Hoare style program
* verification

Abhik Roychoudhury
CS 5219
National University of Singapore

(S5219 2007-08 by Abhik 1

5 Deduction

= Proving properties of programs by hand

= Proving that a factorial program computes
the factorial function at the end

= Sounds too difficult

= What proof rules to apply?

= In what order to apply them? (strategies)
= Automation

= Proof rules OK, Proof Strategies hard!

CS5219 2007-08 by Abhik 2

5 Theorem Provers

= A Proof Assistant to help you prove
properties by hand

= More powerful than model checking!
= MC only employs search

= Less automated of course!!

= Directly proving properties of programs
= No abstractions to build finite-state models

(CS5219 2007-08 by Abhik 3

Remarks

= The approach of developing proof rules for reasoning
about language constructs is radically different from
model checking

= Reason about programs (not transition systems)
= Non-mechanized.
= Notion of distinguished control locations ingrained

= Reason about pre- and post-conditions holding before
and after execution of a block of code.

= Consider sequential programs in this lecture

= Can extend to develop proof rules for multi-
threaded programs.

(€S5219 2007-08 by Abhik 4

Hoare triple

= {Pre} P {Post}
= If P is run from a state where Pre holds and P
terminates, then Post holds in the end-state [Partial
correctness]
= If P is run from a state where Pre holds, then P
terminates and Post holds in the end-state [Total
correctness]
= A Hoare triple involving program P is a specification
about P.
= Note: First attempt to systematically reason
about programs by Prof. C.A.R. Hoare in 1960’s.
5

CS5219 2007-08 by Abhik

5 Trivial example

= Say P is while true do x = 0 endwhile

= P is partially correct w.r.t. any specification of the
form {Pre} P {Post}

= P is not totally correct w.r.t. any specification of the
form {Pre} P {Post}

= We will develop a proof system for reasoning about
partial correctness

= First step to reasoning about total correctness

(CS5219 2007-08 by Abhik 6

Notations

n |-par {Pre} P {Post}
= The Hoare triple can be shown to be partially
correct in our proof system
= |=par {Pre} P {Post}
= The Hoare triple is partially correct.
s |- {Pre} P {Post}, |=, {Pre} P {Post}
= Similar
= Standard notions of soundness/completeness

(CS5219 2007-08 by Abhik 7

5 Factorial program

« {x>0} « {x>0}
= [* xis input */ = [* xis input */
ny=1;,z2=0; ny=1;
= while (z != x) do = while (x = 0) do
. z=2z+1; . y =y *x;
. y =y *z . X=x-1;
= endwhile = endwhile
s {y=x!} n {222}
(CS5219 2007-08 by Abhik 8

3 The problem

= X was destructively updated in Program2
= In the end-state, we cannot say y = x!

= To state correctness conditions, not enough to use
program variables

= Need to remember the original value of x

» {x =x0/\ x>0} Program2 {y = x0!'}

= X0 is a universally quantified logical
variable.

(CS5219 2007-08 by Abhik 9

. Logical variables

m {x =x0 A x>0} Program2 {y = x0!}
= For all x0, if x = x0 and x > 0 and we run
Program2 such that it terminates, we will have y =
x0! in the end state.

= These variables appear only in the logical
formulae of pre- and post-conditions.

= Never appear in the program being verified.
= We now present the proof rules of our proof system.

(€S5219 2007-08 by Abhik 10

3 Proof Rules

Premises

Conclusion

Both premises and conclusion are Hoare
triples.

If premises specify properties about programs
C1,C2,...,Cn

-- the conclusion specifies a property about a
bigger program C typically containing
C1,C2,....Cn

CS5219 2007-08 by Abhik 11

5 Rule for Assignment

{y[x—>E]l} x =E {y}

No premises in this rule.

To prove v after the assignment, y [x = E] should
hold before the assignment.

(CS5219 2007-08 by Abhik 12

Why not forwards ?

= {p}x=E{y}
= How to define v in terms of ¢ ?
= Cannot be achieved mechanically in general

= The backwards formulation of the rule allows
deducing Hoare triple by mechanically substituting
X.

= Instead define ¢ in terms of v

(CS5219 2007-08 by Abhik 13

5 Sequential Composition
{e}C1 {w1} {y1} C2{y}

{e} C1;C2 {y}

Need assertion for end-state of C1 and
begin-state of C2.

CS5219 2007-08 by Abhik 14

3 If-statement

{eNb}CI{y} {pN—b} C2{y}

{p}ifb then C1else C2{y}

Involves a case-split.
Pre-condition typically does not say anything about b

Needs to augmented with truth/falsehood of b.

(CS5219 2007-08 by Abhik 15

5 While statement

{y/\b}C {y}

{y} while b do ¢ {y \ -b}

y is the loop invariant.

Rule for partial correctness (number of times the
loop executes/ termination is not known/ not
guaranteed).

(€S5219 2007-08 by Abhik 16

3 Implications

¢ =¢ {p}C{y} y=>y

{9} C {v?}

1. Strengthening the pre-condition
2. Weakening the post-condition

Why do we need this rule ?

