
1

CS 5219 1

SPIN Model Checker

Abhik Roychoudhury
CS 5219

Department of CS, NUS

CS 5219 2

The context

A tool for modeling complex concurrent
and distributed systems.
Provides:

Promela, a protocol meta language
A model checker
A random simulator for system simulation
Promela models can be automatically
generated from a safe subset of C.

CS 5219 3

Ideal Usage
Write programs in C

Or C programs for each process in a distributed
sys.

Generate Promela Code from C automatically.
Use the model checker of SPIN to search through the
model represented by the Promela code (automatic
verification).
But …

C → Promela tool relatively new.
Promela itself is useful for modeling protocols etc.

CS 5219 4

Our Usage
Learn Promela, a low-level modeling language.
Use it to model simple concurrent system protocols
and interactions.
Gain experience in verifying such concurrent software
using the SPIN model checker.
Gives a feel (at a small scale)

What are hard-to-find errors ?
How to find the bug in the code, once model
checking has produced a counter-example ?

CS 5219 5

Why Promela ?

Low-level specification language to model
finite state sys.
Models finite state concurrent processes
which compute and communicate.
Fairly extensive coverage of communication

Via global shared variables.
Via message channels

Synchronous communication (hand-shake)
Asynchronous communication (buffers)

CS 5219 6

Why Promela ?

Extensive support of various control
constructs for computation.

Assignments, Assert, If, Do
Ideas from guarded command languages

Dynamic creation of processes supported.
Gives the flavor of a realistic multi-threaded
programming language
Yet supported directly by a model checker !!
Ideal for our purposes in this course.

2

CS 5219 7

Example 0
byte state = 0;

proctype A()

{ byte tmp;

(state==0) -> tmp = state;

tmp = tmp+1;

state = tmp;

}

init { run A() ; }

•state : Global Variable

•tmp : Local Variable

•(state==0) -> tmp = state is a
guarded command (blocked if the
guard is false).

•Only one process created.

•Final value of state is 1

But SPIN allows multiple processes to be
created.

CS 5219 8

Example 1

byte state = 0;

proctype A()
{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

What will happen here ?

We need to define how
processes are scheduled
to determine behaviors.

CS 5219 9

Process scheduling
All processes execute concurrently
Interleaving semantics

At each time step, only one of the “active” processes will
execute (non-deterministic choice here)
A process is active, if it has been created, and its “next”
statement is not blocked.
Each statement in each process executed atomically.
Within the chosen process, if several statements are
enabled, one of them executed non-deterministically.

We have not seen such an example yet !

CS 5219 10

Simulation and Verification
At this point, please note:

Promela being an executable specification
language, we talk of how Promela programs are
executed.
Non-determinism broken during simulation.
We will mostly use Promela in a different way.
Given a Promela program

We let SPIN generate a model out of it
internally.
This model captures ALL possible traces.
The model-checker traverses all possible
behaviors for debugging (diff. from execution!)

CS 5219 11

Looking inside a process

Data Structures
Basic types : int, bool, bit, byte
Arrays
Records (through typedef declarations)

Just as in C, not much going on here !
Check SPIN manual for details

http://spinroot.com/spin/Man/Manual.html

CS 5219 12

Statements

Assignments
Boolean expressions

If true, then no-op else block

Guarded commands
(state == 1) -> tmp = state;
Guard and body evaluated separately, be careful !!
If you want to evaluate them together
atomic { (state == 1) -> tmp = state; }

Effect of a test-and-set instruction

3

CS 5219 13

Example 1 - Revisited

byte state = 0;

proctype A()
{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

Final val. of state can
still be 1 ??

Problem of arbitrary
shared variable access
by several threads.

CS 5219 14

Verification Example 0
bit flag; init {

byte sem; atomic{

proctype myprocess(bit i) run myprocess(0));

{ (flag != 1) -> flag = 1; run myprocess(1));

sem = sem + 1; run observer();

sem = sem – 1; }

flag = 0; }

}

proctype observer() {

assert(sem != 2);

}

All three processes

Instantiated together

CS 5219 15

Issues

Initial values of sem, flag not given
All possible init. values used for model checking.

The system being verified is the
asynchronous composition myprocess(0) ||
myprocess(1)
The property is the invariant

G sem ≠ 2
Local & global invariants can be specified
inside code via assert statements.

