
1

CS 6214

PVS theorem prover

Abhik Roychoudhury
CS 6214

National University of Singapore

CS 6214

Theorem proving
Both specification and implementation can be
formalized in a suitable logic.
Proof rules for proving statements in the logic as
theorems.
Application of proof rules user-guided.
Allows us to even verify designs which are under-
specified & not executable.

Very different from model checking.

We will study the PVS theorem prover.

CS 6214

Hoare style verification
We had fixed the programming language for
describing the implementation.
Semantics of the programming language can be
mathematically formalized.
Proof rules for reasoning about individual language
constructs.

Proof construction again user-guided.
Theorem provers can support this style of deduction.
But TP is a generic deduction tool for logical
reasoning --- not restricted to software verification.

CS 6214

PVS

Prototype Verification System
Language for specification
Parser
Powerful type-checker

Reasons about termination also …
Decision procedures

Including a symbolic model checker
Proof Checker / Prover

We will primarily look at this one

CS 6214

What if …
… my program is written in a diff. lang.
from PVS spec. language ?

Embedding languages into theorem provers
A rich topic of study even to this date

Deep and shallow embedding
Formalize only semantics of the lang. (shallow)
Formalize both syntax and semantics of the
specification/ programming lang. (deep)

To concentrate on proof rules & strategies, we will
consider the default specification language of PVS.

CS 6214

More on embeddings
Shallow embedding

Commands interpreted in the theorem prover’s
logic

A command is a function state → state
Deep embedding

Need to also formalize syntax (abstract syntax
trees could be formalized)
Map abstract syntax trees to “commands” which
effect state changes

Syntree → (state → state)

2

CS 6214

Using PVS

Provides expressive language based on
higher-order logic.
A design to be verified is described by means
of “theories”.

Parameterized theories are possible, allowing
modularity and re-use.

Given a user-provided theory, PVS will
Parse
Type-check
Prove the theorems in the theory

CS 6214

An example theory
sum: THEORY

BEGIN
n: VAR nat
sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n-1)
ENDIF)

MEASURE id
closed_form: THEOREM

sum(n) = (n*(n+1))/2
END SUM

CS 6214

Declarations
Our example theory has three declarations

A declaration for variable n
A declaration for the function sum
A declaration for the theorem closed_form

This defines a closed form representation for
the output of the function sum.

The theory has no parameters.
The function sum is associated with a MEASURE
function …

CS 6214

Our tasks

Parse the theory declarations.
Type-check

This will try to prove termination of sum as well
(MEASURE function used here)
Generate proof obligations which need to
dispensed for type-checking

PVS type-checking is undecidable.

Prove theorem closed_form by inducting on n
We need to input proof rules for guiding the proof.

CS 6214

Interactive session

At this stage in the lecture:
Launch PVS and load the sum THEORY
Show the proof obligations for Type-
checking
Prove the theorem closed_form
(Explain the purpose of each proof rule as
and when it is employed in the proof).

CS 6214

Lessons learnt from proof
PVS type-checking

Proves type consistency and termination of
functions by showing reduction in user-provided
measure function for recursive function calls

PVS Prover
Proves sequents of the form

{-1} …. Antecedents
|-------------------------------

{1} …. Consequents

3

CS 6214

Lessons Learnt

PVS Prover constructs a proof tree of
closed_form

Nodes of the proof tree are sequents
Leaves are trivially true.
Parent → Child node by applying a proof rule
An application of a proof rule can create several
children (of course !)
Mistakes made during proof (in choice of rules)
can be undone (extremely useful !!)
Other control commands to help navigate the
proof tree while constructing it.

CS 6214

Sequent
Each node of the PVS proof tree is a goal

{-1} A1
[-2] A2

|---------------
[1] B1
{2} B2

Stands for the proof obligation
A1 ∧ A2 ⇒ B1 ∨ B2

CS 6214

Sequent

Of the form
(A1 ∧… ∧ An) ⇒ (B1 ∨ … ∨ Bm)
¬(A1 ∧ … ∧ An) ∨ (B1 ∨… ∨ Bm)
(¬A1 ∨… ∨ ¬An) ∨ (B1 ∨ … ∨ Bm)
The clausal form for a sequent.
Antecedents are negated (negative literals)
So, many proof rules manipulate antecedents and
consequents in a dual fashion

skolem , instantiate …

CS 6214

Sequent

(A1 ∧ … ∧ An) ⇒ (B1 ∨ … ∨ Bm)
A1, …, An are negatively numbered
B1,…, Bm are positively numbered
If Ai is marked {-i} or Bi is marked { i }

Ai, Bi are unchanged from parent sequent in
the proof.

