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What is it about ?

Techniques to help reliable software 
development.
Checking program behavior

Typically checking whether desired 
invariants hold at program control points.

What is the programming language ?
Conventional languages like C/Java
Deeper issues remain …
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What kind of programs ?
Conventional sequential  programs

C like programs 
Multi-threaded software for distributed sys.

E.g. Multi-threaded Java
Many behaviors due to thread interleaving

Reactive software
In continuous interaction with environment
e.g. control software in embedded sys.
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Conventional development
Collect software requirements 

Programmers often do not collect complete sets of 
requirements.

Write code
Good programming disciplines exist e.g. modular 
development

Debug
Code walkthrough, Peer review, Testing
Again informal and/or incomplete.
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So are we …

… going to look at program debugging ?
YES

All our validation techniques can be used 
for software debugging

NO
We will not only look at conventional 
software engineering activities like testing.
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Why bother ?

Testing etc. is incomplete.
Checking program behavior for a specific 
execution
No guarantees about program behavior 

safety critical systems
Brake controller software of your car

Substantial effort spent anyway in 
generating “good” test cases, ensuring 
“good” coverage.
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Spectrum of Techniques
Static checking techniques 

Model Checking
Deductive proof techniques (e.g. Induction)

Dynamic checking techniques
Monitoring, Invariant Detection

Conventional debugging
Testing, Slicing (how to link with validation 
techniques)
Fault Localization
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Static Checking

Analyze program source code to establish 
invariants at control locations

Automated techniques
Deductive techniques

Deductive techniques similar to constructing a 
proof of correctness by hand.

Involves guessing and proving loop invariants for 
loops in the program 
Proof Assistants available to help mechanization.
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Differences via Example

For (i = 1; i< 10; i++) {}
How to prove i > 0 always ?

Model checking
Generate a transition system whose states are

(Control Loc, Value of i)

Traverse the transition sys. to verify that i > 0 
in all reachable states of the transition system.
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Differences via Example

For (i = 1; i< 10; i++) {}
How to prove i > 0 always ?

Theorem Proving
Prove by induction on the iterations of the loop.

Static Analysis
Infer possible values of i at each control 
location (irrespective of how they are reached).
Check that all possible values are > 0
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Automated Static Checking

Difficulties in automation
Reasoning about infinite domains and structures in 
the memory store of the program
Reasoning about aliases in the memory store

Array indices
Pointers

How to surmount these problems ?
Abstract the memory store (to a finite structure ?)
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Model Checking
Abstraction is designed for a specific program.
Used for checking complex temporal properties 
(safety, liveness, response properties).
User may have to dabble in constructing abstract 
model, in general.

Canonical abstractions (data abs.) available.
Search based exact procedure at a certain level of 
abstraction

Provides detailed counter-example evidence.
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Model Checking
Inputs:

finite state transition system (implementation)
Temporal logic formula (specification language)

Output:
True if the specification holds
A counterexample behavior if it does not

Technique:
Implementation FSM is a finite graph.
Unfold and search this finite graph to check all 
behaviors.
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Use of Model Checking

Generate finite-state transition system 
like models from C/Java code
Employ search on this model to verify 
invariants or other properties.
If counter-example obtained by MC

Need to locate the bug from 
counterexample
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An Example

x = 0; x = x + 1; x = x + 1;
if (x > 2){ error }

Is the error reachable ?

Problem: domain of x is not finite
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Step 1: Label the locations

L0: x = 0;
L1: x = x + 1;
L2: x = x + 1;
L3: if x > 2
L4:  error

CS5219 2007-08 by Abhik 17

Step 2: Abstract x

The finite state transition system 
generated for the abstraction {x > 2} is 
constructed. Use shorthand p ≡ x > 2. 
This finite state transition system shows 
the reachability of location L4.

Do this now
How did we get x > 2 ??
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L0, p
L0, not p

L1, not  p

L2, p L2, not p

L3, p L3, not p

L4, p
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Step 3: Construct TS & check

We find 1 or more counter-examples
Use them to refine abstraction

Heuristics!

