q CS 5219 Introduction

Abhik Roychoudhury
School of Computing
National University of Singapore

(S5219 2007-08 by Abhik 1

5 What is it about ?

= Techniques to help reliable software
development.

= Checking program behavior

= Typically checking whether desired
invariants hold at program control points.

= What is the programming language ?
= Conventional languages like C/Java
= Deeper issues remain ...

CS5219 2007-08 by Abhik 2

3 What kind of programs ?

= Conventional sequential programs
= C like programs
= Multi-threaded software for distributed sys.
= E.g. Multi-threaded Java
= Many behaviors due to thread interleaving
= Reactive software
= In continuous interaction with environment
= e.g. control software in embedded sys.

(CS5219 2007-08 by Abhik

Conventional development

s Collect software requirements

= Programmers often do not collect complete sets of
requirements.

= Write code

= Good programming disciplines exist e.g. modular
development

= Debug
= Code walkthrough, Peer review, Testing
= Again informal and/or incomplete.

(€S5219 2007-08 by Abhik 4

3 So are we ...

... going to look at program debugging ?
= YES

= All our validation techniques can be used
for software debugging

= NO

= We will not only look at conventional
software engineering activities like testing.

CS5219 2007-08 by Abhik 5

5 Why bother ?

= Testing etc. is incomplete.

= Checking program behavior for a specific
execution
= No guarantees about program behavior
» safety critical systems
= Brake controller software of your car
= Substantial effort spent anyway in
generating “good” test cases, ensuring
“good” coverage.

(CS5219 2007-08 by Abhik 6

Spectrum of Techniques

= Static checking techniques

= Model Checking

= Deductive proof techniques (e.g. Induction)
= Dynamic checking techniques

= Monitoring, Invariant Detection
= Conventional debugging

= Testing, Slicing (how to link with validation
techniques)

= Fault Localization

(CS5219 2007-08 by Abhik

5 Static Checking

= Analyze program source code to establish
invariants at control locations
= Automated techniques
= Deductive techniques

= Deductive techniques similar to constructing a
proof of correctness by hand.

= Involves guessing and proving loop invariants for
loops in the program

= Proof Assistants available to help mechanization.

CS5219 2007-08 by Abhik 8

3 Differences via Example

« For (i = 1; i< 10; i++) {3
= How to prove i > 0 always ?

= Model checking
» Generate a transition system whose states are
(Control Loc, Value of i)
= Traverse the transition sys. to verify thati > 0
in all reachable states of the transition system.

(CS5219 2007-08 by Abhik 9

. Differences via Example

= For (i =1; i< 10; i++) {3
= How to prove i > 0 always ?
= Theorem Proving
= Prove by induction on the iterations of the loop.
= Static Analysis

» Infer possible values of i at each control
location (irrespective of how they are reached).

= Check that all possible values are > 0

(€S5219 2007-08 by Abhik 10

3 Automated Static Checking

= Difficulties in automation

= Reasoning about infinite domains and structures in
the memory store of the program

= Reasoning about aliases in the memory store
= Array indices
= Pointers
= How to surmount these problems ?
= Abstract the memory store (to a finite structure ?)

CS5219 2007-08 by Abhik 11

5 Model Checking

= Abstraction is designed for a specific program.

= Used for checking complex temporal properties
(safety, liveness, response properties).

= User may have to dabble in constructing abstract
model, in general.

= Canonical abstractions (data abs.) available.

= Search based exact procedure at a certain level of
abstraction

= Provides detailed counter-example evidence.

(CS5219 2007-08 by Abhik 12

!-‘ Model Checking

= Inputs:
= finite state transition system (implementation)
= Temporal logic formula (specification language)
= Output:
= True if the specification holds
= A counterexample behavior if it does not
= Technique:
= Implementation FSM is a finite graph.

= Unfold and search this finite graph to check all
behaviors.

(CS5219 2007-08 by Abhik 13

!-’ Use of Model Checking

= Generate finite-state transition system
like models from C/Java code

= Employ search on this model to verify
invariants or other properties.
= If counter-example obtained by MC

= Need to locate the bug from
counterexample

CS5219 2007-08 by Abhik 14

!-‘ An Example

aX=0x=x+1;x=x+1;
= if (x > 2){ error }

= Is the error reachable ?

= Problem: domain of x is not finite

(CS5219 2007-08 by Abhik 15

!-’ Step 1: Label the locations

» LO:x=0;
Ll x=x+1;
s l2:X=x+1;
w L3:ifx>2

= L4: error

(€S5219 2007-08 by Abhik 16

:‘ Step 2: Abstract x

= The finite state transition system
generated for the abstraction {x > 2}is
constructed. Use shorthand p= x > 2.
This finite state transition system shows
the reachability of location L4.

= Do this now
= How did we get x > 2 ??

