
1

CS 5219 1

SPIN Model Checker

Abhik Roychoudhury
CS 5219

Department of CS, NUS

CS 5219 2

The context

A tool for modeling complex concurrent 
and distributed systems.
Provides:

Promela, a protocol meta language
A model checker
A random simulator for system simulation
Promela models can be automatically 
generated from a safe subset of C.
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Ideal Usage
Write programs in C

Or C programs for each process in a distributed 
sys.

Generate Promela Code from C automatically.
Use the model checker of SPIN to search through the 
model represented by the Promela code (automatic 
verification).
But …

C → Promela tool relatively new.
Promela itself is useful for modeling protocols etc.
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Our Usage
Learn Promela, a low-level modeling language.
Use it to model simple concurrent system protocols 
and interactions.
Gain experience in verifying such concurrent software 
using the SPIN model checker.
Gives a feel (at a small scale)

What are hard-to-find errors ?
How to find the bug in the code, once model 
checking has produced a counter-example ?
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Why Promela ?

Low-level specification language to model 
finite state sys.
Models finite state concurrent processes 
which compute and communicate.
Fairly extensive coverage of communication

Via global shared variables.
Via message channels

Synchronous communication (hand-shake)
Asynchronous communication (buffers)
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Why Promela ?

Extensive support of various control 
constructs for computation.

Assignments, Assert, If, Do
Ideas from guarded command languages

Dynamic creation of processes supported.
Gives the flavor of a realistic multi-threaded 
programming language
Yet supported directly by a model checker !!
Ideal for our purposes in this course.
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Example 0
byte state = 0; 

proctype A() 

{  byte tmp; 

(state==0) -> tmp = state; 

tmp = tmp+1; 

state = tmp;

}

init  { run A() ;  }

•state :  Global Variable

•tmp :  Local Variable

•(state==0) -> tmp = state  is a 
guarded command (blocked if the 
guard is false).

•Only one process created.

•Final value of state is 1

But SPIN allows multiple processes to be 
created.
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Example 1

byte state = 0; 

proctype A() 
{  byte tmp; 

(state==0) -> tmp = state; 
tmp = tmp+1; state = tmp;

}

init  { run A() ; run A();  }

What will happen here ?

We need to define how 
processes are scheduled
to determine behaviors.
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Process scheduling
All processes execute concurrently
Interleaving semantics

At each time step, only one of the “active” processes will 
execute (non-deterministic choice here)
A process is active, if  it has been created, and its “next” 
statement is not blocked.
Each statement in each process executed atomically.
Within the chosen process, if several statements are 
enabled, one of them executed non-deterministically.

We have not seen such an example yet !
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Simulation and Verification
At this point, please note:

Promela being an executable specification 
language, we talk of how Promela programs are 
executed. 
Non-determinism broken during simulation.
We will mostly use Promela in a different way.
Given a Promela program

We let SPIN generate a model out of it 
internally.
This model captures ALL possible traces.
The model-checker traverses all possible 
behaviors for debugging (diff. from execution! )
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Looking inside a process

Data Structures
Basic types : int, bool, bit, byte
Arrays 
Records (through typedef declarations)

Just as in C, not much going on here !
Check SPIN manual for details

http://spinroot.com/spin/Man/Manual.html
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Statements

Assignments
Boolean expressions

If true, then no-op else block

Guarded commands
(state == 1) ->  tmp = state;
Guard and body evaluated separately, be careful !!
If you want to evaluate them together
atomic {  (state ==  1) -> tmp = state; }

Effect of a test-and-set instruction
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Example 1 - Revisited

byte state = 0; 

proctype A() 
{  byte tmp; 

(state==0) -> tmp = state; 
tmp = tmp+1; state = tmp;

}

init  { run A() ; run A();  }

Final val. of state  can 
still be 1 ??

