
1

CS5219 2007-08 by Abhik 1

CS 5219 Introduction

Abhik Roychoudhury
School of Computing

National University of Singapore

CS5219 2007-08 by Abhik 2

What is it about ?

Techniques to help reliable software
development.
Checking program behavior

Typically checking whether desired
invariants hold at program control points.

What is the programming language ?
Conventional languages like C/Java
Deeper issues remain …

CS5219 2007-08 by Abhik 3

What kind of programs ?
Conventional sequential programs

C like programs
Multi-threaded software for distributed sys.

E.g. Multi-threaded Java
Many behaviors due to thread interleaving

Reactive software
In continuous interaction with environment
e.g. control software in embedded sys.

CS5219 2007-08 by Abhik 4

Conventional development
Collect software requirements

Programmers often do not collect complete sets of
requirements.

Write code
Good programming disciplines exist e.g. modular
development

Debug
Code walkthrough, Peer review, Testing
Again informal and/or incomplete.

CS5219 2007-08 by Abhik 5

So are we …

… going to look at program debugging ?
YES

All our validation techniques can be used
for software debugging

NO
We will not only look at conventional
software engineering activities like testing.

CS5219 2007-08 by Abhik 6

Why bother ?

Testing etc. is incomplete.
Checking program behavior for a specific
execution
No guarantees about program behavior

safety critical systems
Brake controller software of your car

Substantial effort spent anyway in
generating “good” test cases, ensuring
“good” coverage.

2

CS5219 2007-08 by Abhik 7

Spectrum of Techniques
Static checking techniques

Model Checking
Deductive proof techniques (e.g. Induction)

Dynamic checking techniques
Monitoring, Invariant Detection

Conventional debugging
Testing, Slicing (how to link with validation
techniques)
Fault Localization

CS5219 2007-08 by Abhik 8

Static Checking

Analyze program source code to establish
invariants at control locations

Automated techniques
Deductive techniques

Deductive techniques similar to constructing a
proof of correctness by hand.

Involves guessing and proving loop invariants for
loops in the program
Proof Assistants available to help mechanization.

CS5219 2007-08 by Abhik 9

Differences via Example

For (i = 1; i< 10; i++) {}
How to prove i > 0 always ?

Model checking
Generate a transition system whose states are

(Control Loc, Value of i)

Traverse the transition sys. to verify that i > 0
in all reachable states of the transition system.

CS5219 2007-08 by Abhik 10

Differences via Example

For (i = 1; i< 10; i++) {}
How to prove i > 0 always ?

Theorem Proving
Prove by induction on the iterations of the loop.

Static Analysis
Infer possible values of i at each control
location (irrespective of how they are reached).
Check that all possible values are > 0

CS5219 2007-08 by Abhik 11

Automated Static Checking

Difficulties in automation
Reasoning about infinite domains and structures in
the memory store of the program
Reasoning about aliases in the memory store

Array indices
Pointers

How to surmount these problems ?
Abstract the memory store (to a finite structure ?)

CS5219 2007-08 by Abhik 12

Model Checking
Abstraction is designed for a specific program.
Used for checking complex temporal properties
(safety, liveness, response properties).
User may have to dabble in constructing abstract
model, in general.

Canonical abstractions (data abs.) available.
Search based exact procedure at a certain level of
abstraction

Provides detailed counter-example evidence.

3

CS5219 2007-08 by Abhik 13

Model Checking
Inputs:

finite state transition system (implementation)
Temporal logic formula (specification language)

Output:
True if the specification holds
A counterexample behavior if it does not

Technique:
Implementation FSM is a finite graph.
Unfold and search this finite graph to check all
behaviors.

CS5219 2007-08 by Abhik 14

Use of Model Checking

Generate finite-state transition system
like models from C/Java code
Employ search on this model to verify
invariants or other properties.
If counter-example obtained by MC

Need to locate the bug from
counterexample

CS5219 2007-08 by Abhik 15

An Example

x = 0; x = x + 1; x = x + 1;
if (x > 2){ error }

Is the error reachable ?

Problem: domain of x is not finite

CS5219 2007-08 by Abhik 16

Step 1: Label the locations

L0: x = 0;
L1: x = x + 1;
L2: x = x + 1;
L3: if x > 2
L4: error

CS5219 2007-08 by Abhik 17

Step 2: Abstract x

The finite state transition system
generated for the abstraction {x > 2} is
constructed. Use shorthand p ≡ x > 2.
This finite state transition system shows
the reachability of location L4.

Do this now
How did we get x > 2 ??

CS5219 2007-08 by Abhik 18

L0, p
L0, not p

L1, not p

L2, p L2, not p

L3, p L3, not p

L4, p

4

CS5219 2007-08 by Abhik 19

Step 3: Construct TS & check

We find 1 or more counter-examples
Use them to refine abstraction

Heuristics!

