
1

CS5219 2007-08 by Abhik 1

Hoare style program
verification

Abhik Roychoudhury
CS 5219

National University of Singapore

CS5219 2007-08 by Abhik 2

Deduction

Proving properties of programs by hand
Proving that a factorial program computes
the factorial function at the end

Sounds too difficult
What proof rules to apply?
In what order to apply them? (strategies)

Automation
Proof rules OK, Proof Strategies hard!

CS5219 2007-08 by Abhik 3

Theorem Provers

A Proof Assistant to help you prove
properties by hand

More powerful than model checking!
MC only employs search

Less automated of course!!
Directly proving properties of programs

No abstractions to build finite-state models

CS5219 2007-08 by Abhik 4

Remarks
The approach of developing proof rules for reasoning
about language constructs is radically different from
model checking

Reason about programs (not transition systems)
Non-mechanized.
Notion of distinguished control locations ingrained

Reason about pre- and post-conditions holding before
and after execution of a block of code.

Consider sequential programs in this lecture
Can extend to develop proof rules for multi-
threaded programs.

CS5219 2007-08 by Abhik 5

Hoare triple
{Pre} P {Post}

If P is run from a state where Pre holds and P
terminates, then Post holds in the end-state [Partial
correctness]
If P is run from a state where Pre holds, then P
terminates and Post holds in the end-state [Total
correctness]
A Hoare triple involving program P is a specification
about P.

Note: First attempt to systematically reason
about programs by Prof. C.A.R. Hoare in 1960’s.

CS5219 2007-08 by Abhik 6

Trivial example
Say P is while true do x = 0 endwhile
P is partially correct w.r.t. any specification of the
form {Pre} P {Post}
P is not totally correct w.r.t. any specification of the
form {Pre} P {Post}
We will develop a proof system for reasoning about
partial correctness

First step to reasoning about total correctness

2

CS5219 2007-08 by Abhik 7

Notations
|-par {Pre} P {Post}

The Hoare triple can be shown to be partially
correct in our proof system

|=par {Pre} P {Post}
The Hoare triple is partially correct.

|-tot {Pre} P {Post}, |=tot {Pre} P {Post}
Similar
Standard notions of soundness/completeness

CS5219 2007-08 by Abhik 8

Factorial program

{ x ≥ 0 }
/* x is input */
y = 1; z = 0;
while (z != x) do

z = z + 1;
y = y *z;

endwhile
{ y = x! }

{ x ≥ 0 }
/* x is input */
y = 1;
while (x != 0) do

y = y *x;
x = x – 1;

endwhile
{ ??? }

CS5219 2007-08 by Abhik 9

The problem
x was destructively updated in Program2

In the end-state, we cannot say y = x!
To state correctness conditions, not enough to use
program variables
Need to remember the original value of x
{x =x0/\ x≥0} Program2 {y = x0!}
x0 is a universally quantified logical
variable.

CS5219 2007-08 by Abhik 10

Logical variables

{x =x0 ∧ x≥0} Program2 {y = x0!}
For all x0, if x = x0 and x ≥ 0 and we run
Program2 such that it terminates, we will have y =
x0! in the end state.
These variables appear only in the logical
formulae of pre- and post-conditions.
Never appear in the program being verified.

We now present the proof rules of our proof system.

CS5219 2007-08 by Abhik 11

Proof Rules
Premises

Conclusion

Both premises and conclusion are Hoare
triples.

If premises specify properties about programs
C1, C2, …, Cn

-- the conclusion specifies a property about a
bigger program C typically containing
C1,C2,…,Cn

CS5219 2007-08 by Abhik 12

Rule for Assignment

{ ψ [x → E] } x = E { ψ }

No premises in this rule.

To prove ψ after the assignment, ψ [x → E] should
hold before the assignment.

3

CS5219 2007-08 by Abhik 13

Why not forwards ?
{ϕ} x = E {ψ}

How to define ψ in terms of ϕ ?
Cannot be achieved mechanically in general
The backwards formulation of the rule allows
deducing Hoare triple by mechanically substituting
x.
Instead define ϕ in terms of ψ

CS5219 2007-08 by Abhik 14

Sequential Composition

{ ϕ } C1 ; C2 { ψ }

{ ϕ } C1 {ψ1} {ψ1} C2 {ψ }

Need assertion for end-state of C1 and
begin-state of C2.

CS5219 2007-08 by Abhik 15

If-statement

{ ϕ /\ b } C1 { ψ } {ϕ /\ ¬b} C2 { ψ }

{ ϕ } if b then C1 else C2 { ψ }

Involves a case-split.

Pre-condition typically does not say anything about b

Needs to augmented with truth/falsehood of b.

CS5219 2007-08 by Abhik 16

While statement
{ ψ /\ b} C {ψ }

{ψ} while b do c {ψ /\ ¬b}

ψ is the loop invariant.

Rule for partial correctness (number of times the
loop executes/ termination is not known/ not
guaranteed).