If Ai is marked [-i] or Bi is marked [i]
Ai, Bi are changed from parent sequent in the
proof.

CS 6214

Proof rules
PVS uses a sequent calculus.
Proof rules are of the form
Γ1 |- ∆1, …, Γk |- ∆k

Γ |- ∆

Initial sequent is |- A
No antecedent, consequent is A (the theorem to
be proved)

CS 6214

Proof tree construction
Γ1 |- ∆1, …, Γk |- ∆k

Γ |- ∆

Proof rule

Γ |- ∆

Γ1 |- ∆1 Γk |- ∆k…

An application of the proof rule

4

CS 6214

Top-down and bottom-up

Top-down proof construction (described here)
Start with theorem to be proved
“Simplify” it using proof rules of the prover
Iterate until all introduced obligations have been
proved.

Bottom-up proof construction (Inefficient !)
Deduce all that you can starting from facts
(axioms) and applying proof rules repeatedly
Check whether desired theorem proved

CS 6214

Our experience so far …
What are the rules we saw in the proof of
“closed_form” in Sum theory ?

induct (Automatically employ ind. Scheme)
expand (inlining function definition)
skolem (Removing Universal Quantification)
flatten (Disjunctive simplication)
Other simple rewrites and decision procedures
(captured by the grind command)

CS 6214

Some Proof rules in PVS

Structural Rules
Re-arrange formulae in a sequent

Propositional rules
Simplification in propositional logic
Removing disjunctions and conjunctions by
creating new sequents in the children node
of the proof tree
Typical rules: flatten, split, prop

CS 6214

Some Proof Rules in PVS
Quantifier rules

Introduction and elimination of universal /
existential quantification.
Follow from deduction rules of predicate logic.
Widely used rules

generalize (introduces universal quantification).
skolem (removes universal quantification).
instantiate (removes existential quantification).

CS 6214

Some Proof Rules in PVS
Using Definitions etc.

expand (use defs)
Use, rewrite (invoke lemmas in a proof)

Decision Procedures
assert, grind: Employ as much as possible
model-check: CTL model checking !!

Induction
induct: automatically find ind. Schema
rule-induct : induction schema user provided

CS 6214

In addition …
The control rules are useful for the user to “control”
proof tree construction

fail : propagate failure to parent (failed proof path,
will trigger new proof attempts)
quit , trace: obvious !!
undo : Correct past mistakes in choosing proof
rules !
Postpone : Useful for managing branches in a
proof step.

5

CS 6214

“Postpone”
Γ |- ∆

Γ1 |- ∆1

Postpone this proof
Γ2 |- ∆2 Editor now displays

this sequent

CS 6214

Some useful information
Your theory files can import other theories (e.g.
certain mathematical functions etc.)

Do not need specify everything from scratch.
Proof strategies

Users can write scripts to instruct the prover to
apply its rules in a certain order.
Strategies may not be just sequence of rules

backtracking is allowed since it is difficult to
predict a good strategy for a given obligation

CS 6214

Proof strategies
(try step1 step2 step3)

Apply step1
If step1 fails then apply step2
If step2 also fails, then apply step3

(if condition step1 step2)
Conditonal selection

Many other variations can be programmed
then (sequencing), repeat (iteration)
Much of these not needed for simple low-level
proofs

CS 6214

A final example
stacks [t : TYPE] : THEORY
BEGIN

stack : TYPE
push : [t, stack -> stack]
pop : [stack -> stack]
x, y : VAR t
s : VAR stack
pop_push : AXIOM pop(push(x, s)) = s
thm: THEOREM pop(pop(push(x, push(y, s)))) = s

END stacks

CS 6214

Not definitional

Note that the stack operations have not been
defined at all.

The stack theory is also parameterized.
Instead certain properties of the operations
are defined

These properties are enough to prove thm
No executable model of stacks was needed
(as in model checking)

Of course theorem provers can work if the exec.
description of stacks is provided as well.

CS 6214

Wrapping up
Reading:

http://pvs.csl.sri.com/documentation.shtml
The Manuals have lot of info., check

System Guide
Prover Guide
Language Reference

In the above order of preference.
The Language reference is not so important, one can learn
as you work along.

6

CS 6214

Additional (Optional) Reading

PVS is only one prover
Several others

HOL, Isabelle – Higher order Logic
Nqthm, ACL2 – First order logic
…

Comparison of HOL/PVS -- Mike Gordon
http://www.cl.cam.ac.uk/users/mjcg/PVS.html