CS5219 2007-08 by Abhik 17

5 Example 1

={y<2}y=y+1{y <5}
= Proof:

= {y <2}

= {y +1 < 5} implication rule
my=y+l1

= {y < 5} assignment rule

(CS5219 2007-08 by Abhik 18

3 Example 2

» {true} z=x; z = z+y; u =z {u = X +y}

= Proof: _)
- {ire) push o gserns sring
s {X+y =x + vy} code fragment being verified.
" Z=X; [
s {z+y = X +y}
nZ=2z+Yy;
s {Z=x+Yy}
= U=z
s {U=x+Yy}

(CS5219 2007-08 by Abhik 19

Example 3

n {true} if (x>y) z =y else z = x {z = min(x,y)}

= Proof:

s {x=min(x,y)} z = x {z = min(x,y)}

= {y =min(x,y)} z =y {z = min(x,y)}

= How to combine these triples using the rule for if-
statements in our proof system ?

= Use the rule of implications

CS5219 2007-08 by Abhik 20

3 Example 3

s X<y = X=min(x,y)

= X>Yy =y =min(x,y)

n {true \x>y}z=y{z=min(xy)}

s {true /\ =(x>y)} z = x { z = min(x,y)}

= Combine using the if-rule

» {true} if (x>y) z=y else z=x { z =min(x,y)}

(CS5219 2007-08 by Abhik 21

Reasoning about loops

= To prove {o} whilebdoc {y}
= We must
= Find a loop invariant ni.e. {n /\ b} c{n}
= this means
« {n} while b do ¢ {n /\ -b}
= Show that ¢ = n
= Show that (n /\ —b) = v
= Use rule of impl. to prove {¢} while b do ¢ {y}

(€S5219 2007-08 by Abhik 22

3 Loop invariant

= Synthesis involves human ingenuity
= No unique inv. for a given loop
= The formula True is an invariant for any loop
= But our inv. n should satisfy
=0=n
«(M/\-b)=y
= Usually choose invariants which capture

relationships between variables whose values are
modified at each iteration.

CS5219 2007-08 by Abhik 23

5 Guessing invariants

{9} Pre-condition
{??}

While b do

{n N\ b} Loop invariant

Need to guess n and verify
c that it is an invariant

{n}

endwhile

{v}

(CS5219 2007-08 by Abhik 24

3 Verifying invariants
{p} Implication

n}

while b do

{n\'b} Implication

{1}

o]

m Push up based on structure of C

endwhile

{n A =b} Impli

{v}
1. nh=b =y
2. nhb=>n1
3. ¢o=>n

(p "LJ“'C{}

f'd"’l’ u‘e ¢ { amsf

“j‘,‘$ b ¢ {n§

CS5219 2007-08 by Abhik

26

3 Checking the post-loop states

{true} y =2z N =(z #x)
y=1,2=0; =y=zIN z=x
{y=01} =y=x!

while (z = x) do
z=z+1y=y'z;
endwhile
{y = 2! N =(z #x)} Implication
{y=x}

€S5219 2007-08 by Abhik 25
3 Factorial program
= {true}
ny=1;,2=0; Guess the loop invariant
= {y=2z1} y=z!
= while (z '= x) do
. z=z+1,y=y*z
= endwhile
= {y=x1}
€S5219 2007-08 by Abhik 27
3 Verifying the invariant
TUe,
y=1,2=0;
{y=0
while (z != x) do
{y=2zIN z#xX}p+—r
)Z/ : ;*;1 Need to prove this Hoare
(y=2!)’ triple
endwhile
€S5219 2007-08 by Abhik 29

€S5219 2007-08 by Abhik 28
3 Verifying the invariant
{true}
y=1,z=0;
fy=04
while (z != x) do
{y=2!\ z=x} inati .
(v = @)1} Implication : Easy to check
z=z+1; Assignment
{y'z=2z1}
(i Z);!Z); Assignment
endwhile
€S5219 2007-08 by Abhik 30

3 So-far

{y=2}

while (z # x) do Does y = z! hold before the

{y=2'\ z#x} while loop ?
z=z+1;y=yz
{y=2}

endwhile

{y=x}

(CS5219 2007-08 by Abhik 31

5 Checking pre-loop states
{true}

Need to prove this Hoare triple

y="1
z=0;

{y=z1}
while (z! =x) do

CS5219 2007-08 by Abhik 32

Checking pre-loop states

{true} Implication

{(1=0}

y=1, Assignment

{y=0!}

z=0; Assignment
{y=z}

(CS5219 2007-08 by Abhik 33

Proof structure

= {true} Factorial-Program { y = x!}
= 1. To prove y = x! at the end of the loop, we first
guess a loop invariant

= y = z! is our choice
= 2. Can the choice of loop invariant in step 1
ensure y = x! at the end of the loop ?
= Yes
= 3. Verify that y = z! is indeed a loop invariant
= This is the premise of the while rule

(€S5219 2007-08 by Abhik 34

3 Proof structure

= 4. Verify that the loop invariant holds before the
loop.
= Checking pre-loop states

= Steps 3 and 4 constitute a proof of the invariant by
induction on # iterations

= Step 3: induction step
= Step 4: base case of the proof

= The loop invariant itself is the ind. Hypothesis, no
strengthening involved in this proof.