CS5219 2007-08 by Abhik 17

Implications

ϕ’ ⇒ ϕ {ϕ} C {ψ} ψ ⇒ ψ’

{ϕ’} C {ψ’}

1. Strengthening the pre-condition

2. Weakening the post-condition

Why do we need this rule ?

CS5219 2007-08 by Abhik 18

Example 1

{y < 2} y = y +1 {y < 5}
Proof:
{y < 2}
{y +1 < 5} implication rule
y = y+1
{y < 5} assignment rule

4

CS5219 2007-08 by Abhik 19

Example 2

{true} z=x; z = z+y; u = z {u = x +y}
Proof:

{true}
{x+y = x + y}
z = x;
{z+y = x +y}
z = z + y;
{z = x + y}
u = z
{ u = x + y}

Push up the assertions starting
from the post-condition of the
code fragment being verified.

CS5219 2007-08 by Abhik 20

Example 3
{true} if (x>y) z = y else z = x {z = min(x,y)}
Proof:
{x = min(x,y)} z = x { z = min(x,y)}
{y = min(x,y)} z = y { z = min(x,y)}
How to combine these triples using the rule for if-
statements in our proof system ?
Use the rule of implications

CS5219 2007-08 by Abhik 21

Example 3
x ≤ y ⇒ x = min(x,y)
x > y ⇒ y = min(x,y)
{true /\ x > y} z = y { z = min(x,y)}
{true /\ ¬(x>y)} z = x { z = min(x,y)}
Combine using the if-rule
{true} if (x>y) z=y else z=x { z =min(x,y)}

CS5219 2007-08 by Abhik 22

Reasoning about loops
To prove {ϕ} while b do c {ψ}
We must

Find a loop invariant η i.e. {η /\ b} c {η}
this means

{η} while b do c {η /\ ¬b}
Show that ϕ ⇒ η
Show that (η /\ ¬b) ⇒ ψ
Use rule of impl. to prove {ϕ} while b do c {ψ}

CS5219 2007-08 by Abhik 23

Loop invariant
Synthesis involves human ingenuity

No unique inv. for a given loop
The formula True is an invariant for any loop
But our inv. η should satisfy

ϕ ⇒ η
(η /\ ¬b) ⇒ ψ

Usually choose invariants which capture
relationships between variables whose values are
modified at each iteration.

CS5219 2007-08 by Abhik 24

Guessing invariants
{ϕ} Pre-condition

{??}

While b do

{η /\ b} Loop invariant

C

{η }

endwhile

{ψ}

Need to guess η and verify
that it is an invariant

5

CS5219 2007-08 by Abhik 25

Verifying invariants
{ϕ} Implication
{η}
while b do
{η /\ b}
{η1}
C
{η}
endwhile
{η /\ ¬b} Implication
{ψ}

Push up based on structure of C

Implication

1. η /\ ¬b ⇒ ψ

2. η /\ b ⇒ η1

3. ϕ ⇒ η

CS5219 2007-08 by Abhik 26

Ψϕ

CS5219 2007-08 by Abhik 27

Factorial program
{true}
y = 1; z = 0;
{y = z!}
while (z != x) do

z = z + 1; y = y *z
endwhile
{y = x!}

Guess the loop invariant

y = z!

CS5219 2007-08 by Abhik 28

Checking the post-loop states
{true}

y= 1; z = 0;

{y = 0!}

while (z != x) do

z = z +1; y = y*z;

endwhile

{y = z! /\ ¬(z ≠x)}

{y = x!}

y = z! /\ ¬(z ≠x)

≡ y = z! /\ z = x

≡ y = x!

Implication

CS5219 2007-08 by Abhik 29

Verifying the invariant
{true}
y= 1; z = 0;
{y = 0!}
while (z != x) do

{ y = z! /\ z ≠ x}
z = z +1;
y = y*z;

{ y = z! }
endwhile

Need to prove this Hoare
triple

CS5219 2007-08 by Abhik 30

Verifying the invariant

{true}
y= 1; z = 0;
{y = 0!}
while (z != x) do

{ y = z! /\ z ≠ x}
{ y*(z+1) = (z+1)! }

z = z +1;
{ y*z = z ! }

y = y*z;
{ y = z! }

endwhile

Implication : Easy to check

Assignment

Assignment

6

CS5219 2007-08 by Abhik 31

So-far
….

{ y = z! }

while (z ≠ x) do

{ y = z! /\ z ≠ x }

z = z +1 ; y = y*z

{ y = z!}

endwhile

{ y = x! }

Does y = z! hold before the
while loop ?

CS5219 2007-08 by Abhik 32

Checking pre-loop states
{true}

y = 1;

z = 0;

{ y = z !}

while (z ! = x) do

…..

Need to prove this Hoare triple

CS5219 2007-08 by Abhik 33

Checking pre-loop states
{true}

{ 1 = 0! }

y = 1;

{ y = 0! }

z = 0;

{ y = z!}

Assignment

Assignment

Implication

CS5219 2007-08 by Abhik 34

Proof structure
{true} Factorial-Program { y = x!}

1. To prove y = x! at the end of the loop, we first
guess a loop invariant

y = z! is our choice
2. Can the choice of loop invariant in step 1
ensure y = x! at the end of the loop ?

