

PVS theorem prover

Abhik Roychoudhury CS 6214 National University of Singapore

CS 6214

Theorem proving

- Both specification and implementation can be formalized in a suitable logic.
- Proof rules for proving statements in the logic as theorems.
- Application of proof rules user-guided.
- Allows us to even verify designs which are underspecified & not executable.
 - Very different from model checking.
- We will study the PVS theorem prover.

CS 6214

Hoare style verification

- We had fixed the programming language for describing the implementation.
- Semantics of the programming language can be mathematically formalized.
- Proof rules for reasoning about individual language constructs.
 - Proof construction again user-guided.
- Theorem provers can support this style of deduction.
- But TP is a generic deduction tool for logical reasoning --- not restricted to software verification.

CS 6214

PVS

Prototype Verification System

- Language for specification
- Parser
- Powerful type-checker
 - Reasons about termination also ...
- Decision procedures
 - Including a symbolic model checker
- Proof Checker / Prover
 - We will primarily look at this one

CS 6214

What if ...

- ... my program is written in a diff. lang. from PVS spec. language ?
 - Embedding languages into theorem provers
 - A rich topic of study even to this date
 - Deep and shallow embedding
 - Formalize only semantics of the lang. (shallow)
 - Formalize both syntax and semantics of the specification/ programming lang. (deep)
 - To concentrate on proof rules & strategies, we will consider the default specification language of PVS.

CS 6214

More on embeddings

- Shallow embedding
 - Commands interpreted in the theorem prover's logic
 - ${\color{red} \bullet}$ A command is a function state \rightarrow state
- Deep embedding
 - Need to also formalize syntax (abstract syntax trees could be formalized)
 - Map abstract syntax trees to "commands" which effect state changes
 - Syntree → (state → state)

Using PVS

- Provides expressive language based on higher-order logic.
- A design to be verified is described by means of "theories".
 - Parameterized theories are possible, allowing modularity and re-use.
- Given a user-provided theory, PVS will
 - Parse
 - Type-check
 - Prove the theorems in the theory

CS 6214

An example theory

- sum: THEORY
 - BEGIN
 - n: VAR nat
 - sum(n): RECURSIVE nat =
 - (IF n = 0 THEN 0 ELSE n + sum(n-1)
 - ENDIF)
 - MEASURE id
 - closed_form: THEOREM
 - sum(n) = (n*(n+1))/2
 - END SUM

CS 6214

Declarations

- Our example theory has three declarations
 - A declaration for variable n
 - A declaration for the function sum
 - A declaration for the theorem closed_form
 - This defines a closed form representation for the output of the function sum.
- The theory has no parameters.
- The function sum is associated with a MEASURE function ...

CS 6214

Our tasks

- Parse the theory declarations.
- Type-check
 - This will try to prove termination of sum as well (MEASURE function used here)
 - Generate proof obligations which need to dispensed for type-checking
 - PVS type-checking is undecidable.
- Prove theorem closed_form by inducting on n
 - We need to input proof rules for guiding the proof.

CS 6214

Interactive session

- At this stage in the lecture:
 - Launch PVS and load the sum THEORY
 - Show the proof obligations for Typechecking
 - Prove the theorem closed_form
 - (Explain the purpose of each proof rule as and when it is employed in the proof).

CS 6214

Lessons learnt from proof

- PVS type-checking
 - Proves type consistency and termination of functions by showing reduction in user-provided measure function for recursive function calls
- PVS Prover
 - Proves sequents of the form
 - {-1} Antecedents

Consequents

Lessons Learnt

- PVS Prover constructs a proof tree of closed_form
 - Nodes of the proof tree are sequents
 - Leaves are trivially true.
 - Parent → Child node by applying a proof rule
 - An application of a proof rule can create several children (of course!)
 - Mistakes made during proof (in choice of rules) can be undone (extremely useful !!)
 - Other control commands to help navigate the proof tree while constructing it.

CS 6214

Sequent

- Each node of the PVS proof tree is a goal
 - {-1} A1
- [-2] A2
- - [1] B1 {2} B2
- Stands for the proof obligation
- $A1 \land A2 \Rightarrow B1 \lor B2$

CS 6214

Sequent

- Of the form
 - (A1 \wedge ... \wedge An) \Rightarrow (B1 \vee ... \vee Bm)
 - ¬(A1 ∧ ... ∧ An) ∨ (B1 ∨... ∨ Bm)
 - (¬A1 ∨... ∨ ¬An) ∨ (B1 ∨ ... ∨ Bm)
 - The clausal form for a sequent.
 - Antecedents are negated (negative literals)
 - So, many proof rules manipulate antecedents and consequents in a dual fashion
 - skolem , instantiate ...

