
1

CS 5219 1

From Code to Models

Abhik Roychoudhury
CS 5219

National University of Singapore

CS 5219 2

CodeTests Coverage

Testing

Debug
Abstract model

(Boolean pgm.)

Desirable
properties

Verify

Programmer

No model may be available

Today’s
lecture

CS 5219 3

Recap on Model Checking

� Inputs:
� A finite state transition system M
� A “temporal” property ϕ

� Check M |= ϕ
� Output

� True if M |= ϕ
� Counter-example evidence, otherwise

CS 5219 4

Model Checking for SW Verif.
� The steps:

� Generate transition system-like models
from code
� Typically involves at least data abstractions

� Exhaustive search through the model
� For time/space efficiency, the model may not

be explicitly represented and searched.

� Explaining counter-examples

CS 5219 5

More on the big picture

� Explaining counter-example
� Counter-example points to an actual

violation of property ϕ in program.
� How to locate the bug from the counter-

example – SW Engineering activity

� It was introduced owing to the abstractions
� Refine the abstraction and run model checking

on the model derived by refined abstraction
� Abstract → Model Check →Refine loop.

CS 5219 6

The approach (1)

� Reasoning techniques over finite-state
models well-understood.
� Search based procedures (Model Checking)

� Need to generate models from code
� Typically finitely many control locations
� Infinitely many data states (memory store)

� How to abstract the memory store ?
� This can give a finite state model

2

CS 5219 7

The approach (2)
� Boolean abstraction used on memory store

� State of memory captured by finitely many
boolean variables which answer queries about its
contents

� Check all possible behaviors of a program
� Translate program to a finite state model and

employ model checking (this lecture)
� OR Modify the state space search algorithm in

model checking to directly verify programs
� e.g. Verisoft checker from Bell Labs (not

covered in this course)

CS 5219 8

Model Generation Projects

� Source Language → Modeling Language
� E.g. C → PROMELA (FeaVer tool)
� C → Boolean Pgm (SLAM toolkit)
� Various choices in Bandera toolkit
� In this lecture, we consider a

� source language with sequential programs
� Properties are locational invariants

� Always (pc = 34) ⇒ (v = 0)

CS 5219 9

What kind of model?

� Modeling languages typically do not
support
� Dynamic heap allocation/ de-allocation
� Call Stack of Procedure Activation Records

� Restriction relaxed in SLAM toolkit
� Allows for models with procedures
� Invariant checking of such models by

adapting existing inter-procedural dataflow
analysis algorithms [Sharir & Pnueli 1981]

CS 5219 10

Predicate Abstraction

� Input
� Source Program P
� SP, Set of Predicates about variables in P

� Output
� Abstracted program P1
� Data states in P1 correspond to valuations

of predicates in SP

CS 5219 11

Predicate Abs. (once more)

� Input :
� A C program P1
� A set of predicates containing vars of P1

� Output
� A boolean program P2

� Only data type of P2 is “boolean”
� P2 contains more execution paths than P1 i.e.

� All paths of P1 are captured in P2, not vice-versa
� P2 is being used for invariant verification of P1.

CS 5219 12

The Language of Predicates
� Boolean expressions containing program variables,

� No function calls
� Pointer referencing is allowed

� P→val > Var
� Of course Bool. Exp contains

� B = B ∧ B | B ∨ B | ¬ B | A Relop A
� A = A + A | A – A | A*A | A/A | Var | Int
� Relop = < | > | ≤ | ≥ | ≠ | =

3

CS 5219 13

Simple Examples

� Source Code
� Var := 0

� Var := Var1

� Abstracted Code
� [Var = 0] := true
� [Var = 1] := false

� [Var = 0] := unknown
� (no preds. about Var1)
� OR-
� [Var= 0] := [Var1= 0]
� (Var1=0 is another

pred)
CS 5219 14

Control constructs

� Abstraction scheme will be developed for
� Within a procedure

� Assignments
� Branches
� All other constructs can be represented by these

� Across procedures
� Formal and actual parameters
� Local variables
� Return variables

CS 5219 15

Assignments to predicates

� We are converting a C program to a
“boolean” program where the only type is
boolean.
� The boolean program will not be executed.

