
1

Trends in Software Validation

Abhik Roychoudhury
CS 6214

Areas related to SW verif.

Formal Methods
Model based techniques
Proof construction techniques

Program Analysis
Static Analysis – Abstract Interpretation

Software Engineering
Testing, Monitoring
Debugging, Program Understanding

Your Expertise

… should be in two of the three areas
(not just in formal methods)
For more theoretical work, you should
have good grounding in

Formal methods & Program Analysis

For more practical work, you need
Formal methods & Software Engineering

Research Trends – High level

In each individual area, as before.
OR,

specifically target the technology of each
area to be available for SW verif.
Combine techniques in different areas to
develop hybrid verification methods.
Develop techniques for specific application
areas.

Research Trends – Ex 1

Specifically target the technology of
each area to be available for SW verif.

Example: Generating models from code
Makes model checking available for SW
Often requires lot of engineering work

E.g. working out the model generation rules for
constructs of a PL
Lot of work in integrating analysis packages
e.g. alias analysis etc.

Research Trends - Ex 2

Combine techniques in different areas
to develop hybrid verification methods

Model Checking and Abstraction
Currently a hot research direction

Model Checking and Theorem Proving
What kinds of deduction ?

Model Checking and Program Debugging
techniques (for enhanced program
comprehension)

2

Model Checking & Abstraction

Use of boolean abstractions for making
an inf-state pgm amenable to MC.
Modified later to form a

Abstract-MC-Refine loop
How to refine the abstraction if MC
produced a counter-example ?

Relevant: [Dill/LICS01, Clarke/CAV00]
This area is quickly getting saturated

Model Checking & Abstraction

Search optimizations for different
iterations of the Abst-MC-Refine loop
No need to search entire state space in
all runs of model checking

Caching of counter-example free state
spaces for invariant properties.
Relevant paper : [Henzinger/POPL 02]

Model Checking & Deduction

Abstraction based techniques are used
to maintain finite approximation of the
memory store of a program.
The control locations are assumed to be
finite, and control flow is maintained
exactly.
Could the control itself be not finite ?

YES

Parameterized systems

Infinite family of finite-state systems
e.g. n-process token ring for all n
Every member of this family is a finite state
system.
You could look at the entire family as a
single program whose control location is
given by the unbounded vector

< State of Proc1, State of Proc2,…. >

Parameterized Systems

Extensions: each member of the family
may also be infinite-state e.g. infinite
domain data variables …
Applications: Distributed programs

User-level
System-level (e.g. cache coherence
protocol)

How to verify Parameterized Systems ?

Parameterized System Verif.
Finding out specific families for which a certain
control abstraction is safe.

Restricted to well-known but simple examples
Finitely represent the state space of a parameterized
system by a rich language [regular exp say] and
model check over this representation.

Relevant Paper: [Pnueli/CAV97]
[Not saturated yet – still lot of effort in
CAV/TACAS conferences]

3

Model Checking and Induction

Induct over the recursive definition of a
process network / protocol

Points us to a larger problem: Integrating a proof
rule like induction with model checking
Integration and interfacing of model checkers
within theorem provers
Relevant paper: “Inductively verifying invariant
properties of parameterized systems” ,
Roychoudhury and Ramakrishnan, Automated
Software Engineering Journal, 2004.

Integration with Thm Proving

A theorem prover produces proofs.
A model checker produces yes/no and
counter-examples (if any).
Modify a model checker to produce a
proof/disproof which can be fed to the
theorem prover.
Relevant Papers

[Roychoudhury/PPDP00], [Namjoshi/CAV01]

The list so far …

Generating models from code
Refinement strategies for abstraction
refinement based software verification
Techniques for verifying parameterized
protocols in distributed systems
Tight integration of model checkers into
existing theorem provers

Other trends

Much work needed on integrating formal
techniques like model checking with software
development activities like debugging

Example: Localizing the cause of an
error (in terms of source code line
numbers) from a counter-example
Relevant paper: [Ball/POPL03]

More on integration
Model Checking, Theorem Proving, Abstract
Interpretation are all static checking techniques.
In practice, many dynamic checking techniques exist
for validation

Run-time monitoring
Record and replay (post-mortem)

Combination of static and dynamic checking
techniques is way open and speculative

Many topics of interest here !!

Why dynamic ?

Static checking methods are
Either non automated

Theorem Proving

Or of high complexity and inaccurate
Model Checking, needs abst. Refinement.

Debugging is typically for a single
program run

Testing a program for a selected input.

4

Dynamic Slicing

Criterion
Program Input
Control location (a selected line of text)
Variable (could be an object or a field of an
object)

Output
All program lines which directly or
indirectly affect the criterion.

Example 1

0 scanf(“%d”, &A);

1. V = A;

2 W = X;

3 U = V;

4 printf(“%d\n”, U);

Criterion

(A=0, 4, U)

Slice

{0,1,3,4}

Just follows through a chain of data dependences.

Example 2

0 scanf(“%d”, &A);
1. If (A == 0){;
2 W = X;
3 U = A;
4 }
5 printf(“%d\n”, U);

Criterion (A == 0, 5, U)

Slice {0,1,3,4}

Follow through chain of control and data dependences.

Dynamic Dependence Graph
G = (V, E)

V = All statement occurrences for the test input
under consideration.
E = Data and Control dependences between
statement occurrences.