Problem of arbitrary 
shared variable access 
by several threads.
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Verification Example 0
bit  flag;                                         init {

byte sem;                                            atomic{

proctype myprocess(bit i)                            run myprocess(0));

{   (flag != 1) -> flag = 1;                                run myprocess(1));

sem = sem + 1;                                         run observer();

sem = sem – 1;                               }

flag =  0;                                   }

}

proctype observer() {

assert( sem != 2 );

}

All three processes 

Instantiated together
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Issues

Initial values of sem, flag not given
All possible init. values used for model checking.

The system being verified is the 
asynchronous composition myprocess(0) ||  
myprocess(1)
The property is the invariant

G sem ≠ 2
Local & global invariants can be specified 
inside code via assert statements.
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More on assert
Of the form  assert B

B is a boolean expression
If B then no-op else abort (with error).

Can be used inside a process (local invariants)
proctype P( … ) {     x = … ;  assert( x != 2);  …. 
}

Or as a separate observer process (global invariants)
proctype observer(){  assert(x != 2); }
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Warm-up Exercise

Try out verification example 0 in SPIN
Try to correct the bug based on the 
evidence generated by the model 
checker.
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Verification Example 1
bit flags[2];                                                  init()  {

byte sem, turn;                                                atomic{

proctype myprocess(bit id)  {                              run myprocess(0);

flags[id] = 1;                                                      run myprocess(1);

turn = 1 – id;                                                      run observer();  }

flags[1-id] == 0 ||  turn == id;                 }

sem++;                                         proctype observer() {

sem--;                                                          assert( sem != 2 );

flags[id] = 0;                                 }

}
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Issues
Can you use SPIN to prove mutual exclusion ?

What purpose does turn serve ?
Arrays have been used in this example.

Flags is global, but each element is updated by 
only one process in the protocol
Not enforced by the language features.

Processes could alternatively be started as:
active proctype myprocess(…) {
Alternative to dynamic creation via run statement

CS 5219 20

So far …

Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
NOW …

Guarded IF and DO statements
Channel Communication between processes
Model checking of LTL properties

CS 5219 21

Non-deterministic choice

Choice of statements within a process
if 
:: condition1 ->  … ; … ; …
…
:: conditionk -> … ; … ; …
fi;

If several conditions hold, select and execute 
any one (more behaviors for verification).
If none hold, the statement blocks.
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Loops

Similar to the if-fi statement, we have a do-
od statement.
Repeat the choice selection forever.

Useful for modeling infinite loops pre-dominant in 
control software.

Control can transfer out of the loop via a 
break statement in the flavor of the C 
language.
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A loop which may terminate
byte count;

proctype counter()
{

do
:: count = count + 1
:: count = count - 1
:: (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example
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A loop which will not 
terminate

active proctype TrafficLightController() {

byte color = green;

do

:: (color == green) -> color = yellow;

:: (color == yellow) -> color = red;

:: (color == red) -> color = green;

od;

}
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Channels
SPIN processes can communicate by exchanging 
messages across channels
Channels are typed.
Any channel is a FIFO buffer.
Handshakes supported when buffer is null.
chan ch = [2] of bit;

A buffer of length 2, each element is a bit.
Array of channels also possible.

Talking to diff. processes via dedicated channels.
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Value-passing
chan ch =  [0] of bit;

active proctype sender()                     active proctype receiver()

{                                                           {   bit  x;

ch!1;                                                  ch?x;

}                                                               printf(“%d”, x);

}

The value 1 is passed into local var. x via message passing.

In this example, the message passing was via  a handshake

! is output,  ?  is input
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Message retrieval
ch ? X

Retrieve the earliest received (note: FIFO) 
message from the buffer for ch and store it into 
the local var. X on the receiver side.

ch ? 1
Same as  (ch ? X;  X == 1)

Receiving is always blocked if the corresponding 
channel buffer is empty.
Similarly for sending.
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An example with channels
chan name = [??] of byte; init { atomic { run A(); run B() } } 

proctype A() { 

name!124; 

name!121;

}

proctype B() { 

byte state; 

name?state

} 

Enumerate the behaviors 
when:

?? is 0

?? is 1

?? is > 1
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Another (more famous) 
example