Example:
(L0, p), (L1,¬p), (L2, p), (L3, p), (L4, p)

Only remembering p = (x > 2)
Need to keep track of more information?

CS5219 2007-08 by Abhik 20

Dynamic Checking

Monitoring amounts to run-time checks
during program execution.

Testing checks program traces during program
development, not at run-time.

Other run-time techniques try to infer bugs
by detecting a deviation from “normal”
behavior as a potential bug.

Needs to be confirmed by user.
Constructing program model based on observable
traces.

CS5219 2007-08 by Abhik 21

Debugging via Slicing
Slicing

Input: A var. V at control location L
Output: Part of the program code which affects
the value of V at location L

Can be static or dynamic
Static: Part of code which affects V at L for some
exec
Dynamic: …. for a particular exec

Give explanations of problematic executions (which
are detected by validation techniques)

CS5219 2007-08 by Abhik 22

Checking Techniques

More
Automated

Less Abstraction

Model Checking

(conventional)

SW model checking

Theorem Proving
Ideal

CS5219 2007-08 by Abhik 23

Checking Techniques

More Automated

Large class of properties &
Guarantees Model Checking

(most forms)

Testing, Debugging

Ideal

CS5219 2007-08 by Abhik 24

End Goal of the course

Familiarity with host of debugging/
verification techniques beyond testing.
Techniques help locate hard-to-detect
bugs.
Focus is on bug hunting (pragmatic)
rather than proving systems correct
(quest of a theoretician).

5

CS5219 2007-08 by Abhik 25

Do I have the background ?

The following is what we will need
UG course in Programming Languages
Understanding of algorithms (we will use
search algorithms from time to time).
Familiarity with languages like C, Java etc
Interest in programming and developing
reliable code

The last point is the most important !

CS5219 2007-08 by Abhik 26

Assessment

Midterm : 25 %
Project : 25%
Final Exam : 50 %

Exams will be open book.

CS5219 2007-08 by Abhik 27

Sample Overview Readings
Software Analysis and Model Checking, Gerard
Holzmann, 2002.
Verification of Embedded Software: Problems and
Perspectives, Patrick and Radhia Cousot, 2001.
Automatically validating temporal safety properties
of interfaces, Thomas Ball and Sriram K.
Rajamani, 2001
Trends in Software Verification, Gerard Holzmann,
2003.

CS5219 2007-08 by Abhik 28

IVLE

Lesson Plan
Updated every week
Weekly lectures and readings available here

Discussion Forum
Post messages for query, discussion.

Workbin
Submissions (e.g. Midterm reports)
Other handouts also made available here.

CS5219 2007-08 by Abhik 29

Dates, times

Lecture: Friday 6:30 – 8:30 PM
COM1 #02-12

Consultation
Drop by, or send e-mail.
My office is COM1 #03-20

Midterm
Week 7 in class

Any administrative questions ?

CS5219 2007-08 by Abhik 30

Course Outline (First Half)
Introduction (Lecture 1)
Systematic Software Debugging (Lecture 2)

-> Tools: JSlice slicing tool
Protocol/Software modeling (Lecture 3)

-> Promela language in SPIN tool
Property Specifications for checking (Lec 4)
Model checking algorithms (Lec 5)
Model checking tool (Lec 6)

-> SPIN tool for model checking

6

CS5219 2007-08 by Abhik 31

Course Outline (Second Half)

Midterm (Lec 7)
Software Abstractions (Lec 8, 9)

-> Primarily abstracting data values to question/ans.
Deductive Verification – Hoare Logic (Lec. 10)
Deduction verification tools (Lec 11)

-> Sample usage of PVS tool
Software Testing strategies (Lec 12)
Project Presentations (Lec 13)

CS5219 2007-08 by Abhik 32

Discussion on Projects (1)

Can be a substantial case study
Choose a protocol or software
Verify it using SPIN model checker

Covered in class early in the course
Feel free to use other tools also, if you are
more familiar with them already.

Write a report sharing your experience and
the verification results.

CS5219 2007-08 by Abhik 33

Discussion on Projects (2)

… Or a survey
Choose a cutting edge issue in software
validation

Please drop by for a discussion.

Survey of existing literature.
Discussion of possible future work.

CS5219 2007-08 by Abhik 34

Project schedule

Midterm Report
Due in 8th week (1 week after midterm)

Project Presentation
On 13th week in class

Final Report
After last lecture.

CS5219 2007-08 by Abhik 35

Project Guidelines

Individual or group of 2 ??
I will provide an initial list of possible
case studies and survey areas.
We will discuss the project progress at
regular intervals.

THANK YOU.

