* Software Abstractions (II)

CS 5219
Abhik Roychoudhury
National University of Singapore

(€S5219 2007-08 by Abhik

‘_-’ MC

= Model checking is a search based procedure
applicable to only finite state systems.

= Extension to infinite state systems (arising
out of infinite data domains) handled by
abstraction of memory store.

= Requires human ingenuity in choice of the
abstract predicates.

(€S5219 2007-08 by Abhik 2

,_-‘ Abstraction Refinement

= Given a program P and a property f, very
difficult to get the “right” abstraction which
will be able to prove f (even if f is true).

= Instead start with a very coarse abstraction
and model check the resultant abstract
model.

= Counter-example generated may not
correspond to any concrete trace of P.
= Refine the abstract model.

(CS5219 2007-08 by Abhik

Software Model Checking

i without Refinement
User provided

Predicate store

’

(€S5219 2007-08 by Abhik 4

Extraction

YES,

Proved. '\

NO,

Counter-
example

i ... and with Refinement

Model
Extraction

In practice,

provides preds.

YES,
¢ Proved.

Additiongl.ﬁféds

) 55219 2007-08 by Abhik
Real Counter-example, ¢ disproved Y Aon

14(u<0) Har S ’
Uf (ur0) #om ST (52

(CS5219 2007-08 by Abhik 6

+

(');\4-016'07 Lo
e if)0t 2= 0 fw

N

Cald

(CS5219 2007-08 by Abhik 7

* An example program

s LO:x=5
mll:y=x
m L2

= Property G(pc =L2 =y =5)
= Suppose we abstract with (y = 5)

(€S5219 2007-08 by Abhik

Fragment of Concrete
Transition System

Unreachable
In actual

\

- executions

- - 45

(CS5219 2007-08 by Abhik 9

Abstract Transition System
N

Property not proved !

(€S5219 2007-08 by Abhik

i Abstract counter-example

= The following can be a counter-example trace
returned by model checking

= <LO,p>, <L1, p>, <L2, not p>
= But this does not correspond to any execution
of the concrete program.

= This is a spurious counter-example
= Need to input new predicates for abstraction.

CS5219 2007-08 by Abhik 11

* Abstraction refinement

= Generate the new predicates by
analyzing the counter-example trace.

= A more informative view of the
program’s memory store is thus
obtained.

= But how to establish a correspondence
between the abstract counter-example
and the concrete program ?

(CS5219 2007-08 by Abhik

An Example

Initially x ==

= LO: while (1) {

s L1: X++;

= L2: while (x > 0) x - - ;

=13 }
Property: AG(pc==L2 = x==1)

A locational invariant

(CS5219 2007-08 by Abhik 13

Initial Abstraction

W.r.t. Predicate p= (x==1)

No need to traverse further, counter-example trace found.

(€S5219 2007-08 by Abhik 14

Counter-example

Property AG (pc == L2 => p == true)

X++
X++

The predicate p denotes (x == 1)

while(1)

(CS5219 2007-08 by Abhik 15

Counter-example verification

= The counter-example may be spurious because our
abstraction was too coarse.

= The sequence of statements in the control-flow graph
constitute an infeasible path in Control Flow Graph.

= Not part of any concrete execution trace in the program.
= How to check whether the produced counter-example
trace is spurious ?

= Backwards or forwards exact reasoning on the counter-
example trace.

= Backwards reasoning shown now, forwards reasoning later
in the lecture.

(€S5219 2007-08 by Abhik 16

Exact reasoning

(L2, x #1) « (L1, x # 0) « (LO, x = 0) « Initially (x = 0 A x = 0)
-- the constraint to hold initially is unsatisfiable.

CS5219 2007-08 by Abhik 17

One step of exact reasoning

X++
L2, x #1

L1, x=0

What is the weakest constraint on data states that should hold at L1, such

that when control moves to L2 (by executing x++), the data state at L2 is
guaranteed to satisfy x=17?

-- Weakest pre-condition (WP) computation.
-- We repeat the WP computation until we reach the end of the trace OR
the constraint accumulated becomes unsatisfiable.

-- Corresponds to Real counter-example OR spurious counter-example.

(CS5219 2007-08 by Abhik 18

*

Effect conshourd of eoch Sikek

Y(¥,x’)
€-9. bﬂee)r P S DJr

’ R¥¥ s
X = X+

(CS5219 2007-08 by Abhik 19

CS5219 2007-08 by Abhik 20

3 So, what do we know ?

= We are verifying an invariant ¢ against an infinite
state system M.

= We abstracted (the data states of) M w.r.t. p1,...,pk
to get M1

= For every trace c1,c2,...,cn (statement sequences)
in M, there is a trace c1,c2...,cn in M1 (not vice-
versa)

= Model check M1 |= ¢ to
= Case 1: Success. We have proved M |= ¢
= Case 2: We get a counter-example trace c1

» Need to check whether o1 is “spurious”
CS5219 2007-08 by Abhik 21

. What is “spurious” ?

= Each trace in M (concrete system) has a
corresponding trace with same statement
sequence in M1 (abstract system).

= A trace in M1 may not have a corresponding
trace with same statement sequence in M.

= Does the counter-example trace 1 in M1
have a corresponding trace ¢ with same
statement sequence in M ?
= If not, then o1 is a spurious counter-example

(€S5219 2007-08 by Abhik 22

3 What if spurious ?

= So, we discussed how to check whether an obtained
counter-example is spurious.