CS 5219 16

More on assert
Of the form assert B

B is a boolean expression
If B then no-op else abort (with error).

Can be used inside a process (local invariants)
proctype P(…) { x = … ; assert(x != 2); ….
}

Or as a separate observer process (global invariants)
proctype observer(){ assert(x != 2); }

CS 5219 17

Warm-up Exercise

Try out verification example 0 in SPIN
Try to correct the bug based on the
evidence generated by the model
checker.

CS 5219 18

Verification Example 1
bit flags[2]; init() {

byte sem, turn; atomic{

proctype myprocess(bit id) { run myprocess(0);

flags[id] = 1; run myprocess(1);

turn = 1 – id; run observer(); }

flags[1-id] == 0 || turn == id; }

sem++; proctype observer() {

sem--; assert(sem != 2);

flags[id] = 0; }

}

4

CS 5219 19

Issues
Can you use SPIN to prove mutual exclusion ?

What purpose does turn serve ?
Arrays have been used in this example.

Flags is global, but each element is updated by
only one process in the protocol
Not enforced by the language features.

Processes could alternatively be started as:
active proctype myprocess(…) {
Alternative to dynamic creation via run statement

CS 5219 20

So far …

Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
NOW …

Guarded IF and DO statements
Channel Communication between processes
Model checking of LTL properties

CS 5219 21

Non-deterministic choice

Choice of statements within a process
if
:: condition1 -> … ; … ; …
…
:: conditionk -> … ; … ; …
fi;

If several conditions hold, select and execute
any one (more behaviors for verification).
If none hold, the statement blocks.

CS 5219 22

Loops

Similar to the if-fi statement, we have a do-
od statement.
Repeat the choice selection forever.

Useful for modeling infinite loops pre-dominant in
control software.

Control can transfer out of the loop via a
break statement in the flavor of the C
language.

CS 5219 23

A loop which may terminate
byte count;

proctype counter()
{

do
:: count = count + 1
:: count = count - 1
:: (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example

CS 5219 24

A loop which will not
terminate

active proctype TrafficLightController() {

byte color = green;

do

:: (color == green) -> color = yellow;

:: (color == yellow) -> color = red;

:: (color == red) -> color = green;

od;

}

5

CS 5219 25

Channels
SPIN processes can communicate by exchanging
messages across channels
Channels are typed.
Any channel is a FIFO buffer.
Handshakes supported when buffer is null.
chan ch = [2] of bit;

A buffer of length 2, each element is a bit.
Array of channels also possible.

Talking to diff. processes via dedicated channels.

CS 5219 26

Value-passing
chan ch = [0] of bit;

active proctype sender() active proctype receiver()

{ { bit x;

ch!1; ch?x;

} printf(“%d”, x);

}

The value 1 is passed into local var. x via message passing.

In this example, the message passing was via a handshake

! is output, ? is input

CS 5219 27

Message retrieval
ch ? X

Retrieve the earliest received (note: FIFO)
message from the buffer for ch and store it into
the local var. X on the receiver side.

ch ? 1
Same as (ch ? X; X == 1)

Receiving is always blocked if the corresponding
channel buffer is empty.
Similarly for sending.

CS 5219 28

An example with channels
chan name = [??] of byte; init { atomic { run A(); run B() } }

proctype A() {

name!124;

name!121;

}

proctype B() {

byte state;

name?state

}

Enumerate the behaviors
when:

?? is 0

?? is 1

?? is > 1

CS 5219 29

Another (more famous)
example

#define p 0

#define v 1

chan sema = [0] of { bit };

proctype dijkstra_semaphore() {

byte count = 1;

do

:: (count == 1) -> sema!p; count = 0

:: (count == 0) -> sema?v; count = 1

od

}

CS 5219 30

Another (more famous)
example
proctype user()

{

do

:: sema?p; /* critical section */

sema!v; /* non-critical section */

od

}

init {

run dijkstra_semaphore(); run user(); run user(); run user()

}

6

CS 5219 31

Example: ABP
Alternating Bit Protocol

Reliable channel communication between sender and
receiver.
Exchanging msg and ack.
Channels are lossy
Attach a bit with each msg/ack.
Proceed with next message if the received bit matches your
expectation.

chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };

CS 5219 32

ABP architecture

sender receiver
datachan

ackchan

Implemented as SPIN processes

CS 5219 33

Sender
active proctype Sender()
{ bit out, in;

do
:: datachan!out ->

ackchan?in;
if
:: in == out -> out = 1- out;
:: else fi

od
}

CS 5219 34

Receiver
active proctype Receiver()
{ bit in ;

do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in
od

}

CS 5219 35

Timeouts

Special feature of the language
Time independent feature.