Slicing Criterion
A node in the DDG

Slice computation
Nodes reachable from slicing criterion

Data dependences

V := 1;

…

U := V

An edge from a variable usage to the
latest definition of the variable.

A[i] := 1;

…

U := A[j]

Do we consider this data dependence
edge ?

Remember that the slicing is for an input,
so the addresses are resolved

We thus define data dependences
corresponding to memory locations rather
than variable names.

Control Dependences

Post-dominated: I,J – nodes in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I

J

EXIT

I

J

EXIT

YES
NO

5

Control Dependences

I

U

V

J

EXIT

I not post-dom by J

U, V post-dom by J

Control dependence

I -> J

Dynamic Slice Illustration

0 scanf(“%d”, &A);
1. If (A == 0){;
2 W = X;
3 U = A;
4 }
5 printf(“%d\n”, U);

Criterion: 5,U with input A == 0

Trace: <0,1,2,3,4,5> Slice = {0,1,3,5}

Data dependences encountered 5 -> 3, 1 -> 0

Control dependence encountered 3 -> 1

Omission Errors

1 b = 1;
2 x = 1;
3 if (a > 1) {
4 if (b > 1){
5 x = 2

}
}
6 ... = x

Criterion

6,x with input a= 2

Trace = <1,2,3,4,6>

Slice = {2,6}

The bug could be in line 1 leading to a wrong
omission of line 5’s execution, thereby
affecting the slicing criterion.

-- [Wang + Roychoudhury 2004]

Can extend the notion of dynamic slice to include this, but the slice keeps
on getting bigger. We need mechanisms to pinpoint the error !

Fault Localization

1 b = 1;
2 x = 1;
3 if (a > 1) {
4 if (b > 1){
5 x = 2

}
}
6 ... = x

Criterion

6,x with input a= 2

Trace = <1,2,3,4,6>

Slice = {2,6}

The bug could be in line 1.

How to locate the bug from execution trace ?

What is a bug / fault ?
Two possibilities

The programmer has clear intuition about certain
unacceptable behaviors and states them as
(typically) invariant properties

G (pc == 6 => x == 1)

More likely: The programmer discovers
undesirable behaviors during testing

For input a==0, I did not expect x == 1 at pc == 6
Bug !

So…

We have
Weak Error Specification
Counter-example trace (the run showing
the “undesirable behavior”)

Contrast this with static checking via MC
Precise Error Specification
No counter-example – we are attempting
to find it via MC.

6

Fault Localization via MC
Take a precise error spec. as invariant

MC and find counter-example trace σ
Find transitions in σ which do not appear in any
correct trace

Using precise notion of “correct” trace.
Need a separate inter-procedural analysis
algorithm to collect transitions in correct traces
Compares code coverage between correct and
incorrect traces – seq. of stmts forgotten

Ball, Naik and Rajamani – POPL 2003.

Another approach based on …
… comparison of correct/incorrect runs.
Classify the runs for a large pool of inputs as failing
or successful – no Temporal logic properties required.
Failing run is usually given – encountered during
testing / debugging.
Compare code coverage of failing & succ. Runs

(Stmts executed in f – Statements executed in s) for all s
Choose the s with smallest distance and report
corresponding distance

Renieris/Reiss – ASE 2003,
Wang/Roychoudhury ASE 2005

Overall comments
Opportunities exist – but saturation (in terms of good
work) will come in few years, I think !

Basic References
Dynamic Program Slicing – Agrawal and Horgan,
PLDI 1990.
A Survey of Program Slicing Techniques, Frank
Tip, 1995.

Trends at high-level …

Specifically target the technology of each
area to be available for SW verif.
Combine techniques in different areas to
develop hybrid verification methods.
Develop techniques for specific application
areas.

Some thoughts for embedded
software/protocols/interfaces.

ES

A computing system which is part of a “larger
system” (read – device).
The larger system constitutes the
environment – in continuous interaction.
The computing system implements a specific
functionality.

A dedicated computer implemented by a
combination of hardware and software.

ES examples

Automobiles
Train control systems
Avionics / Flight control
Nuclear Power Plants
Inside medical devices (for image
manipulation) and other purposes
Safety first ! Validation of these control
software more important

7

ES examples
Or more vanilla
HDTV
Washing Machines
Microwave
Controllers for other household devices such as Air-
con
Finally, smart room / wear (e.g. GA Tech)

FV for ES – The reality
Is it any different ?

Current verif. Techniques should scale up for ES Hardware.

Embodies hardware/software interaction: often real-time.

Reuse of vendor provided IP blocks
Implementation not known for Intellectual property
reasons

No single person/team knows the entire design.

FV for ES - Consequences
A realistic ES design typically consists of:

Number of IP blocks
Connected to one/more system bus via bridges

View an IP block as a hardware subroutine – Need REUSE.

Reuse IP blocks designed by others (and provided by vendors).

Each IP block comes with interface specification
Input and output signals
Some timing diagrams

FV for ES - Issues
Synthesizing component interface software reliably.

Need high level modeling (UML is one choice).
Synthesize executable description from high level models.

Still you might be using other’s components !!
Static verification of unknown components

Assume guarantee reasoning
Extract assumptions/guarantees from interface
spec.

Lot of opportunities in research in the ES area.
But cannot be routine application of general-
purpose methods.