CS 6214

Sequent

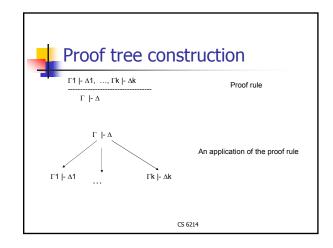
- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} (A_1 \land ... \land A_n) \Rightarrow (B_1 \lor ... \lor B_m) \\ \blacksquare \begin{tabular}{l} A_1, ..., A_n \begin{tabular}{l} are negatively numbered \end{tabular}$

 - B₁,..., B_m are positively numbered
 - If A_i is marked {-i} or B_i is marked { i }
 - A_i, B_i are unchanged from parent sequent in the proof.
 - If A_i is marked [-i] or B_i is marked [i]
 - A_i, B_i are changed from parent sequent in the

CS 6214

Proof rules

- PVS uses a sequent calculus.
- Proof rules are of the form
- $\Gamma 1 \mid -\Delta 1, ..., \Gamma k \mid -\Delta k$
- Γ |- Δ
- Initial sequent is |- A
 - No antecedent, consequent is A (the theorem to be proved)



Top-down and bottom-up

- Top-down proof construction (described here)
 - Start with theorem to be proved
 - "Simplify" it using proof rules of the prover
 - Iterate until all introduced obligations have been proved.
- Bottom-up proof construction (Inefficient !)
 - Deduce all that you can starting from facts (axioms) and applying proof rules repeatedly
 - Check whether desired theorem proved

CS 6214

Our experience so far ...

- What are the rules we saw in the proof of "closed_form" in Sum theory ?
 - *induct* (Automatically employ ind. Scheme)
 - expand (inlining function definition)
 - *skolem* (Removing Universal Quantification)
 - *flatten* (Disjunctive simplication)
 - Other simple rewrites and decision procedures (captured by the *grind* command)

CS 6214

Some Proof rules in PVS

- Structural Rules
 - Re-arrange formulae in a sequent
- Propositional rules
 - Simplification in propositional logic
 - Removing disjunctions and conjunctions by creating new sequents in the children node of the proof tree
 - Typical rules: flatten, split, prop

CS 6214

Some Proof Rules in PVS

- Quantifier rules
 - Introduction and elimination of universal / existential quantification.
 - Follow from deduction rules of predicate logic.
 - Widely used rules
 - generalize (introduces universal quantification).
 - skolem (removes universal quantification).
 - instantiate (removes existential quantification).

CS 6214

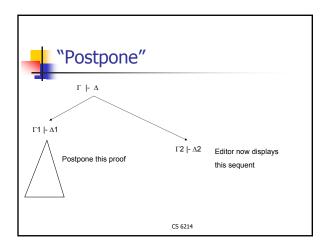
Some Proof Rules in PVS

- Using Definitions etc.
 - expand (use defs)
 - Use, rewrite (invoke lemmas in a proof)
- Decision Procedures
 - assert, grind: Employ as much as possible
 - model-check: CTL model checking !!
- Induction
 - induct: automatically find ind. Schema
 - rule-induct: induction schema user provided

CS 6214

In addition ...

- The control rules are useful for the user to "control" proof tree construction
 - fail: propagate failure to parent (failed proof path, will trigger new proof attempts)
 - quit , trace: obvious !!
 - undo: Correct past mistakes in choosing proof rules!
 - Postpone: Useful for managing branches in a proof step.



Some useful information

- Your theory files can import other theories (e.g. certain mathematical functions etc.)
 - Do not need specify everything from scratch.
- Proof strategies
 - Users can write scripts to instruct the prover to apply its rules in a certain order.
 - Strategies may not be just sequence of rules
 - backtracking is allowed since it is difficult to predict a good strategy for a given obligation

CS 6214

Proof strategies

- (try step1 step2 step3)
 - Apply step1
 - If step1 fails then apply step2
 - If step2 also fails, then apply step3
- (if condition step1 step2)
 - Conditional selection
- Many other variations can be programmed
 - then (sequencing), repeat (iteration)
 - Much of these not needed for simple low-level proofs

CS 6214

A final example

- stacks [t : TYPE] : THEORY
- BEGIN
- stack : TYPE
- push : [t, stack -> stack]
- pop : [stack -> stack]
- x, y : VAR t
- s : VAR stack
- $pop_push : AXIOM pop(push(x, s)) = s$
- thm: THEOREM pop(pop(push(x, push(y, s)))) = s
- END stacks

CS 6214

Not definitional

- Note that the stack operations have not been defined at all.
 - The stack theory is also parameterized.
- Instead certain properties of the operations are defined
 - These properties are enough to prove thm
- No executable model of stacks was needed (as in model checking)
 - Of course theorem provers can work if the exec. description of stacks is provided as well.

CS 6214

Wrapping up

- Reading
 - http://pvs.csl.sri.com/documentation.shtml
 - The Manuals have lot of info., check
 - System Guide
 - Prover Guide
 - Language Reference
 In the above order of preference.
 - The Language reference is not so important, one can learn as you work along.

Additional (Optional) Reading

- PVS is only one prover
 - Several others
 - HOL, Isabelle Higher order Logic
 - Nqthm, ACL2 First order logic
 - ...
- Comparison of HOL/PVS -- Mike Gordon
 - http://www.cl.cam.ac.uk/users/mjcg/PVS.html