� Assignment to our predicate variables
can assign
� true / false / unknown
� If “unknown” is assigned, both possibilities should

be explored during model checking

CS 5219 16

Assignments

� Predicate abstraction of pgm. P w.r.t.
{ b1,…,bk }

� Effect of X := e on b1,…,bk

� Variable bi denotes expression ϕi

� If ϕi[x →e] holds before X := e then set
� bi := true

� If ¬ϕi[x →e] holds before X := e then set
� bi := false

CS 5219 17

Simple Ex. of Assignments
� b1 ≡ X > 2 b2 ≡ Y > 2
� Assignment X := Y
� Transform it to

� b1 := b2

� b1 ≡ X > 2 b2 ≡ Y > 2 b3 ≡ X < 3 b4 ≡ Y < 3
� Transform X := Y to the parallel assignment

� b1, b3 := b2, b4

CS 5219 18

Assignments – (2)

� But ϕi[x →e] may not be representable
as a boolean formula over b1,…,bk

� Examples:
� Predicates: X < 5, X = 2
� Assignment stmt: X := X + 1
� X < 5 [X →X+1] equivalent to X +1 < 5

equivalent to X < 4
� X = 2 [X →X+1] equivalent to X + 1 = 2

equivalent to X = 1

4

CS 5219 19

Assignments – (3)

� Define predicate b1 as X < 5
� b2 as X = 2
� What is the weakest formula over b1

and b2 which implies X < 4 ?
� If this formula is true, we can conclude

� X < 4 before X := X +1 is executed
� X < 5 after X := X + 1 is executed
� b1 = true after X := X + 1 is executed

CS 5219 20

Assignments - Summary

� Predicates: {b1,…,bk}
� Predicate bi represents expression ϕi

� X := e is an assignment statement in
the pgm. being abstracted.

� We can conclude bi = true after X := e
iff ϕi[X →e] before X :=e is executed.

CS 5219 21

Assignments - Summary
� Find the weakest formula over b1,…,bk which implies

ϕi[X →e] and check whether it is true before X := e
� If yes, set bi = true as an effect of X := e in the

abstracted program
� Set bi = false in the abstracted pgm if the weakest

formula over b1,…,bk which implies ¬ϕi[X →e]
holds

� If none of this is possible, bi = unknown

CS 5219 22

Assignments - Example
� Predicates: b1 is X < 5, b2 is X =2
� Assignment: X := X + 1
� Weakest pre-condition for b1 to hold, denoted as

WP(X:= X+1, b1)
� X < 4

� Weakest formula over {b1, b2} to imply WP(X:=
X+1, b1), denoted as F(WP(X := X +1), b1))
� X = 2, that is, the formula b2

CS 5219 23

Assignments Example

� Predicates: b1 is X < 5, b2 is X =2
� WP(X:= X+1, ¬b1) equivalent to X + 1
≥ 5 equivalent to X ≥ 4

� F(WP(X:= X+1, ¬b1)) = F(X ≥ 4) is
� X ≥ 5, that is, the formula ¬b1 itself

� Computation of the F function is in
general exponential, Why ??

CS 5219 24

Computation of F(ϕ)

� Consider all minterms of b1,…,bk
� ¬b1 ∧ ¬b2
� ¬b1 ∧ b2
� b1 ∧ ¬b2
� b1 ∧ b2

� Which of them imply ϕ ?
� Take the disjunction of all such minterms and

simplify. Improvements to this algo. possible.

5

CS 5219 25

Exercise

� b1 ≡ X < 5 , b2 ≡ X = 2
� Assignment in the program

� X := X + 1

� What will it be substituted with in our
“boolean” program ?
� Let us do it now

CS 5219 26

Aliasing via pointers
� To compute the effect of X := 3 on b1

� We compute F(WP(X := 3, b1))
� Suppose b1 is *p > 5, p is a pointer

� Effect of X := 3 depends on whether
� X and p are aliases
� Use a “points-to” analysis to determine this.

� Typically flow insensitive

� Aliasing analysis sharpens information about
program states and hence the abstraction.

CS 5219 27

Effect of aliasing

� WP(X := 3, *p > 5) is
� (&x = p ∧ 3 > 5) ∨ (&x ≠ p ∧ *p > 5)

� Thus, WP(X := e, ϕ(Y)) is
� (&X = &Y ∧ ϕ[Y→e]) ∨ (&x ≠ & Y ∧ ϕ(Y)
� If X and Y are aliases replace Y by e in ϕ
� Otherwise, the assignment has no effect

� If ϕ refers to several locations, each of
them may/may not alias to X.