#define p 0 

#define v 1 

chan sema = [0] of { bit }; 

proctype dijkstra_semaphore() { 

byte count = 1; 

do

:: (count == 1) -> sema!p; count = 0 

:: (count == 0) -> sema?v; count = 1 

od

}
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Another (more famous) 
example
proctype user() 

{ 

do 

:: sema?p;  /* critical section */ 

sema!v; /* non-critical section */ 

od

} 

init { 

run dijkstra_semaphore(); run user(); run user(); run user()

} 
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Example: ABP
Alternating Bit Protocol

Reliable channel communication between sender and 
receiver.
Exchanging msg and ack.
Channels are lossy
Attach a bit with each msg/ack.
Proceed with next message if the received bit matches your 
expectation.

chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };
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ABP architecture

sender receiver
datachan

ackchan

Implemented as SPIN processes
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Sender
active proctype Sender()
{    bit out, in;

do
:: datachan!out ->

ackchan?in;
if 
:: in == out -> out = 1- out;
:: else fi

od
}
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Receiver
active proctype Receiver()
{    bit in ;

do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in
od

}
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Timeouts

Special feature of the language
Time independent feature.

Do not specify a time as if you are 
programming.

True if and only if there are no executable 
statements in any of the currently active 
processes.
True modeling of deadlocks in concurrent 
systems (and the resultant recovery).
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Handling procedures

Processes in SPIN can be used to model and 
validate procedures 

Each instantiation of a procedure (via procedure 
call) is modeled by spawning of a process.

How do the called and caller processes 
communicate ?

Common channels

Shared Variables

Makes SPIN useful for software verification.
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A simple example

The factorial function
int fact (int n)
{

if n <= 1 return 1;
else  return n*fact(n-1);

}

Each invocation of fact is a separate process. The number of processes is 
finite as long as the procedure call stack remains bounded.
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Factorial in SPIN
proctype fact(int n; chan p)
{  int result;

if 
::  (n <= 1) -> p!1
::  (n > 1) ->  chan child = [1] of {int};

run fact(n-1, child);
child?result;
p!n*result

fi
}

child serves as input channel

p serves as output channel
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Now initialize it as …
init
{    int result;

chan child = [1] of {int};

run fact(10, child);
child?result;
printf(“result is %d\n”, result);
assert(result > 1024);

}

Computes fact(10) and 
verifies that it is 
greater than  2^10
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Do not forget …

… the obvious
SPIN is a model checking tool which 
proceeds by finite graph search.
Cannot be used to prove theorems like

For all n > 3, fact(n) > 2^n

Proof of such theorems involve deductive 
machinery like mathematical induction
Supported by theorem provers like PVS

To be studied later in this course.
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Modeling Exercise

The well-known Ackermann's function is 
defined as follows:

1. If x = 0 then A(x, y) = y + 1
2. If y = 0 then A(x, y) = A(x-1, 1) 

3. Otherwise, A(x, y) = A(x-1, A(x, y-1))

Write a Promela process "ack" to 
compute A(x,y).

Will need to pass channels to processes.
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Answer to Ackermann’s func.
proctype ack(int m; int n; chan res)
{
int result;
chan child = [1] of {int};

if 
::(m == 0) -> res!n+1;
::(n == 0) -> run ack(m-1, 1, child);

child?result;
res!result;

::else -> run ack(m, n-1, child);
child?result;
run ack(m-1, result, child);
child?result;
res!result;

fi
}

init {
int result;
chan res = [1] of {int};
run ack(4,4,res);
res?result;
printf("Result is %d\n", result);

}
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More Modeling Exercises

Use SPIN to prove mutual exclusion of 
the semaphore encoding.
Enough of modeling, let us do some 
verification.
Features of PROMELA relevant to 
verification

End, Progress, Accept labels
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Part II: Verification using SPIN

Abhik Roychoudhury
CS 5219

Department of CS, NUS
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Quotable Quotes

“I have been fishing all day, I have found a 
number of fish since the morning, I cannot 
find any more now, I am pretty sure, there 
aren’t any left!”

