* Trends in Software Validation

Abhik Roychoudhury
CS 6214

Areas related to SW verif.

= Formal Methods

= Model based techniques

= Proof construction techniques
= Program Analysis

= Static Analysis — Abstract Interpretation
= Software Engineering

= Testing, Monitoring

= Debugging, Program Understanding

5 Your Expertise

= ... should be in two of the three areas
(not just in formal methods)

= For more theoretical work, you should
have good grounding in
= Formal methods & Program Analysis

= For more practical work, you need
= Formal methods & Software Engineering

. Research Trends — High level

= In each individual area, as before.
= OR,

= specifically target the technology of each
area to be available for SW verif.

= Combine techniques in different areas to
develop hybrid verification methods.

= Develop techniques for specific application
areas.

Research Trends — Ex 1

= Specifically target the technology of
each area to be available for SW verif.
= Example: Generating models from code
= Makes model checking available for SW
= Often requires lot of engineering work
= E.g. working out the model generation rules for
constructs of a PL
» Lot of work in integrating analysis packages
e.g. alias analysis etc.

5 Research Trends - Ex 2

= Combine techniques in different areas
to develop hybrid verification methods
= Model Checking and Abstraction
= Currently a hot research direction
= Model Checking and Theorem Proving
= What kinds of deduction ?
= Model Checking and Program Debugging

techniques (for enhanced program
comprehension)

3 Model Checking & Abstraction

= Use of boolean abstractions for making
an inf-state pgm amenable to MC.

= Modified later to form a
= Abstract-MC-Refine loop

= How to refine the abstraction if MC
produced a counter-example ?
= Relevant: [Dill/LICS01, Clarke/CAV00]
= This area is quickly getting saturated

5 Model Checking & Abstraction

= Search optimizations for different
iterations of the Abst-MC-Refine loop

» No need to search entire state space in
all runs of model checking

= Caching of counter-example free state
spaces for invariant properties.

= Relevant paper : [Henzinger/POPL 02]

Model Checking & Deduction

= Abstraction based techniques are used
to maintain finite approximation of the
memory store of a program.

= The control locations are assumed to be
finite, and control flow is maintained
exactly.

= Could the control itself be not finite ?
= YES

. Parameterized systems

= Infinite family of finite-state systems

= €.g. n-process token ring for all n

= Every member of this family is a finite state
system.

= You could look at the entire family as a
single program whose control location is
given by the unbounded vector

» < State of Procl, State of Proc2,.... >

3 Parameterized Systems

= Extensions: each member of the family
may also be infinite-state e.g. infinite
domain data variables ...

= Applications: Distributed programs
= User-level

= System-level (e.g. cache coherence
protocol)

= How to verify Parameterized Systems ?

Parameterized System Verif.

= Finding out specific families for which a certain
control abstraction is safe.

= Restricted to well-known but simple examples

= Finitely represent the state space of a parameterized
system by a rich language [regular exp say] and
model check over this representation.

= Relevant Paper: [Pnueli/CAV97]

= [Not saturated yet — still lot of effort in
CAV/TACAS conferences]

3 Model Checking and Induction

= Induct over the recursive definition of a

process network / protocol

= Points us to a larger problem: Integrating a proof
rule like induction with model checking

= Integration and interfacing of model checkers
within theorem provers

= Relevant paper: "Inductively verifying invariant
properties of parameterized systems”,
Roychoudhury and Ramakrishnan, Automated
Software Engineering Journal, 2004.

5 Integration with Thm Proving

= A theorem prover produces proofs.
= A model checker produces yes/no and
counter-examples (if any).

= Modify a model checker to produce a
proof/disproof which can be fed to the
theorem prover.

= Relevant Papers
= [Roychoudhury/PPDP00], [Namjoshi/CAV01]

3 The list so far ...

= Generating models from code

= Refinement strategies for abstraction
refinement based software verification

= Techniques for verifying parameterized
protocols in distributed systems

= Tight integration of model checkers into
existing theorem provers

. Other trends

= Much work needed on integrating formal
techniques like model checking with software
development activities like debugging

= Example: Localizing the cause of an
error (in terms of source code line
numbers) from a counter-example

= Relevant paper: [Ball/POPL03]

More on integration

= Model Checking, Theorem Proving, Abstract
Interpretation are all static checking techniques.

= In practice, many dynamic checking techniques exist
for validation

= Run-time monitoring
= Record and replay (post-mortem)

= Combination of static and dynamic checking
techniques is way open and speculative
= Many topics of interest here !/

. Why dynamic ?

= Static checking methods are
= Either non automated
= Theorem Proving
= Or of high complexity and inaccurate
= Model Checking, needs abst. Refinement.
= Debugging is typically for a single
program run
= Testing a program for a selected input.

3 Dynamic Slicing

= Criterion
= Program Input
= Control location (a selected line of text)
= Variable (could be an object or a field of an
object)
= QOutput

= All program lines which directly or
indirectly affect the criterion.

5 Example 1

0 scanf(“%d”, &A); Criterion
1. V=A (A=0, 4, U)
2 W=X
3 U=y,
4 printf("%d\n", U); Slice
{0,1,3,4}

Just follows through a chain of data dependences.

3 Example 2

0 scanf(“%d", &A);

1. If (A==0);

2 W=X;

3 U=A;

4}

5 printf("%d\n”, U);
Criterion (A==0,5,U)

Slice {0,1,3,4}
Follow through chain of control and data dependences.

Dynamic Dependence Graph

= G=(V,E)
= V = All statement occurrences for the test input
under consideration.

