CS 5219 1

NATIONAL UNIVERSITY OF SINGAPORE
SCHOOL OF COMPUTING

EXAMINATION FOR

Semester 2, 2006,/2007
CS5219 - AUTOMATED SOFTWARE VALIDATION

April 2007 Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains four(4) long questions and comprises ten (10) pages.

2. Answer ALL questions in the space provided in this booklet.

3. ALL answers must come with the correct explanations. There is no credit for blind guesses.
4. This is an OPEN BOOK examination.

5. Please write your Matriculation Number below.

MATRICULATION NO.:

(This portion is reserved for the examiner’s use only)

Question Marks Remark

Question A 15

Question B 13

Question C 12

Question D 10

Total 50




CS 5219 2

A. Theorem Proving
(10 + 5) = 15 marks

1. Formally prove that each of the following programs computes in z the product of z and y. That is,
at the end of the program z = x0 % y0 where x0 and y0 are the initial values of variables x and y.
You may assume that odd(z) is a function which returns true if = is odd and false otherwise; the
code for this function is not shown. Also, z,y, z are non-negative integers; the operation / denotes
integer division, that is, it returns an integer. You may use the rules of Hoare logic, or you can
present a handcrafted formal proof.

z = 0; z = 0;

while (x != 0){ while (x != 0){
z=1z+Yy; if odd(x){ z =z + y;}
x=x-1; y=y *2;x=x/2

} }



CS 5219 3

2. The PVS theorem prover employs a sequent calculus for constructing proofs. The following is a
simple proof fragment taken from the PVS manual. Show the soundness of these steps by converting
each of the sequents to a first order logic formula and establishing their equivalence.

{1} (FORALL x: P(x) AND Q(x)) IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))
Rule? (flatten)

{-1} (FORALL x: P(x) AND Q(x))
|

{1} (FORALL x: P(x)) AND (FORALL x: Q(x))

Rule? (split)

this yields two subgoals

[-1] (FORALL x: P(x) AND Q(x))
|
{1} (FORALL x: P(x))

[-1] (FORALL x: P(x) AND Q(x))
|
{1} (FORALL x: Q(x))




CS 5219 4

B. Model Extraction and Refinement
(4 + 6 + 3) = 13 marks

1. Consider the program fragment x = 5; x = x +1 ; x =x - 1; y = x
Suppose we want to prove that y = 5 at the end of the program. Construct a predicate abstraction
that is insufficient to prove this property. Also construct a predicate abstraction that is sufficient to
prove the property. You are only allowed to abstract the data store of the program via predicates,
but the control flow should not be abstracted.

2. Construct the finite state transition systems resulting from the two predicate abstractions in part
1 of this question.



CS 5219

-BLANK PAGE-



CS 5219 6

3. Consider predicate abstraction of a C program (without pointers) with a single path, i.e. there are
no branches in the program. You can assume the predicate abstraction scheme discussed in class.

e Show that the abstracted program can have multiple paths. Give concrete examples and
explain the reason for proliferation of program paths.

e Proliferation of paths (due to predicate abstraction) raises the time overheads for verification.
So, what is the benefit in performing predicate abstraction prior to software model checking?



CS 5219 7

C. Property Specification
(8 +4) =12 marks

1. Assume that p is an atomic proposition. What can you say about the equivalence of the following
pairs of temporal formulae? If they are equivalent, then provide a formal proof. If not construct
an example Kripke Structure to show that they are not equivalent.

(a) the LTL formula GFp and the CTL* formula AGFp
(b) the CTL formulae AGAFp and the CTL formula AGEFp
(¢) the LTL formula GFp and the CTL formula AGAFp



CS 5219 8

2. Suppose we want to verify in SPIN the LTL formula G(p = Fq) for a Promela program P, where
p, q are atomic propositions. What is the property automata (internally constructed by SPIN) that
is synchronously composed with the state transition system of P 7



CS 5219 9

D. Miscellaneous
6 + 4 = 10 marks

1. Suppose you want to use a model checker (such as the SPIN tool discussed in class) to generate
test cases of a terminating sequential program written in a C-style imperative language. How can
you do so to meet the statement coverage, edge coverage and condition coverage criteria for test
generation? Discuss in details.



CS 5219 10

2. Consider a multi-threaded Java program where n threads running on a single processor are trying to
access a shared object using a round-robin scheme. We want to prove mutual exclusion of access of
the shared object for any n. Can we employ the abstraction refinement based software verification
discussed in class 7 Justify your answer. If your answer is yes, explain how. If your answer is no,
can you suggest any alternative verification methods ?

-END OF PAPER-



