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Trends in Software Validation

Abhik Roychoudhury
CS 6214

Areas related to SW verif.

Formal Methods
Model based techniques
Proof construction techniques

Program Analysis
Static Analysis – Abstract Interpretation

Software Engineering
Testing, Monitoring
Debugging, Program Understanding

Your Expertise

… should be in two of the three areas 
(not just in formal methods)
For more theoretical work, you should 
have good grounding in

Formal methods & Program Analysis

For more practical work, you need
Formal methods & Software Engineering

Research Trends – High level

In each individual area, as before.
OR, 

specifically target the technology of each 
area to be available for SW verif.
Combine techniques in different areas to 
develop hybrid verification methods.
Develop techniques for specific application 
areas.

Research Trends – Ex 1

Specifically target the technology of 
each area to be available for SW verif.

Example: Generating models from code
Makes model checking available for SW
Often requires lot of engineering work

E.g. working out the model generation rules for 
constructs of a PL
Lot of work in integrating analysis packages 
e.g. alias analysis etc.

Research Trends - Ex 2

Combine techniques in different areas 
to develop hybrid verification methods

Model Checking and Abstraction
Currently a hot research direction

Model Checking and Theorem Proving
What kinds of deduction ?

Model Checking and Program Debugging 
techniques (for enhanced program 
comprehension)
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Model Checking & Abstraction

Use of boolean abstractions for making 
an inf-state pgm amenable to MC.
Modified later to form a 

Abstract-MC-Refine loop
How to refine the abstraction if MC 
produced a counter-example ?

Relevant: [Dill/LICS01, Clarke/CAV00]
This area is quickly getting saturated

Model Checking & Abstraction

Search optimizations for different 
iterations of the Abst-MC-Refine loop
No need to search entire state space in 
all runs of model checking

Caching of counter-example free state 
spaces for invariant properties.
Relevant paper :  [Henzinger/POPL 02]

Model Checking & Deduction

Abstraction based techniques are used 
to maintain finite approximation of the 
memory store of a program.
The control locations are assumed to be 
finite, and control flow is maintained 
exactly.
Could the control itself be not finite ?

YES

Parameterized systems

Infinite family of finite-state systems
e.g. n-process token ring for all n
Every member of this family is a finite state 
system.
You could look at the entire family as a 
single program whose control location is 
given by the unbounded vector

< State of Proc1, State of Proc2,…. >

Parameterized Systems

Extensions: each member of the family 
may also be infinite-state e.g. infinite 
domain data variables …
Applications: Distributed programs

User-level
System-level (e.g. cache coherence 
protocol)

How to verify Parameterized Systems ?

Parameterized System Verif.
Finding out specific families for which a certain 
control abstraction is safe.

Restricted to well-known but simple examples 
Finitely represent the state space of a parameterized 
system by a rich language [regular exp say] and 
model check over this representation.

Relevant Paper: [Pnueli/CAV97]
[ Not saturated yet – still lot of effort in 
CAV/TACAS conferences ] 
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Model Checking and Induction

Induct over the recursive definition of a 
process network / protocol

Points us to a larger problem: Integrating a proof 
rule like induction with model checking
Integration and interfacing of model checkers 
within theorem provers
Relevant paper: “Inductively verifying invariant 
properties of parameterized systems” , 
Roychoudhury and Ramakrishnan, Automated 
Software Engineering Journal, 2004.

Integration with Thm Proving

A theorem prover produces proofs.
A model checker produces yes/no and 
counter-examples (if any).
Modify a model checker to produce a 
proof/disproof which can be fed to the 
theorem prover.
Relevant Papers

[Roychoudhury/PPDP00], [Namjoshi/CAV01]

The list so far …

Generating models from code
Refinement strategies for abstraction 
refinement based software verification
Techniques for verifying parameterized 
protocols in distributed systems
Tight integration of model checkers into 
existing theorem provers

Other trends

Much work needed on integrating formal 
techniques like model checking with software 
development activities like debugging

Example: Localizing the cause of an 
error (in terms of source code line 
numbers) from a counter-example
Relevant paper: [Ball/POPL03]

More on integration
Model Checking, Theorem Proving, Abstract 
Interpretation are all static checking techniques.
In practice, many dynamic checking techniques exist 
for validation

Run-time monitoring
Record and replay (post-mortem) 

Combination of static and dynamic checking 
techniques is way open and speculative 

Many topics of interest here !!

Why dynamic ?

Static checking methods are 
Either non automated

Theorem Proving

Or of high complexity and inaccurate
Model Checking, needs abst. Refinement.

Debugging is typically for a single 
program run

Testing a program for a selected input.
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Dynamic Slicing

Criterion
Program Input
Control location (a selected line of text)
Variable (could be an object or a field of an 
object)

Output
All program lines which directly or 
indirectly affect the criterion.

Example  1

0    scanf(“%d”, &A);

1.    V = A;

2     W = X;

3     U = V;

4     printf(“%d\n”, U);

Criterion

(A=0, 4, U)

Slice

{0,1,3,4}

Just follows through a chain of data dependences.

Example 2

0    scanf(“%d”, &A);
1.    If (A == 0){;
2         W = X;
3 U = A;
4 }
5     printf(“%d\n”, U);

Criterion  (A == 0, 5, U)

Slice   {0,1,3,4}

Follow through chain of control and data dependences.

Dynamic Dependence Graph
G = (V, E)

V = All statement occurrences for the test input 
under consideration.
E = Data and Control dependences between 
statement occurrences.