CS5219 2007-08 by Abhik 35

. Choice of Loop Invariant

= The loop invariant must be strong enough to be
“proved” an invariant.

= The while rule is essentially accomplishing
induction on # of loop iterations.
= Often guided by the choice of the post-condition
after the loop
= Our post-condition was y = x!
= Since z = x at loop exit and z is modified at
every loop iteration, choose y = z! as invariant.

(CS5219 2007-08 by Abhik 36

. Proving total correctness

= Our proof system only shows partial correctness of
triples {¢} P {y}
= To prove total correctness
= Need to prove termination

= Only the proof rule for while statement needs to
change.

= To prove termination

» Find a non-negative integer quantity which
decreases in every iteration (call it variant)

(CS5219 2007-08 by Abhik 37

5 Finding variant

ma=x;y=1,

= while (a > 0) do

= y=y*3,a=al;
= endwhile

= Trivial to find the variant
= a in this case

CS5219 2007-08 by Abhik 38

3 Finding variant

= y=1,2=0;

= while (z!=x) do

. z=z+1,y=y*z

= endwhile

= Variant is x — z (lifted from loop guard here)

= In general, finding variant cannot be automated even
if the loop is guaranteed to terminate.

(CS5219 2007-08 by Abhik 39

. New Proof Rule

MAbBA(E=E0>0)} C{nA (E0O>E=>0)}

{nAE=>0} whilebdoc { nA—b}

E is the variant.

If it is EO before the loop, it strictly decreases but remains non-
negative.

Of course E should be non-negative before the loop starts.

(€S5219 2007-08 by Abhik 40

3 Factorial program

n { X2 0}
- y = 1; 7 = 0; z?;it::ti\:;riantx—zto prove
= while (z I=x) do

Use the loop invariant y =z! as before

n Z=7Z+ 1; for proving partial correctness
= Y=Y
= endwhile
«{y=x'}
CS5219 2007-08 by Abhik 41

Reasoning about the loop

{y=2z!\Nx-z20}
while (x ! = z) do
z=z+1,y=y* z
endwhile; X
From the conclusion of the
{y=2!Ax=2} «————————— while rule (total correctness)

{y =x1} -- How to show the premise ?

(CS5219 2007-08 by Abhik 42

Reasoning about an iteration

{y=2zINx-z20}

while (x ! = z) do
{y=z!ANx=z N (x-z=E0=> 0) }
z=z+1y=y" z
{y=2' N (EO>x-z>0)}

endwhile;
{y=zl\Ax=2z} This triple is the premise
{y=x1} of the while rule

(CS5219 2007-08 by Abhik 43

Reasoning about an iteration

{y=2INx-z20}
while (x ! = z) do
{y=zl A x2zAE0=x-220} \Implication: Check it !
{y*(z+1)=(z+1)! N (E0O>x—(z+1)20)} ,~
z=2z+1,
{y'z =2!\N (EO>x-2>0)}
y=y*z
{y=z! N (E0>x-2z210)}
endwhile;

{y =x1

CS5219 2007-08 by Abhik 44

3 Reasoning about pre-loop states

/Need to prove this Hoare
{x20}

triple

y=1,2=0;
{y=z!Nx-z20}
while (x ! = z) do

{y=2z! N x#zNE0O=x-22>0}

z=z+1;y=y* z

{y=z! N (EO>x-2z>0)}
endwhile;
fy =x1}

CS5219 2007-08 by Abhik 45

Reasoning about pre-loop states

. Implicati
(x>0} Implication

{1=0'\x>0}

=1 x 20 must hold at the initial
y=1 state of the program for the
{y=0lAx-020} program to terminate.
z=0; This fact is used here in the
{y=2IA x-220} overall proof.
while (x ! = z) do

z=z+1;, y=y* z
endwhile;
fy =x1}
€S5219 2007-08 by Abhik 46

Finally, Program Refinement

= {9} Prog {v}
= Infers properties about pre- and post- states of a
program
= In the flavor of program verification
= Instead, you can treat (¢, v) as a specification
= Correct by construction program synthesis from
given pre- and post- conditions.
= Many choices of implementation possible !

= Use the specifications to guide the implementation
instead of checking the implementation against the
specification post-mortem.

CS5219 2007-08 by Abhik 47

. Reading Material

= Chapter 4 of
= Logic in Computer Science
= By Michael R. A. Huth and Mark D. Ryan
= QA76.9 Log.Hu
= Check E-reserves of IVLE
= One download only !
= Additional reading
= See IVLE Lesson Plan

(CS5219 2007-08 by Abhik 48

