

Pacemaker Components

- Device:
 - Pulse generator controller: maintain AV synchrony
 - batteries
- Device Controller-Monitor (DCM)
- Leads: wires that both sense and discharge electric pulses.
- Accelerometer: unit inside the device measuring body motion.

Bradycardia Operating Modes				
	1	Ш	III	IV(optional)
Category	Chambers Paced	Chambers Sensed	Response to Sensing	Rate Modulation
Letters	O – None A – Atrium V – Ventricle D – Dual	O – None A – Atrium V – Ventricle D – Dual	O – None T – Triggered I – Inhibited D – Tracked	R – Rate Modulation
 Total 1 	8 available	e working	modes	
- DDD VVIF VVI,	R,VDDR, D R, AAIR, DD AAI, VVT a	DIR, DOOF D, VDD, DI nd AAT	r, voor, a di, doo, vo	00R, DO, AOO,

Response to Sensing

- Inhibited Response To Sensing (I)
 During inhibited pacing, a sense in a chamber shall inhibit a pending pace in that chamber.
- Tracked Response To Sensing (D)

 During tracked pacing, an atrial sense shall cause a tracked ventricular pace after a programmed AV delay, unless a ventricular sense was detected beforehand.

Programmable Parameters

- LRL (Lower Rate Limit) number of pace pulses delivered per minute in the absence of sensed activity in an interval starting at a paced event.
 - LRL interval: Longest safe interval (in ms) between two consecutive paces: 60000/LRL
- URL (Upper Rate Limit)
 - URL interval is the minimum time between a ventricular event and the next ventricular pace.

Programmable Parameters

- AV Delay: the shortest period from an atrial event to a ventricular pace.
- Atrial Refractory Period: for single chamber atrial modes, this is the time interval following an atrial event during which time atrial events shall not inhibit or trigger pacing

Programmable Parameters

- Please refer to [1] for all programming parameters and relevant operating modes
 - Read [2] and [3] for examples
 - You can use the nominal values (page 34 [1])
- You do NOT need to model all parameters listed in [1]
 - Depend on which modes you will model
 - If you fail to model any of the (necessary) parameters of a mode, try to discuss the reasons

Safety Properties

- Pacemaker is a safety-critical system
- Design your own safety-properties and verify them on your model
 - No deadlock (Spin automatically checks deadlock)
 - Lower and upper rate limits
 - Verify correctness of modeling the programmable parameters
 - E.g., V pulse always occurs AVD ms after an A pulse --> [](AVD_Timer <= AVD)

Safety Properties

- The cardiologist decides the operating mode based on patient's symptom
 - You may have different requirements for different mode
- Some modes do not work in certain heart condition (environment)
 - E.g., AAT mode may not work for dead heart (no pulse generated)
- It is possible to use the verification results to guide the mode selection

Term Project

- Assessment (total 30 marks)
 - 15 marks for results and final report
 - 8 marks for innovative techniques,
 - 5 marks for final presentation,
 - 2 marks for interim report.

Minimum Expectations - 1

- 1 person project
 - Reasonable modeling and verification effort using SPIN checker.
 - Any abstractions used in modeling must be clarified properly.

Minimum Expectations - 2

• 2 person project

- 1 person project expectations +
- Using the SPIN model as a guide to generate C code.
- You will also then be able to argue how/why you could use the SPIN model as guidance and the links between requirements, model and code.

Minimum Expectations - 3

3 person project

- 2 person project expectations +
- one group member writing the code without going through modeling and the two codes will be compared systematically to clarify coding errors or errors in understanding the requirements.

Project Deliverables

• One single .zip file includes

- A report in .doc or .pdf format
- Your pacemaker model:
 - .pml file(s) contain the your Promela model (necessary comments will be a plus)
 - LTL files contain properties to be verified

Project Deliverables: the Model

- Sequential model
- Consider the following heart behaviors as environment
 - Nondeterministic
 - Dead heart (no pulse signal generated)
 - Missing V pulse (signal is not strong enough to stimulate the AV node)
- Design your own safety properties (in separated LTL files) and verify them

Project Deliverables: the Model

- You should model at least SIX operating modes, including VOO, VVI, DDD, and AAT
- Model the XXXR mode (e.g., DDDR) earns you bonus credits ([1] Section 5.7)
- Model the Hysteresis pacing in any relevant modes earns you bonus credits ([1] Section 5.8)

Project Deliverables: Report

- Group members and Matric #
- Present all modes you have modeled
 - Explanation in text and/or state diagram (see
 [2] and [3] for examples)
- A table lists all programmable parameters you have modeled in your Promela specification
 - For each parameter, list in which mode(s) it is used

Project Deliverables: Report

- Summarize the critical properties you have designed to verify (see [3] for examples)
 - It is also interesting to discuss if any of the properties fails to hold
- Anything you want to explain/discuss about your modeling/experiences
- No more than 20 pages, single column

Conclusion

- Interesting project: real-world problem
- Difficulties:
 - unfamiliar application domain
 - Informal, incomplete, or even contradictory specification
 - Hint: self-learning/research, read the supplementary references

External References

[1] Pacemaker informal specification

- [2] H Macedo, Validating and Understanding Boston Scientific PACEMAKER Requirements, Technical Report, Minho University, 2007
- [3] L. A. Tuan, M. C. Zheng, and Q. T. Tho, Modeling and Verification of Safety Critical Systems: A Case Study on Pacemaker, SSIRI, 2010
- [4] A Gomes and M Oliveira, Formal specification of a cardiac pacing system, FM, 2009
- [5] H Macedo, P Larsen, and J Fitzgerald, Incremental development of a distributed real-time model of a cardiac pacing system using vdm, FM, 2008