Do not specify a time as if you are
programming.

True if and only if there are no executable
statements in any of the currently active
processes.
True modeling of deadlocks in concurrent
systems (and the resultant recovery).

CS 5219 36

Handling procedures

Processes in SPIN can be used to model and
validate procedures

Each instantiation of a procedure (via procedure
call) is modeled by spawning of a process.

How do the called and caller processes
communicate ?

Common channels

Shared Variables

Makes SPIN useful for software verification.

7

CS 5219 37

A simple example

The factorial function
int fact (int n)
{

if n <= 1 return 1;
else return n*fact(n-1);

}

Each invocation of fact is a separate process. The number of processes is
finite as long as the procedure call stack remains bounded.

CS 5219 38

Factorial in SPIN
proctype fact(int n; chan p)
{ int result;

if
:: (n <= 1) -> p!1
:: (n > 1) -> chan child = [1] of {int};

run fact(n-1, child);
child?result;
p!n*result

fi
}

child serves as input channel

p serves as output channel

CS 5219 39

Now initialize it as …
init
{ int result;

chan child = [1] of {int};

run fact(10, child);
child?result;
printf(“result is %d\n”, result);
assert(result > 1024);

}

Computes fact(10) and
verifies that it is
greater than 2^10

CS 5219 40

Do not forget …

… the obvious
SPIN is a model checking tool which
proceeds by finite graph search.
Cannot be used to prove theorems like

For all n > 3, fact(n) > 2^n

Proof of such theorems involve deductive
machinery like mathematical induction
Supported by theorem provers like PVS

To be studied later in this course.

CS 5219 41

Modeling Exercise

The well-known Ackermann's function is
defined as follows:

1. If x = 0 then A(x, y) = y + 1
2. If y = 0 then A(x, y) = A(x-1, 1)

3. Otherwise, A(x, y) = A(x-1, A(x, y-1))

Write a Promela process "ack" to
compute A(x,y).

Will need to pass channels to processes.

CS 5219 42

Answer to Ackermann’s func.
proctype ack(int m; int n; chan res)
{
int result;
chan child = [1] of {int};

if
::(m == 0) -> res!n+1;
::(n == 0) -> run ack(m-1, 1, child);

child?result;
res!result;

::else -> run ack(m, n-1, child);
child?result;
run ack(m-1, result, child);
child?result;
res!result;

fi
}

init {
int result;
chan res = [1] of {int};
run ack(4,4,res);
res?result;
printf("Result is %d\n", result);

}

8

CS 5219 43

More Modeling Exercises

Use SPIN to prove mutual exclusion of
the semaphore encoding.
Enough of modeling, let us do some
verification.
Features of PROMELA relevant to
verification

End, Progress, Accept labels

CS 5219 44

Part II: Verification using SPIN

Abhik Roychoudhury
CS 5219

Department of CS, NUS

CS 5219 45

Quotable Quotes

“I have been fishing all day, I have found a
number of fish since the morning, I cannot
find any more now, I am pretty sure, there
aren’t any left!”

Folklore
Taken from Antonia Bertolino’s slides on testing

Bug finding techniques will ensure worse
coverage than fishing in a small pond.

CS 5219 46

Quotable Quotes

“If I had eight hours to chop down a
tree, I would spend six hours
sharpening my axe.”

U.S. President Abraham Lincoln
1809 – 1865

Time investment in building verifiers is
time well-spent!

CS 5219 47

Execution engine

Select an enabled transition of any
thread, and execute it.
A transition corresponds to one
statement in a thread.