= If 51 is not spurious, then we have proved that M
(concrete sys.) does not satisfy ¢

= If o1 is spurious, we need to refine the abstraction of
M

= Original abs: Predicates p_1,...,p_k
= New abs: Preds p_1,...,p_k, p_(k+1),...,p_n

CS5219 2007-08 by Abhik 23

. But how do we ...

= ... compute the new preds p_(k+1),....p_n?

= No satisfactory answer, active topic of research in
the verification community.
All existing approaches are based on analysis of
the spurious counter-example trace c1
Concretize the abstract states of 1 to get
constraints on concrete data states.
But several ways to glean the new predicates from
these constraints.

= We will just look at some possible heuristics.

(CS5219 2007-08 by Abhik 24

Our example

pc=L1Ax=0
While(1){ Clearly, such states
should be
pc=L1 A x#0 unreachable in the
concrete system.
pc=L2A x#1
€S5219 2007-08 by Abhik 25

,_-’ New predicates

= Based on the spurious trace, we choose another
predicate g = (x = 0)
= No clear answer why, different research papers
give different heuristic ‘justifications’.

= Again abstract the concrete program w.r.t. the

predicates
= p= (X = 1)
= g=x=0)

(€S5219 2007-08 by Abhik 26

New abstract transition
system

While(1) {

End of while loop

If x> 0then x--else

(CS5219 2007-08 by Abhik 27

Final result

= Model checking the new abstract transition system
w.r.t.

s AG(pc==L2=>x==1)

= ... yields no counter-example trace.

= Constitutes a proof of

= M[=AG(pc==L2=x==1)

= Where M is the transition system corresponding to
original program.

(€S5219 2007-08 by Abhik 28

,!-‘ Constructing Explanations

= Start from the end (or beginning of the trace)
= Strongest post condition (SP), [next slide]
= Or Weakest Pre condition (WP) [discussed]

= Perform exact reasoning at each step until
you hit unsatisfiability

= Greedily remove one constraint at a time
from the unsatisfiable constraint store until it
becomes satisfiable
= Is that sufficient ?

CS5219 2007-08 by Abhik 29

,!-’ SP along a trace

= assume(b> 0) b>0

s C:=2% b>0c=2b

= a:=b b>0 c=2ba=>b

= a:=a—-1 b>0 ¢c=2b a=>b-1

= assume (a < b) b>0,c=2b, a=>b-1 a<b

= assume (a =c) b>0,c=2ba=>b-1a<b a=c

= Conjunction shown with comma.

(CS5219 2007-08 by Abhik 30

3 Choosing predicates
b>0,c=2b a=>b-1,a<b,a=c
= Removing a = b-1 makes the constraint satisfiable

= Should we choose it?

= Is it sufficient to choose predicates from the formula
which is unsatisfiable?

= Exercise: Try to work out the backwards traversal
and investigate choices of predicates.

(CS5219 2007-08 by Abhik 31

5 Choosing predicates

= a:=b; a=b
s a:=a-—-1; a=b-1
= assume(a > b) a=b-1l,axb

= If we choose a = b-1, a > b as new refinement it may
not suffice.

= The effect of a := b can only be accurately captured
by the pred (a = b)

= S0, we need all predicates whose transformation
leads to one of the predicates causing unsatisfiability.

CS5219 2007-08 by Abhik 32

3 Exercise

= Try verifying absence of error in
=a:=b;a:=a-1;if (a>b){error}

= Using the predicates
= {a>b}
«{a>b,a=b-1}

= Feel free to use forwards or backwards
counter-example analysis ...

(CS5219 2007-08 by Abhik 33

Additional: Dealing with pointers

= int *p, *q;
= void main(){
. if (*p == 3)

. _*q: 2; p may or may not
. if (*p == 2){ be aliased to q
. *p=3
. if (*q == 2){
. ERROR
. b Is the ERROR state
. , } ever reachable ?
=}
(€S5219 2007-08 by Abhik 34

3 Use pointer analysis

= Can p ever alias to q
= Static analysis, flow insensitive.

= If yes, then need to consider both the aliased
and non-aliased cases

= Corresponding to truth of p=q which is
also maintained as a predicate.

= Infeasible constraint store has disjunction
s(p=qN\..N) VEP=aA. A

CS5219 2007-08 by Abhik 35

. Other stuff

= Counter-example guided Abstraction
refinement (additional reading)
= - by Edmund Clarke et. Al, CAV 2000.
= http://www-2.cs.cmu.edu/~emc/papers.htm
= One of the first papers to develop
abstraction refinement. Try summarizing it
if you are interested.

= Regular reading appears in Lesson Plan.

(CS5219 2007-08 by Abhik 36

Try it out — (1)

= Consider the program
s X=0;x=x+1;x=x+1;
n if (x > 2){ error }

= Suppose we want to prove that the ™ “error" location
is never reached, that is, any trace reaching * " error"
is a counter-example. Show that the predicate
abstraction x > 2 is insufficient to prove this
property. You need to construct the abstract
transition system for this purpose.

(CS5219 2007-08 by Abhik 37

Try it out — (2)

= Refine your abstraction { x > 2 }

= by traversing the counter-example obtained.

= Show and explain all steps. Your refined abstraction
should be sufficient to prove the unreachability of the
" “error" location — i.e. all spurious counter-examples
should have been explained by the refined predicate
abstraction.

CS5219 2007-08 by Abhik 38