CS 5219 28

Another exponential blowup

� If ϕ refers to k locations
� Each may/not alias to X
� 2^k possibilities
� WP is a disjunction of 2^k minterms

� In practice, accurate static not-points-to
analysis is feasible
� Removes conjuncts corresponding to

confirmed non-aliases (in any control loc.)

CS 5219 29

Control constructs

� Abstraction scheme will be developed for
� Within a procedure

� Assignments
� Branches
� All other constructs can be represented by these

� Across procedures
� Formal and actual parameters
� Local variables
� Return variables

CS 5219 30

Control branches
� So far, considered straight-line code.
� Consider the effect of conditional branch instructions

as in if-then-else statements.
� Loops are conditional branch instructions with one

branch executing a goto.
� Sufficient to consider

� Abstract(If (c) {S1} else {S2})

6

CS 5219 31

Control Branches

� If (c) {S1} else {S2}
� ⇑⇓
� If (*) { assume (c) ; S1 } else
� { assume (¬c); S2 }
� (*) denotes non-deterministic choice
� assume(ϕ) terminates exec. if ϕ is false

� Otherwise, the statement has no effect.

Different from the

assert statement

CS 5219 32

Abstracting Branches

� Abstract(If (c) {S1} else {S2}) is
� If (*) { assume G(c); Abstract(S1) }
� else { assume G(¬c); Abstract(S2)}

� Predicates: b1,…,bk

� G(c) is the strongest formula over
b1,…,bk which is implied by c
� Formal definition in next slide.

CS 5219 33

Abstracting Branches

� G(c) = ¬ F (¬ c)
� Dual of the F operator studied earlier

� CAUTION: G and F operators of this
lecture different from temporal ops

� Exercise: Why choose the G operator
for abstracting branches, why not F ?

CS 5219 34

Questions

� Abstract(if (c) {S1} else {S2})
� ⇑⇓
� If G(c) { Abstract(S1)} else

{Abstract(S2)}

� Was the assume statement necessary
Does the assume statement introduce
new paths ?

CS 5219 35

Abstracting Branches-
Example

� If (*p <= x) {*p := x} else {*p := *p +
x}

� Predicates
� b1 is *p <= 0
� b2 is x = 0

� G(*p <= x) = ¬ F (*p > x)
� To compute F (*p > x) consider all

minterms of b1 and b2
CS 5219 36

Abstracting Branches-
Example

� Minterms of b1, b2
� ¬b1 ∧ ¬b2 is *p > 0 /\ x ≠ 0
� b1 /\ ¬b2 is *p <= 0 /\ x ≠ 0
� ¬b1 /\ b2 is *p >0 /\ x = 0
� b1 /\ b2 is *p <= 0 /\ x = 0

� F(*p > x) = ¬b1 /\ b2
� &x and p are considered to be non-aliases

7

CS 5219 37

Abstracting Branches-
Example

� G(*p <= x) = ¬ F(*p > x) = ¬(b2 /\
¬b1) = ¬b2 \/ b1 = b2 ⇒ b1
= (x = 0) ⇒ (*p <= 0)

� Similarly compute G(¬(*p <= x))
� Abstracted template

� If (*) { assume (x = 0 ⇒ (*p <= 0)) ; …
}

� else { assume (x=0 ⇒ ¬(*p <=0)); … }
CS 5219 38

Control constructs

� Abstraction scheme will be developed for
� Within a procedure

� Assignments
� Branches
� All other constructs can be represented by these

� Across procedures
� Formal parameter, Local variables, Return variables
� Procedure calls and returns

CS 5219 39

Inter-procedural Abstraction
� One-to-one mapping of procedure

� Each proc. to an abstract one
� No inlining introduced by abstraction.

� Given predicates: b1,…,bk
� Each pred. is marked global (refers to global vars.)

or local to a specific procedure.
� Does not allow capturing relationships of variables

across procedures. Will Revisit this!

CS 5219 40

Abstracted procedures ?
� Given

� A concrete procedure R
� A set ER of predicates b1,…,bj specific to R
� ER can refer to parameters of R

� Need to define an abstract procedure R1
� Formal Parameters of R1
� Return Vars. of R1

CS 5219 41

Example
int procedure(int* q, int y)

{

int l1, l2;

…..