= E = Data and Control dependences between
statement occurrences.

= Slicing Criterion
= A node in the DDG
= Slice computation
= Nodes reachable from slicing criterion

3 Data dependences

=1 An edge from a variable usage to the
\ latest definition of the variable.
U:=
-> Do we consider this data dependence
edge ?
Ali] =1,

- Remember that the slicing is for an input,
so the addresses are resolved

U := A[j] - We thus define data dependences
corresponding to memory locations rather
than variable names.

. Control Dependences

Post-dominated: I,J - nodes in Control Flow Graph

T is post-dominated by J iff all paths from I to EXIT pass through J

YES NO

})

3 Control Dependences

I not post-dom by J

U, V post-dom by J

Control dependence
I->]

. Dynamic Slice Illustration

0 scanf("%d”, &A);
1. If (A== 0);

2 (\W =X;

3 U=A

4 3} ~—___

5 printf("%d\n”, U);

Criterion: 5,U with input A ==0

Trace: <0,1,2,3,4,5> Slice = {0,1,3,5}
Data dependences encountered 5->3,1->0
Control dependence encountered 3 -> 1

3 Omission Errors

1b6=1; Criterion
2 x= 1; 6,x with input a= 2
3if (a > 1) {- Trace = <1,2,3,4,6>
4 if (b > 1){ Slice = {2,6}
5 x=2
} The bug could be in line 1 leading to a wrong
omission of line 5’s execution, thereby
} affecting the slicing criterion.
6..=x -- [Wang + Roychoudhury 2004]

Can extend the notion of dynamic slice to include this, but the slice keeps
on getting bigger. We need mechanisms to pinpoint the error !

. Fault Localization

1b6=1; Criterion
2 x= 1; 6,x with input a= 2
3if (a > 1) { Trace = <1,2,3,4,6>
4 if (b > 1){ Slice = {2,6}
5 x=2
} The bug could be in line 1.
/1 How to locate the bug from execution trace ?
6..=x

3 What is a bug / fault ?

= Two possibilities
= The programmer has clear intuition about certain
unacceptable behaviors and states them as
(typically) invariant properties
= G(pc== 6=>x==1)
= More likely: The programmer discovers
undesirable behaviors during testing
= Forinput a==0, I did not expect x == 1 at pc ==
= Bug!

3 So...

= We have
= Weak Error Specification
= Counter-example trace (the run showing
the “undesirable behavior”)
= Contrast this with static checking via MC
= Precise Error Specification

= No counter-example — we are attempting
to find it via MC.

3 Fault Localization via MC

= Take a precise error spec. as invariant
= MC and find counter-example trace

= Find transitions in o which do not appear in any
correct trace

» Using precise notion of “correct” trace.
= Need a separate inter-procedural analysis
algorithm to collect transitions in correct traces
= Compares code coverage between correct and
incorrect traces — seq. of stmts forgotten
= Ball, Naik and Rajamani — POPL 2003.

5 Another approach based on ...

= ... comparison of correct/incorrect runs.
= Classify the runs for a large pool of inputs as failing

or successful — no Temporal logic properties required.
= Failing run is usually given — encountered during

testing / debugging.
= Compare code coverage of failing & succ. Runs

= (Stmts executed in f — Statements executed in s) for all s
= Choose the s with smallest distance and report

corresponding distance

= Renieris/Reiss — ASE 2003,

= Wang/Roychoudhury ASE 2005

3 Overall comments

= Opportunities exist — but saturation (in terms of good
work) will come in few years, I think !
= Basic References

= Dynamic Program Slicing — Agrawal and Horgan,
PLDI 1990.

= A Survey of Program Slicing Techniques, Frank
Tip, 1995.

3 Trends at high-level

= Specifically target the technology of each
area to be available for SW verif.

= Combine techniques in different areas to
develop hybrid verification methods.

= Develop techniques for specific application
areas.

= Some thoughts for embedded
software/protocols/interfaces.

:-ES

= A computing system which is part of a “larger
system” (read — device).

= The larger system constitutes the
environment — in continuous interaction.

= The computing system implements a specific
functionality.

= A dedicated computer implemented by a
combination of hardware and software.

. ES examples

= Automobiles

= Train control systems

= Avionics / Flight control
= Nuclear Power Plants

= Inside medical devices (for image
manipulation) and other purposes

ES examples

= HDTV
= Washing Machines
= Microwave

= Controllers for other household devices such as Air-
con

= Finally, smart room / wear (e.g. GA Tech)

FV for ES — The reality

= Is it any different ?
= Current verif. Techniques should scale up for ES Hardware.

= Embodies hardware/software interaction: often real-time.

= Reuse of vendor provided IP blocks

= Implementation not known for Intellectual property
reasons

= No single person/team knows the entire design.

FV for ES - Consequences

= A realistic ES design typically consists of:
= Number of IP blocks
= Connected to one/more system bus via bridges

= View an IP block as a hardware subroutine — Need REUSE.

= Reuse IP blocks designed by others (and provided by vendors).

= Each IP block comes with interface specification
= Input and output signals
= Some timing diagrams

FV for ES - Issues

= Synthesizing component interface software reliably.
= Need high level modeling (UML is one choice).
= Synthesize executable description from high level models.
= Still you might be using other’s components !!
= Static verification of unknown components
= Assume guarantee reasoning
= Extract assumptions/guarantees from interface
spec.
= Lot of opportunities in research in the ES area.

= But cannot be routine application of general-
purpose methods.