CS5219 2007-08 by Abhik 17

CS5219 2007-0¢ 18

3 Step 3: Construct TS & check

= We find 1 or more counter-examples
= Use them to refine abstraction

= Heuristics!
= Example:

L (LO/ p)/ (Lll _’p)/ (Lzl p)/ (L3/ p)/ (L4/ p)
= Only remembering p = (x > 2)
= Need to keep track of more information?

(CS5219 2007-08 by Abhik 19

5 Dynamic Checking

= Monitoring amounts to run-time checks
during program execution.
= Testing checks program traces during program

development, not at run-time.

= Other run-time techniques try to infer bugs
by detecting a deviation from “normal”
behavior as a potential bug.
= Needs to be confirmed by user.

= Constructing program model based on observable
traces.
(CS5219 2007-08 by Abhik 20

3 Debugging via Slicing

= Slicing
= Input: A var. V at control location L

= Output: Part of the program code which affects
the value of V at location L

= Can be static or dynamic

= Static: Part of code which affects V at L for some
exec

= Dynamic: ... for a particular exec
= Give explanations of problematic executions (which
are detected by validation techniques)

(CS5219 2007-08 by Abhik 21

. Checking Techniques

Less Abstraction B Ideal
O Theorem Proving

O
SW model checking

@ Model Checking

(conventional)

More
Automated

(€S5219 2007-08 by Abhik 22

3 Checking Techniques

Large class of properties &
Guarantees

B Ideal
Model Checking

(most forms)

[Testing, Debugging

More Automated

CS5219 2007-08 by Abhik 23

. End Goal of the course

= Familiarity with host of debugging/
verification techniques

= Focus is on bug hunting (pragmatic)
rather than proving systems correct
(quest of a theoretician).

(CS5219 2007-08 by Abhik 24

3 Do I have the background ?

= The following is what we will need
= UG course in Programming Languages

= Understanding of algorithms (we will use
search algorithms from time to time).

= Familiarity with languages like C, Java etc

= Interest in programming and developing
reliable code

= The last point is the most important !

(CS5219 2007-08 by Abhik 25

3 Assessment

= Midterm : 25 %
= Project : 25%
= Final Exam : 50 %

= Exams will be open book.

CS5219 2007-08 by Abhik

26

3 Sample Overview Readings

= Software Analysis and Model Checking, Gerard
Holzmann, 2002.

= Verification of Embedded Software. Problems and
Perspectives, Patrick and Radhia Cousot, 2001.

= Automatically validating temporal safety properties
of interfaces, Thomas Ball and Sriram K.
Rajamani, 2001

= 7rends in Software Verification, Gerard Holzmann,
2003.

(CS5219 2007-08 by Abhik 27

5 IVLE

= Lesson Plan

= Updated every week

= Weekly lectures and readings available here
= Discussion Forum

= Post messages for query, discussion.
= Workbin

= Submissions (e.g. Midterm reports)

= Other handouts also made available here.

(€S5219 2007-08 by Abhik

28

Dates, times

= Lecture: Friday 6:30 — 8:30 PM
= COM1 #02-12
= Consultation
= Drop by, or send e-mail.
= My office is COM1 #03-20
= Midterm
= Week 7 in class
= Any administrative questions ?

CS5219 2007-08 by Abhik 29

5 Course Outline (First Half)

Introduction (Lecture 1)
Systematic Software Debugging (Lecture 2)

-> Tools: JSlice slicing tool
Protocol/Software modeling (Lecture 3)

-> Promela language in SPIN tool
Property Specifications for checking (Lec 4)
Model checking algorithms (Lec 5)

Model checking tool (Lec 6)
-> SPIN tool for model checking

(CS5219 2007-08 by Abhik

30

3 Course Outline (Second Half)

Midterm (Lec 7)
Software Abstractions (Lec 8, 9)

-> Primarily abstracting data values to question/ans.
Deductive Verification — Hoare Logic (Lec. 10)
Deduction verification tools (Lec 11)

-> Sample usage of PVS tool
Software Testing strategies (Lec 12)

Project Presentations (Lec 13)

(CS5219 2007-08 by Abhik 31

5 Discussion on Projects (1)

= Can be a substantial case study
= Choose a protocol or software
= Verify it using SPIN model checker

= Covered in class early in the course

= Feel free to use other tools also, if you are
more familiar with them already.

= Write a report sharing your experience and
the verification results.

CS5219 2007-08 by Abhik 32

3 Discussion on Projects (2)

= ... Or a survey

= Choose a cutting edge issue in software
validation

» Please drop by for a discussion.
= Survey of existing literature.
= Discussion of possible future work.

(CS5219 2007-08 by Abhik 33

. Project schedule

= Midterm Report

= Due in 8t week (1 week after midterm)
= Project Presentation

= On 13t week in class
= Final Report

= After last lecture.

(€S5219 2007-08 by Abhik 34

3 Project Guidelines

= Individual or group of 2 ??

= I will provide an initial list of possible
case studies and survey areas.

= We will discuss the project progress at
regular intervals.

= THANK YOU.

CS5219 2007-08 by Abhik 35

