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Deduction

Proving properties of programs by hand
Proving that a factorial program computes 
the factorial function at the end

Sounds too difficult
What proof rules to apply?
In what order to apply them? (strategies)

Automation
Proof rules OK, Proof Strategies hard!
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Theorem Provers

A Proof Assistant to help you prove 
properties by hand

More powerful than model checking!
MC only employs search

Less automated of course!!
Directly proving properties of programs

No abstractions to build finite-state models

CS5219 2007-08 by Abhik 4

Remarks
The approach of developing proof rules for reasoning 
about language constructs is radically different from 
model checking

Reason about programs (not transition systems)
Non-mechanized.
Notion of distinguished control locations ingrained

Reason about pre- and post-conditions holding before 
and after execution of a block of code.

Consider sequential programs in this lecture
Can extend to develop proof rules for multi-
threaded programs.
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Hoare triple
{Pre} P {Post}

If P is run from a state where Pre holds and P 
terminates, then Post holds in the end-state [Partial 
correctness]
If P is run from a state where Pre holds, then P 
terminates and Post holds in the end-state [Total 
correctness]
A Hoare triple involving program P is a specification 
about P.

Note: First attempt to systematically reason 
about programs by Prof. C.A.R. Hoare in 1960’s.
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Trivial example
Say P is  while true do x = 0 endwhile
P is partially correct w.r.t. any specification of the 
form {Pre} P {Post}
P is not totally correct w.r.t. any specification of the 
form {Pre} P {Post}
We will develop a proof system for reasoning about 
partial correctness

First step to reasoning about total correctness
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Notations
|-par {Pre} P {Post}

The Hoare triple can be shown to be partially 
correct in our proof system

|=par {Pre} P {Post}
The Hoare triple is partially correct.

|-tot {Pre} P {Post}, |=tot {Pre} P {Post}
Similar
Standard notions of soundness/completeness
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Factorial program

{ x ≥ 0 }
/* x is input */
y = 1; z = 0;
while (z != x) do

z = z + 1;
y = y *z;

endwhile
{ y = x! }

{ x ≥ 0 }
/* x is input */
y = 1;
while (x != 0) do

y = y *x;
x = x – 1;

endwhile
{ ??? }
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The problem
x was destructively updated in Program2

In the end-state, we cannot say y = x!
To state correctness conditions, not enough to use 
program variables
Need to remember the original value of x
{x =x0/\ x≥0} Program2 {y = x0!}
x0 is a universally quantified logical 
variable.
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Logical variables

{x =x0 ∧ x≥0} Program2 {y = x0!}
For all x0, if x = x0 and x ≥ 0 and we run 
Program2 such that it terminates, we will have y = 
x0! in the end state. 
These variables appear only in the logical 
formulae of pre- and post-conditions.
Never appear in the program being verified.

We now present the proof rules of our proof system.
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Proof Rules
Premises

Conclusion

Both premises and conclusion are Hoare 
triples.

If premises specify properties about programs 
C1, C2, …, Cn

-- the conclusion specifies a property about a 
bigger program C typically containing 
C1,C2,…,Cn
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Rule for Assignment

{ ψ [ x → E] }   x  = E   { ψ }

No premises in this rule.

To prove ψ after the assignment, ψ [ x → E] should 
hold before the assignment.
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Why not forwards ?
{ϕ} x = E {ψ}

How to define ψ in terms of ϕ ?
Cannot be achieved mechanically in general
The backwards formulation of the rule allows 
deducing Hoare triple by mechanically substituting 
x.
Instead define ϕ in terms of ψ
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Sequential Composition

{ ϕ }  C1 ; C2  { ψ }

{ ϕ } C1  {ψ1}        {ψ1}  C2 {ψ }

Need assertion for end-state of C1 and 
begin-state of C2.
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If-statement

{ ϕ /\ b } C1 { ψ }                  {ϕ /\ ¬b}  C2 { ψ }

{ ϕ } if b  then C1 else C2 { ψ }

Involves a case-split.

Pre-condition typically does not say anything about b

Needs to augmented with truth/falsehood of b.
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While statement
{ ψ /\ b} C  {ψ }

{ψ} while b do c {ψ /\ ¬b}

ψ is the loop invariant.