Handshakes must be executed together.
chan x = [0] of {…};
x!1 || x?data

CS 5219 48

Execution engine

while ((E = executable(s)) != {})

for some (p,t) ∈ E

{ s’ = apply(t.effect, s); /* execute the chosen statement */

if (handshake == 0)

{ s = s’ ;

p.curstate = t.target

}

else{ …

9

CS 5219 49

Execution engine
/* try to complete the handshake */

E’ = executable(s’); /* E’ ={} ⇒ s unchanged */

for some (p’, t’) ∈ E’

{ s = apply(t’.effect, s’);

p.curstate = t.target;

p’.curstate = t’.target;

}

handshake = 0

} /* else */

} /* for some (p, t) ∈ E */

} /* while ((E = executable(s)) … */

while (stutter) { s = s }

CS 5219 50

Specifying Properties in SPIN

Invariants
Local: via assert statement insertion
Global: assert statement in a monitor
process

Deadlocks
Bad Cycles
Arbitrary Temporal Properties

SPIN is a LTL model checker.

CS 5219 51

Deadlocks

When all processes are blocked.
Exhibited by

Finite execution traces where all processes
instantiated have not terminated and are blocked

But all processes in a PROMELA program may
not be meant to terminate !

Our Traffic Light Controller example

Specify legal end-states of the processes
And modify the detection of deadlock as …

CS 5219 52

Deadlocks

Exhibited by –
Finite execution traces where all instantiated
processes have not terminated and not reached a
legal end-state, and are blocked.

Semaphore example
proctype semaphore()
{ byte count = 1;
end: do

:: (count == 1) -> sema!p; count = 0
:: (count == 0) -> sema?v; count = 1

od }

CS 5219 53

Deadlock detection

As in prev. slide (any finite trace satisfying …)
We have marked the beginning of the infinite
loop as a legal end-state of the semaphore
process.
The semaphore process is simply waiting in
the loop for user requests, hence cannot
contribute to a deadlock.
There can be multiple end-states in a process

Check SPIN manual on how to mark them.

CS 5219 54

No-progress Cycles

An infinite loop where processes execute
actions, but no “progress” is achieved.
Example:

A communication protocol where the parties keep
on exchanging control signals, but no data is
actually communicated.

Need to clarify what is “progress”
By inserting progress labels in the Promela model.

10

CS 5219 55 CS 5219 56

No progress cycles
proctype dijkstra()

{ byte count = 1;

end: do

:: (count == 1) ->

progress: sema!p; count = 0

:: (count == 0) -> sema?v; count = 1

od

}

Verifies that at least one process enters the critical section.

CS 5219 57

Correctness claims

Progress labels
Any infinite execution cycle contains at least one progress
label.
No progress cycles are cycles without any progress label

Acceptance labels
No execution trace passes through an accept label infinitely
often
Model Checking reports an acceptance cycle (if any)
Acceptance cycles are cycles with at least one acceptance
state.

CS 5219 58

Acceptance cycles
A cycle which goes through an “acceptance” state infinitely
often

A “bad” cycle if the acceptance state is supposed to occur
only finitely many times.
An acceptance state could mark the state reached after
some initialization activity in a protocol.
Accept. Cycle ⇒ System unintentionally getting reset!

Can mark acceptance states by “accept” labels in Promela code
Labels can be marked by user
Accept labels can be automatically generated from user-
provided LTL properties to support LTL verification (later !)

CS 5219 59

Acceptance cycles
proctype semaphore()
{ byte count = 1;

end: do
:: (count == 1) ->

progress: sema!p; count = 0
:: (count == 0) ->

accept: sema?v; count = 1
od

}

The acceptance label makes it impossible to loop through P
and V operations of the semaphore - this property is false
incidentally.

CS 5219 60

Model Checking

(P1 || P2 || P3) |= ϕ
P1, P2, P3 are Promela processes
ϕ is a LTL formula

Construct a state machine via
M, asynchronous composition of processes
P1, P2, P3
M(¬ϕ), representing ¬ϕ

Show that “language” of M × M(¬ϕ) is empty

11

CS 5219 61

Model Checking

A given LTL property (rather its negation) is
internally represented as an automata.
This property automata is synchronously
composed with the global system automata.
We then show that the traces accepted by
the composition of the system and property
automata is empty.
But the traces are potentially infinite …

Finite state automata over infinite inputs

CS 5219 62

Buchi automata
Mark certain states as acceptance states as usual.

Accept an infinite string if (at least one of) its runs through the
automata visits (one or more of) the acceptance states
infinitely often. OTHERWISE reject the string.