Slicing Criterion
A node in the DDG

Slice computation
Nodes reachable from slicing criterion

Data dependences 

V := 1;

…

U := V

An edge from a variable usage to the 
latest definition of the variable.

A[i] := 1;

…

U := A[j]

Do we consider this data dependence 
edge ?

Remember that the slicing is for an input, 
so the addresses are resolved

We thus define data dependences 
corresponding to memory locations rather 
than variable names.

Control Dependences

Post-dominated:  I,J – nodes   in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I

J

EXIT

I

J

EXIT

YES
NO
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Control Dependences

I

U

V

J

EXIT

I not post-dom by J

U, V post-dom by J

Control dependence

I -> J

Dynamic Slice Illustration

0    scanf(“%d”, &A);
1.    If (A == 0){;
2         W = X;
3          U = A;
4     }
5     printf(“%d\n”, U);

Criterion:  5,U  with input A == 0

Trace:  <0,1,2,3,4,5>         Slice = {0,1,3,5}

Data dependences encountered    5 -> 3, 1 -> 0

Control dependence encountered  3 -> 1

Omission Errors

1 b = 1;
2 x = 1;
3 if (a > 1) { 
4     if (b > 1){ 
5             x = 2

}
} 
6 ... = x

Criterion

6,x with input   a= 2

Trace = <1,2,3,4,6>

Slice =  {2,6}

The bug could be in line 1 leading to a wrong 
omission of line 5’s execution, thereby 
affecting the slicing criterion.

-- [Wang + Roychoudhury 2004]

Can extend the notion of dynamic slice to include this, but the slice keeps 
on getting bigger. We need mechanisms to pinpoint the error !

Fault Localization

1 b = 1;
2 x = 1;
3 if (a > 1) { 
4     if (b > 1){ 
5             x = 2

}
} 
6 ... = x

Criterion

6,x with input   a= 2

Trace = <1,2,3,4,6>

Slice =  {2,6}

The bug could be in line 1.

How to locate the bug from execution trace ?

What is a bug / fault ?
Two possibilities

The programmer has clear intuition about certain 
unacceptable behaviors and states them as 
(typically) invariant properties

G (pc ==  6 => x == 1)

More likely: The programmer discovers 
undesirable behaviors during testing

For input  a==0, I did not expect x == 1 at pc == 6
Bug !

So…

We have
Weak Error Specification
Counter-example trace (the run showing 
the “undesirable behavior”)

Contrast this with static checking via MC
Precise Error Specification
No counter-example – we are attempting 
to find it via MC.
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Fault Localization via MC
Take a precise error spec. as invariant

MC and find counter-example trace σ
Find transitions in σ which do not appear in any 
correct trace

Using precise notion of “correct” trace.
Need a separate inter-procedural analysis 
algorithm to collect transitions in correct traces
Compares code coverage between correct and 
incorrect traces – seq. of stmts forgotten

Ball, Naik and Rajamani – POPL 2003.

Another approach based on …
… comparison of correct/incorrect runs.
Classify the runs for a large pool of inputs as failing 
or successful – no Temporal logic properties required.
Failing run is usually given – encountered during 
testing / debugging.
Compare code coverage of failing & succ. Runs

(Stmts executed in f – Statements executed in s) for all s
Choose the s with smallest distance and report 
corresponding distance

Renieris/Reiss – ASE 2003,  
Wang/Roychoudhury ASE 2005

Overall comments
Opportunities exist – but saturation (in terms of good 
work) will come in few years, I think !

Basic References
Dynamic Program Slicing – Agrawal and Horgan, 
PLDI 1990.
A Survey of Program Slicing Techniques, Frank 
Tip, 1995.

Trends at high-level  …

Specifically target the technology of each 
area to be available for SW verif.
Combine techniques in different areas to 
develop hybrid verification methods.
Develop techniques for specific application 
areas.

Some thoughts for embedded 
software/protocols/interfaces.

ES

A computing system which is part of a “larger 
system” (read – device).
The larger system constitutes the 
environment – in continuous interaction.
The computing system implements a specific 
functionality.

A dedicated computer implemented by a 
combination of hardware and software.

ES examples

Automobiles
Train control systems
Avionics / Flight control
Nuclear Power Plants
Inside medical devices (for image 
manipulation) and other purposes
Safety first ! Validation of these control 
software more important
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ES examples
Or more vanilla 
HDTV
Washing Machines
Microwave
Controllers for other household devices such as Air-
con
Finally, smart room / wear (e.g. GA Tech)

FV for ES – The reality 
Is it any different ?

Current verif. Techniques should scale up for ES Hardware.

Embodies hardware/software interaction: often real-time.

Reuse of vendor provided IP  blocks
Implementation not known for Intellectual property 
reasons

No single person/team knows the entire design.

FV for ES - Consequences
A realistic ES design typically consists of:

Number of IP blocks 
Connected to one/more system bus via bridges

View an IP block as a hardware subroutine – Need  REUSE.

Reuse IP blocks designed by others (and provided by vendors).

Each IP block comes with interface specification
Input and output signals
Some timing diagrams

FV for ES - Issues
Synthesizing component interface software reliably.

Need high level modeling (UML is one choice).
Synthesize executable description from high level models.

Still you might be using other’s components !!
Static verification of unknown components

Assume guarantee reasoning
Extract assumptions/guarantees from interface 
spec.

Lot of opportunities in research in the ES area.
But cannot be routine application of general-
purpose methods.