Rule for partial correctness (number of times the 
loop executes/ termination is not known/ not 
guaranteed).
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Implications

ϕ’ ⇒ ϕ {ϕ} C {ψ}             ψ ⇒ ψ’

{ϕ’}   C  {ψ’}

1. Strengthening the pre-condition

2. Weakening the post-condition 

Why  do we need this rule ?
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Example 1

{y < 2} y = y +1 {y < 5}
Proof:
{y < 2}
{y +1 < 5} implication rule
y = y+1
{y < 5} assignment rule
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Example 2

{true} z=x; z = z+y; u = z {u = x +y}
Proof:

{true}
{x+y = x + y}
z = x;
{z+y = x +y}
z = z + y;
{z = x + y}
u = z
{ u = x + y}

Push up the assertions starting 
from the post-condition of the 
code fragment being verified.
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Example 3
{true} if (x>y) z = y else z = x {z = min(x,y)}
Proof:
{x = min(x,y)} z = x { z = min(x,y)}
{y = min(x,y)} z = y { z = min(x,y)}
How to combine these triples using the rule for if-
statements in our proof system ?
Use the rule of implications
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Example 3
x ≤ y ⇒ x = min(x,y)
x > y ⇒ y = min(x,y)
{true /\ x > y} z = y { z = min(x,y)}
{true /\ ¬(x>y)} z = x { z = min(x,y)}
Combine using the if-rule
{true} if (x>y) z=y else z=x { z =min(x,y)}
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Reasoning about loops
To prove  {ϕ} while b do c  {ψ}
We must

Find  a loop invariant  η i.e. {η /\ b}  c {η} 
this means

{η} while b do c {η /\ ¬b}
Show that ϕ ⇒ η
Show that (η /\ ¬b) ⇒ ψ
Use rule of impl. to prove {ϕ} while b do c  {ψ}
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Loop invariant
Synthesis involves human ingenuity

No unique inv. for a given loop
The formula True is an invariant for any loop
But our inv. η should satisfy

ϕ ⇒ η
(η /\ ¬b) ⇒ ψ

Usually choose invariants which capture 
relationships between variables whose values are 
modified at each iteration.
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Guessing invariants
{ϕ}                    Pre-condition

{??}

While b do 

{η /\ b}        Loop invariant

C

{η }

endwhile

{ψ}

Need to guess η and verify 
that it is an invariant
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Verifying invariants
{ϕ}          Implication
{η}
while b do 
{η /\ b} 
{η1}            
C
{η}
endwhile
{η /\ ¬b}   Implication
{ψ}

Push up based on structure of C

Implication

1. η /\ ¬b ⇒ ψ

2. η /\ b ⇒ η1

3. ϕ ⇒ η
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Ψϕ
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Factorial program
{true}
y = 1; z = 0;
{y = z!}
while (z != x) do

z = z + 1; y = y *z 
endwhile
{y = x!}

Guess the loop invariant

y = z!
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Checking the post-loop states
{true}

y= 1; z = 0;

{y = 0!}

while (z != x) do

z = z +1; y = y*z;

endwhile

{y = z! /\ ¬(z ≠x)}

{y = x!}

y = z! /\ ¬(z ≠x)

≡ y = z! /\ z = x

≡ y = x!

Implication
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Verifying the invariant
{true}
y= 1; z = 0;
{y = 0!}
while (z != x) do

{ y = z! /\ z ≠ x}
z = z +1; 
y = y*z;

{ y = z! }
endwhile

Need to prove this Hoare 
triple
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Verifying the invariant

{true}
y= 1; z = 0;
{y = 0!}
while (z != x) do

{ y = z! /\ z ≠ x}
{ y*(z+1) = (z+1)! }

z = z +1; 
{ y*z  = z ! }

y = y*z;
{ y = z! }

endwhile

Implication  :  Easy to check

Assignment

Assignment
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So-far
….

{ y = z! }

while (z ≠ x) do

{ y = z! /\ z ≠ x }

z = z +1 ; y = y*z

{ y = z!}

endwhile

{ y = x! }

Does  y = z! hold before the 
while loop ?
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Checking pre-loop states
{true}

y = 1;

z = 0;

{ y = z !}

while (z ! = x) do 

…..

Need to prove this Hoare triple
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Checking pre-loop states
{true}

{ 1 = 0! }

y = 1;

{ y = 0! }

z = 0;

{ y = z!}

Assignment

Assignment

Implication
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Proof structure
{true} Factorial-Program { y = x!}

1. To prove y = x! at the end of the loop, we first 
guess a loop invariant

y = z! is our choice
2. Can the choice of loop invariant in step 1 
ensure y = x! at the end of the loop ?

Yes
3. Verify that y = z! is indeed a loop invariant

This is the premise of the while rule
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Proof structure
4. Verify that the loop invariant holds before the 
loop.