Σ
Σ - {p}

Σ - {p}

Accepts infinite strings with finitely many occurrences of p

CS 5219 63

Buchi automata

Like conventional finite-state automata
A = (S, ∑, I, →, F)

S, set of states
∑, a finite alphabet
I ⊆ S, set of initial states
→ ⊆ S × ∑× S, transition relation
F ⊆ S, set of final states

Notion of acceptance is different

CS 5219 64

Buchi automata
Run r of a string σ ∈ ∑ω

Sequence of states of A obtained by running σ from an
initial state of automata A
r[0] ∈ I and, for all i≥ 0, r[i] r[i+1]

Given a run r,
inf(r) = set of states appearing infinitely often in r
These are the states that are visited infinitely often on
running the infinite string σ

Language of the automata (notion of acceptance)
L(A) = {σ | σ ∈ ∑ω and σ has a run r s.t. inf(r) ∩ F ≠ ∅ }

σ[i]

CS 5219 65

Buchi automata

Conventional finite state automata over
finite strings

String accepted if it ends in a final state

Buchi automata over infinite strings
String accepted if it visits at least one final
state infinitely often.

We need to deal with infinite strings since the
system execution traces are infinite.

CS 5219 66

LTL properties
p,q q

q

Corresponds to the negation of the LTL property

GF p (assuming Σ = {p,q})

If the user seeks to verify GFp, SPIN generates Promela code
for the negation of the property which will internally construct
such an automata.

12

CS 5219 67

A more complex property

true

p && !q

!q!p && !q

true

Represents negation of the LTL
property

G (p ⇒ (p U q))

Internally generated by SPIN
when the user wants to verify
the LTL property.

Acceptance states correspond
to accept labels discussed
earlier.

CS 5219 68

Verif. via Acceptance cycles

Given the Buchi automata for the negation of
LTL property (and its acceptance states)

SPIN computes a synchronous product of this with
the global transition system
The property automata should always make a
move with the system automata
The language of the product automata is non-
empty iff it makes the property automata move in
a cycle containing acceptance states.
Verification achieved by nested depth first search
to find such acceptance cycles.

CS 5219 69

No-progress cycles
Absence of no-progress cycles described in LTL as

GF progress (verify this !)

Negation of the property is
FG no_progress

where no_progress is an atomic proposition which is true in
any state where the control location is not marked as progress

We can compose the program model M with the
automata derived from FG no_progress and perform
model checking by detecting acceptance cycles.

CS 5219 70

Important Clarification
SPIN supports model-checking of arbitrary LTL
properties by

Converting negation of property
Converting negated property to Buchi automata
Constructing synchronous product of design’s transition
system and Buchi automata of negated property
Defining accepting states of the Buchi automata to accept
labels of the product automata, and
Searching for acceptance cycles in the product automata.

Thus, accept labels are generated automatically from
LTL property, and are not directly given by user.

CS 5219 71

Finding acceptance cycles
We have reduced LTL model checking to
finding acceptance cycles
How to find acceptance cycles ?

One possibility is by SCC detection
1. Compute strongly connected components of the
product graph (DFS)
2. Check whether any SCC contains an acceptance state;
if yes, an acceptance cycle exists.

But …

CS 5219 72

13

CS 5219 73

SPIN model checking
SPIN does not use SCC detection for detecting
acceptance cycles (and hence model checking)
The nested DFS algorithm used in SPIN is more
space efficient in practice.

SCC detection maintains two integer numbers per
node. (dfs and lowlink numbers)
Nested DFS maintains only one integer.

This optimization is important due to the huge size of the
product graph being traversed on-the-fly by model
checker.

CS 5219 74

Nested DFS in SPIN
Find acceptance states reachable from initial states
(DFS).
Find all such acceptance states which are reachable
from itself (DFS).
Counter-example evidence (if any) obtained by
simply concatenating the two DFS stacks.

CS 5219 75 CS 5219 76

Standard DFS on M × M(ϕ)
procedure dfs(s)

push s to Stack
add {s} to States
for each transition s → s’ do

if s ∉ States then dfs(s’)
endfor
pop s from Stack

end

CS 5219 77

Nested DFS– Step 1
procedure dfs1(s)

push s to Stack1
add {s} to States1
if accepting(s) then

States2 := empty; seed := s; dfs2(s)
endif
for each transition s → s’ do

if s’ ∉ States1 then df1(s’)
endfor
pop s from Stack1

end

CS 5219 78

Nested DFS – Step 2
procedure dfs2(s)

push s to Stack2
add {s} to States2
for each transition s → s’ do

if s’ = seed then report acceptance cycle
else if s’ ∉ States2 then df2(s’)

endif
endfor
pop s from Stack2

end

14

CS 5219 79

More on nested DFS
Space efficient compared to SCC detection

Only one id maintained (the DFS number) for each state
being visited.