Yes
3. Verify that y = z! is indeed a loop invariant

This is the premise of the while rule

CS5219 2007-08 by Abhik 35

Proof structure
4. Verify that the loop invariant holds before the
loop.

Checking pre-loop states
Steps 3 and 4 constitute a proof of the invariant by
induction on # iterations

Step 3: induction step
Step 4: base case of the proof
The loop invariant itself is the ind. Hypothesis, no
strengthening involved in this proof.

CS5219 2007-08 by Abhik 36

Choice of Loop Invariant
The loop invariant must be strong enough to be
“proved” an invariant.

The while rule is essentially accomplishing
induction on # of loop iterations.
Often guided by the choice of the post-condition
after the loop

Our post-condition was y = x!
Since z = x at loop exit and z is modified at
every loop iteration, choose y = z! as invariant.

7

CS5219 2007-08 by Abhik 37

Proving total correctness
Our proof system only shows partial correctness of
triples {ϕ} P {ψ}
To prove total correctness

Need to prove termination
Only the proof rule for while statement needs to
change.
To prove termination

Find a non-negative integer quantity which
decreases in every iteration (call it variant)

CS5219 2007-08 by Abhik 38

Finding variant

a = x; y = 1;
while (a > 0) do

y = y*a; a = a-1;
endwhile

Trivial to find the variant
a in this case

CS5219 2007-08 by Abhik 39

Finding variant
y= 1; z = 0;
while (z != x) do

z = z + 1; y = y*z
endwhile

Variant is x – z (lifted from loop guard here)
In general, finding variant cannot be automated even
if the loop is guaranteed to terminate.

CS5219 2007-08 by Abhik 40

New Proof Rule

{ η /\ E ≥ 0 } while b do c { η /\ ¬ b }

{η /\ b /\ (E = E0 ≥ 0) } C { η /\ (E0 > E ≥ 0) }

E is the variant.

If it is E0 before the loop, it strictly decreases but remains non-
negative.

Of course E should be non-negative before the loop starts.

CS5219 2007-08 by Abhik 41

Factorial program

{ x ≥ 0}
y = 1; z = 0;
while (z != x) do

z = z + 1;
y = y*z;

endwhile
{ y = x! }

Use the variant x – z to prove
termination

Use the loop invariant y =z! as before
for proving partial correctness

CS5219 2007-08 by Abhik 42

Reasoning about the loop
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

z = z +1 ; y = y * z;

endwhile;

{ y = z! /\ x = z}

{y = x!}

From the conclusion of the
while rule (total correctness)

-- How to show the premise ?

8

CS5219 2007-08 by Abhik 43

Reasoning about an iteration
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z! /\ x ≠ z /\ (x – z = E0 ≥ 0) }

z = z +1 ; y = y * z;

{ y = z! /\ (E0 > x – z ≥ 0) }

endwhile;

{ y = z! /\ x = z}

{y = x!}
This triple is the premise
of the while rule

CS5219 2007-08 by Abhik 44

Reasoning about an iteration
….

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z! /\ x ≠ z /\ E0 = x – z ≥ 0}

{ y*(z+1) = (z+1)! /\ (E0 > x – (z+1) ≥ 0) }

z = z +1 ;

{ y*z = z! /\ (E0 > x – z ≥ 0) }

y = y * z;

{ y = z! /\ (E0 > x – z ≥ 0) }

endwhile;

{y = x!}

Implication: Check it !

CS5219 2007-08 by Abhik 45

Reasoning about pre-loop states

{ x ≥ 0 }

y = 1; z = 0 ;

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

{ y = z! /\ x ≠ z /\ E0 = x – z ≥ 0}

z = z +1 ; y = y * z;

{ y = z! /\ (E0 > x – z ≥ 0) }

endwhile;

{y = x!}

Need to prove this Hoare

triple

CS5219 2007-08 by Abhik 46

Reasoning about pre-loop states
{ x ≥ 0 }

{ 1 = 0! /\ x ≥ 0 }

y = 1;

{ y = 0! /\ x - 0 ≥ 0 }

z = 0 ;

{ y = z! /\ x - z ≥ 0 }

while (x ! = z) do

z = z +1 ; y = y * z;

endwhile;

{y = x!}

Implication

x ≥ 0 must hold at the initial
state of the program for the
program to terminate.

This fact is used here in the
overall proof.

CS5219 2007-08 by Abhik 47

Finally, Program Refinement
{ϕ} Prog {ψ}

Infers properties about pre- and post- states of a
program
In the flavor of program verification

Instead, you can treat (ϕ, ψ) as a specification
Correct by construction program synthesis from
given pre- and post- conditions.
Many choices of implementation possible !

Use the specifications to guide the implementation
instead of checking the implementation against the
specification post-mortem.

CS5219 2007-08 by Abhik 48

Reading Material
Chapter 4 of

Logic in Computer Science
By Michael R. A. Huth and Mark D. Ryan
QA76.9 Log.Hu
Check E-reserves of IVLE

One download only !
Additional reading

See IVLE Lesson Plan