…..

return l1;

}

Predicates:

b1 is y >= 0

b2 is *q <= y

b3 is y = l1

b4 is y > l2

CS 5219 42

Parameters, Local Vars
� Formal parameters of R1

� All predicates in ER which do not refer to local
variables of R

� All other preds. in ER are local vars. of R1.
� Natural notion of input context for R1.
� Example:

� Concrete Parameters: q, y
� Abstract Parameters: y>=0, *q <= y

8

CS 5219 43

Return Variables

� Natural notion of output context for R1. Pass
info. to callers about
� Return value of R
� Global Vars
� Call-by-reference parameters …

� Info. about return value captured by those
preds in ER which refer to return var. of R,
but no other local variable (return var. can be
a local var.)

CS 5219 44

Return Variables
� Info about global var/reference parameters

� Preds. in ER which were computed to be formal
parameters of R1, AND

� Refer to global variables, dereferences
� ER = { y>=0, *q <=y, y = l1, y > l2 }

� Concrete ret. Var. : l1
� Concrete Parameters: q, y
� Abst. Ret. Vars: y =l1, *q <= y

CS 5219 45

Control constructs

� Abstraction scheme will be developed for
� Within a procedure

� Assignments
� Branches
� All other constructs can be represented by these

� Across procedures
� Formal parameter, Local variables, Return variables
� Procedure calls and returns

CS 5219 46

Procedure Calls
� So far, abstraction of a single procedure

� Assignments (with aliasing)
� Branches (if-then-else, loops)
� Formal Parameters
� Local and global variables
� Return variables

� Use input/output contexts in procedure call/return in
inter-procedural abstraction.

CS 5219 47

Passing Parameters
� Take any formal parameter predicate b of R1

Void main()

{

…

r = procedure(p, x);

}

int procedure(int *q, int y){

int l1, l2;

…

return l1;

}

Formal parameter preds. of procedure

-y >= 0

-*q < = y

All predicates of

“procedure” :

- y >= 0

-*q <= y

-y= l1

-y > l2

CS 5219 48

Passing Parameters

� Replace formals by actuals in b.
� y >= 0 is a formal parameter pred.
� After replacement, it becomes x >= 0

� If F(b[formals →actuals)) holds during
procedure invocation of the boolean pgm,
then pass true to the parameter b

� If F(¬b[formals →actuals)) holds, then pass
false to parameter b

� Otherwise, pass unknown.

9

CS 5219 49

Exercise

� Work out the boolean expressions
passed to the two parameters of
procedure in our example shown before

� Use the definition of the F operator
given earlier and the abst. predicates
given.

CS 5219 50

Procedure Returns

� If procedure S calls procedure R, and
� S1/R1 are abstractions of S/R
� b1,…,bj are abstract ret. Vars of R1

� Then S1 has j corresponding local
boolean vars. which will be updated by
call to R1.

� Do the local preds. in S need to be
updated ? YES

CS 5219 51

Procedure returns

� These local preds. of S can refer to
� Concrete Return var. for R
� Global Vars (along with other local vars)

� For each such pred b, again compute
F(b) and F(¬b) to decide the value of b.

� The function F is computed w.r.t
� Set of abstraction preds (under the carpet ☺

CS 5219 52

Procedure returns
� To compute the effect of return from R into S (calling

procedure), compute F w.r.t.
� Return predicates of R

� (Capture effect on global vars/return vars/ref.)
� Predicates of S which do not need to be updated.

� An implicit partitioning of the preds of S !!
� Self Study: This portion in the reading.

CS 5219 53

Reading(s)

� Automatic Predicate Abstraction of C
Programs
� Ball, Majumdar, Millstein, Rajamani
� PLDI 2001.

� Also useful: Polymorphic Predicate
Abstraction
� MSR Tech Rep. by same set of authors.

CS 5219 54

Reading Exercise

� Currently, the predicates used for
abstraction can only contain program
variables. Is this a restriction ?
� What about values returned by procedures

and/or passed by parameters ?
� Can we track such values by introducing

new names ? We can have preds like
� Ret_value_of_v = Passed_value_of_v + 1