Checking pre-loop states
Steps 3 and 4 constitute a proof of the invariant by 
induction on # iterations

Step 3: induction step
Step 4: base case of the proof
The loop invariant itself is the ind. Hypothesis, no 
strengthening involved in this proof.

CS5219 2007-08 by Abhik 36

Choice of Loop Invariant
The loop invariant must be strong enough to be 
“proved” an invariant.

The while rule is essentially accomplishing 
induction on # of loop iterations.
Often guided by the choice of the post-condition 
after the loop

Our post-condition was y = x!
Since z = x at loop exit and z is modified at 
every loop iteration, choose y = z! as invariant.
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Proving total correctness
Our proof system only shows partial correctness of 
triples {ϕ} P {ψ}
To prove total correctness

Need to prove termination
Only the proof rule for while statement needs to 
change.
To prove termination

Find a non-negative integer quantity which 
decreases in every iteration ( call it variant )
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Finding variant

a = x; y = 1;
while (a > 0) do

y = y*a; a = a-1;
endwhile

Trivial to find the variant 
a    in this case
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Finding variant
y= 1; z = 0;
while (z != x) do

z = z + 1; y = y*z
endwhile

Variant is x – z (lifted from loop guard here)
In general, finding variant cannot be automated even 
if the loop is guaranteed to terminate.
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New Proof Rule

{ η /\ E ≥ 0 }  while b do c   {  η /\ ¬ b }

{η /\ b /\ ( E = E0 ≥ 0 ) }   C  { η /\ ( E0 >  E ≥ 0 ) }

E is the variant.

If it is E0 before the loop, it strictly decreases but remains non-
negative.

Of course E should be non-negative before the loop starts.
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Factorial program

{ x ≥ 0}
y = 1; z = 0;
while (z != x) do

z = z + 1;
y = y*z;

endwhile
{ y = x! }  

Use the variant x – z to prove 
termination

Use the loop invariant y =z! as before 
for proving partial correctness
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Reasoning about the loop
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

z = z +1 ; y = y *  z;

endwhile;

{ y = z! /\ x = z}

{y = x!}

From the conclusion of the 
while rule (total correctness)

-- How to show the premise ?
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Reasoning about an iteration
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z! /\ x ≠ z  /\ ( x – z = E0 ≥ 0) }

z = z +1 ; y = y *  z;

{  y = z!  /\ ( E0 > x – z ≥ 0 ) }

endwhile;

{ y = z! /\ x = z}

{y = x!}
This triple is the premise 
of the while rule
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Reasoning about an iteration
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z!  /\ x ≠ z /\ E0 = x – z ≥ 0}

{ y*(z+1) = (z+1)!   /\ (E0 > x – (z+1) ≥ 0) }

z = z +1 ; 

{ y*z  = z! /\ (E0 > x – z ≥ 0) }

y = y *  z;

{  y = z!  /\ ( E0 > x – z ≥ 0 ) }

endwhile;

{y = x!}

Implication:  Check it !
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Reasoning about pre-loop states

{ x ≥ 0 }

y =  1;  z = 0 ;

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z!  /\ x ≠ z /\ E0 = x – z ≥ 0}

z = z +1 ;  y = y *  z;

{  y = z!  /\ ( E0 > x – z ≥ 0 ) }

endwhile;

{y = x!}

Need to prove this Hoare

triple
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Reasoning about pre-loop states
{ x ≥ 0 }

{ 1 = 0! /\ x ≥ 0 }

y =  1;  

{ y = 0! /\ x - 0 ≥ 0 }

z = 0 ;

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

z = z +1 ;  y = y *  z;

endwhile;

{y = x!}

Implication

x ≥ 0  must hold at the initial 
state of the program for the 
program to terminate.

This fact is used here in the 
overall proof.

CS5219 2007-08 by Abhik 47

Finally, Program Refinement
{ϕ} Prog {ψ}

Infers properties about  pre- and post- states of a 
program
In the flavor of program verification

Instead, you can treat (ϕ, ψ) as a specification
Correct by construction program synthesis from 
given pre- and post- conditions.
Many choices of implementation possible !

Use the specifications to guide the implementation 
instead of checking the implementation against the 
specification post-mortem.
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Reading Material
Chapter 4 of 

Logic in Computer Science
By Michael R. A. Huth and Mark D. Ryan
QA76.9 Log.Hu
Check E-reserves of IVLE

One download only !
Additional reading 

See IVLE Lesson Plan 