Example:
(L0, p), (L1,¬p), (L2, p), (L3, p), (L4, p)

Only remembering p = (x > 2)
Need to keep track of more information?
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Dynamic Checking

Monitoring amounts to run-time checks 
during program execution.

Testing checks program traces during program 
development, not at run-time.

Other run-time techniques try to infer bugs 
by detecting a deviation from “normal” 
behavior as a potential bug.

Needs to be confirmed by user.
Constructing program model based on observable 
traces.
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Debugging via Slicing
Slicing

Input: A var. V at control location L
Output: Part of the program code which affects 
the value of V at location L

Can be static or dynamic 
Static: Part of code which affects V at L for some 
exec
Dynamic:     ….  for a particular exec

Give explanations of problematic executions (which 
are detected by validation techniques)
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Checking Techniques

More 
Automated

Less Abstraction 

Model Checking

(conventional)

SW model checking

Theorem Proving
Ideal
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Checking Techniques

More Automated

Large class of properties & 
Guarantees Model Checking

(most forms)

Testing, Debugging

Ideal
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End Goal of the course

Familiarity with host of debugging/ 
verification techniques beyond testing.
Techniques help locate hard-to-detect 
bugs.
Focus is on bug hunting (pragmatic) 
rather than proving systems correct 
(quest of a theoretician).
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Do I have the background ?

The following is what we will need 
UG course in Programming Languages
Understanding of algorithms (we will use 
search algorithms from time to time).
Familiarity with languages like C, Java etc 
Interest in programming and developing 
reliable code

The last point is the most important !
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Assessment

Midterm :  25 %
Project :  25%
Final Exam :  50 %

Exams will be open book.
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Sample Overview Readings 
Software Analysis and Model Checking, Gerard 
Holzmann, 2002.
Verification of Embedded Software: Problems and 
Perspectives,  Patrick and Radhia Cousot, 2001.
Automatically validating temporal safety properties 
of interfaces, Thomas Ball and Sriram K. 
Rajamani, 2001
Trends in Software Verification, Gerard Holzmann, 
2003.
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IVLE

Lesson Plan
Updated every week
Weekly lectures and readings available here

Discussion Forum
Post messages for query, discussion.

Workbin
Submissions (e.g. Midterm reports)
Other handouts also made available here.
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Dates, times 

Lecture: Friday 6:30 – 8:30 PM 
COM1 #02-12

Consultation 
Drop by, or send e-mail.
My office is  COM1 #03-20

Midterm
Week 7 in class

Any administrative questions ?
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Course Outline (First Half)
Introduction (Lecture 1)
Systematic Software Debugging (Lecture 2)

-> Tools: JSlice slicing tool
Protocol/Software modeling (Lecture 3)

-> Promela language in SPIN tool
Property Specifications for checking (Lec 4)
Model checking algorithms (Lec 5)
Model checking tool (Lec 6)

-> SPIN tool for model checking 
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Course Outline (Second Half)

Midterm (Lec 7)   
Software Abstractions (Lec 8, 9)

-> Primarily abstracting data values to question/ans.
Deductive Verification – Hoare Logic (Lec. 10)
Deduction verification tools (Lec 11)

-> Sample usage of PVS tool
Software Testing strategies (Lec 12)
Project Presentations (Lec 13)
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Discussion on Projects (1)

Can be a substantial case study
Choose a protocol or software
Verify it using SPIN model checker

Covered in class early in the course
Feel free to use other tools also, if you are 
more familiar with them already.

Write a report sharing your experience and 
the verification results.
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Discussion on Projects (2)

… Or a survey
Choose a cutting edge issue in software 
validation

Please drop by for a discussion.

Survey of existing literature.
Discussion of possible future work.
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Project schedule

Midterm Report
Due in 8th week (1 week after midterm)

Project Presentation
On 13th week in class

Final Report
After last lecture.
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Project Guidelines

Individual or group of 2 ??
I will provide an initial list of possible 
case studies and survey areas.
We will discuss the project progress at 
regular intervals.

THANK YOU.


