propagate failure to parent (failed proof path, 
will trigger new proof attempts)
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will trigger new proof attempts)
quit , trace: obvious !!
undo :  Correct past mistakes in choosing proof 
rules !
Postpone : Useful for managing branches in a 
proof step.

“Postpone”
Γ |- Δ
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Γ1 |- Δ1

Postpone this proof 
Γ2 |- Δ2 Editor now displays

this sequent
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Some useful information
Your theory files can import other theories (e.g. 
certain mathematical functions etc.)

Do not need specify everything from scratch.
P f t t i
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Proof strategies
Users can write scripts to instruct the prover to 
apply its rules in a certain order.
Strategies may not be just sequence of rules  

backtracking is allowed since it is difficult to 
predict a good strategy for a given obligation

Proof strategies
(try step1 step2 step3)

Apply step1
If step1 fails then apply step2
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If step2 also fails, then apply step3
(if condition step1 step2)

Conditonal selection
Many other variations can be programmed

then (sequencing),  repeat (iteration)
Much of these not needed for simple low-level 
proofs

A final example
stacks [t : TYPE] : THEORY
BEGIN

stack : TYPE
push : [t stack -> stack]
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push : [t, stack -> stack]
pop : [stack -> stack]
x, y : VAR t
s : VAR stack
pop_push : AXIOM pop(push(x, s)) = s
thm: THEOREM pop(pop(push(x, push(y, s)))) = s

END stacks

Not definitional
Note that the stack operations have not been 
defined at all.

The stack theory is also parameterized.
I t d t i ti f th ti
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Instead certain properties of the operations 
are defined

These properties are enough to prove thm
No executable model of stacks was needed 
(as in model checking)

Of course theorem provers can work if the exec. 
description of stacks is provided as well.

Wrapping up
Reading: 

http://pvs.csl.sri.com/documentation.shtml
The Manuals have lot of info., check

S t G id
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System Guide
Prover Guide
Language Reference

In the above order of preference.
The Language reference is not so important, one can learn 
as you work along.

Additional (Optional) Reading

PVS is only one prover
Several others

HOL, Isabelle – Higher order Logic
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Nqthm, ACL2 – First order logic
…

Comparison of HOL/PVS -- Mike Gordon
http://www.cl.cam.ac.uk/users/mjcg/PVS.html