Time inefficient
Different invocations of DFS2 may search the same portion
of state space.
But DFS2 always starts from scratch.
Exercise: how to re-use results of past DFS2 invocations ?

accept

accept
CS 5219 80

Some Common Questions
How does the product of the system and property
automata work ?

How is the interaction between system and
property automata achieved ?

Can we specify LTL properties directly ?
Yes, you can do so in SPIN.

Can we model/verify pgms with procedures
Yes.

CS 5219 81

Connect System and Property
System model

int x = 100;
active proctype A()
{ do

:: x %2 -> x = 3*x+1
od

}
active proctype B()
{ do

:: !(x%2) -> x = x/2
od

}

Property
GF (x = 1)

Insert into code
#define q (x == 1)

Now try to verify GF q

CS 5219 82

Enforcing fairness
All LTL counter-examples are acceptance cycles.

No point in reporting acceptance cycles which arise out of
unfair scheduling.

If there are K active concurrent processes in the Promela
model being verified, all of these processes should have
transitions within the acceptance cycle found.

--- Weak fairness requirement

How to enforce this requirement?

Linear blow-up in state space.

Create (K+2) copies of (P1||…||PK)×M(¬ϕ)

ϕ is the property being verified

CS 5219 83

Enforcing fairness

1..K

1 2

…
K

≠1 ≠2 ≠K

1..K

K-1

Also, if state s in ith copy has no outgoing transition by Pi add the transition

s in ith copy s in (i+1)th copy

CS 5219 84

Enforcing fairness

pid = 1

pid = 2

1
1

2

2

1
2

2

1

State Space

15

CS 5219 85

Let us finish with a real-life
situation

July 4, 1997
NASA’s Pathfinder landed on Mars.
Tremendous engineering feat.
Hard to design the control software with
concurrency and priority driven scheduling
of threads.
The SpaceRover would lose contact with
earth in unpredictable moments.

CS 5219 86

The Mars Pathfinder problem

“But a few days into the mission, not
long after Pathfinder started gathering
meteorological data, the spacecraft
began experiencing total system resets,
each resulting in losses of data. The
press reported these failures in terms
such as "software glitches" and "the
computer was trying to do too many
things at once".” …

CS 5219 87

Essence of the problem in SPIN
mtype = { free, busy, idle, waiting, running };

mtype H = idle; mtype L = idle; mtype mutex = free;

active proctype high();

{end: do

:: H = waiting;

atomic { mutex == free ->

mutex = busy };

H = running;

atomic{ H=idle; mutex=free }

od

}

active proctype low() provided (H == idle)

{ end: do

:: L = waiting;

atomic{ mutex== free->

mutex = busy};

L = running;

atomic{ L=idle; mutex = free }

od

}
CS 5219 88

State Space Graph

i,i,f

w,i,f
w,w,f

i,w,f

i,w,b

i,r,b

w,r,b

w,w,b

w,w,b

r,w,b

w,i,b

r,i,b

w ≡waiting

i ≡idle

r ≡running

b ≡busy

f ≡ free

CS 5219 89

Source of deadlock

Counterexample
Low priority thread acquires lock
High priority thread starts
Low priority process cannot be scheduled
High priority thread blocked on lock

Actual error was a bit more complex with
three threads of three different priorities

Timer went off with such a deadlock resulting in a
system reset and loss of transmitted data.

CS 5219 90

Readings
http://spinroot.com/spin/Man/Manual.html

SPIN manual
The model checker SPIN (Holzmann)

IEEE transactions on software engineering, 23(5), 1997.
http://spinroot.com/spin/Doc/SpinTutorial.pdf

SPIN beginner’s tutorial (Theo Ruys)
Summer school Lecture notes on Software MC

See Section 2, Posted under IVLE lesson plan.
The SPIN model checker: primer and reference
manual, by Holzmann (mostly chapters 2,3,7,8)

TA168 Hol 2004, RBR in Science Library