Folklore
Taken from Antonia Bertolino’s slides on testing

Bug finding techniques will ensure worse 
coverage than fishing in a small pond.
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Quotable Quotes

“If I had eight hours to chop down a 
tree, I would spend six hours 
sharpening my axe.”

U.S. President Abraham Lincoln
1809 – 1865

Time investment in building verifiers is 
time well-spent!
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Execution engine

Select an enabled transition of any 
thread, and execute it.
A transition corresponds to one 
statement in a thread.

Handshakes must be executed together.
chan x = [0] of {…};
x!1              ||   x?data
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Execution engine

while ( (E = executable(s))  != {})

for some (p,t) ∈ E

{    s’ = apply(t.effect, s); /* execute the chosen statement */

if (handshake == 0)

{          s = s’ ;

p.curstate = t.target

}

else{  …
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Execution engine
/* try to complete the handshake */

E’ = executable(s’);  /* E’ ={} ⇒ s unchanged */

for some (p’, t’) ∈ E’

{       s = apply(t’.effect, s’);

p.curstate = t.target;

p’.curstate = t’.target;

}

handshake = 0

}   /*  else  */

} /*  for some (p, t) ∈ E */

}  /* while ((E = executable(s))  … */

while  (stutter) { s = s }
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Specifying Properties in SPIN

Invariants
Local: via assert statement insertion
Global: assert statement in a monitor 
process

Deadlocks
Bad Cycles
Arbitrary Temporal Properties

SPIN is a LTL model checker.
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Deadlocks

When all processes are blocked.
Exhibited by

Finite execution traces where all processes 
instantiated have not terminated and are blocked

But all processes in a PROMELA program may 
not be meant to terminate !

Our Traffic Light Controller example

Specify legal end-states of the processes
And modify the detection of deadlock as …
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Deadlocks

Exhibited by –
Finite execution traces where all instantiated 
processes have not terminated  and not reached a 
legal end-state, and are blocked.

Semaphore example
proctype semaphore() 
{ byte count = 1; 
end: do 

:: (count == 1) -> sema!p; count = 0 
:: (count == 0) -> sema?v; count = 1 

od } 
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Deadlock detection

As in prev. slide (any finite trace satisfying …)
We  have marked the beginning of the infinite 
loop as a legal end-state of the semaphore 
process.
The semaphore process is simply waiting in 
the loop for user requests, hence cannot 
contribute to a deadlock.
There can be multiple end-states in a process

Check SPIN manual on how to mark them.
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No-progress Cycles

An infinite loop where processes execute 
actions, but no “progress” is achieved.
Example:

A communication protocol where the parties keep 
on exchanging control signals, but no data is 
actually communicated.

Need to clarify what is “progress”
By inserting progress labels in the Promela model.
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No progress cycles
proctype dijkstra()

{  byte count = 1; 

end: do 

:: (count == 1) -> 

progress:        sema!p; count = 0 

:: (count == 0) -> sema?v; count = 1 

od

} 

Verifies that at least one process enters the critical section.
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Correctness claims

Progress labels
Any infinite execution cycle contains at least one progress 
label.
No progress cycles are cycles without any progress label

Acceptance labels
No execution trace passes through an accept label infinitely 
often
Model Checking reports an acceptance cycle (if any)
Acceptance cycles are cycles with at least one acceptance 
state.
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Acceptance cycles
A cycle which goes through an “acceptance” state infinitely 
often

A “bad” cycle if the acceptance state is supposed to occur 
only finitely many times.
An acceptance state could mark the state reached after 
some initialization activity in a protocol.
Accept. Cycle ⇒ System unintentionally getting reset!

Can mark acceptance states by “accept” labels in Promela code
Labels can be marked by user
Accept labels can be automatically generated from user-
provided LTL properties to support LTL verification (later !)
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Acceptance cycles
proctype semaphore()
{  byte count = 1; 

end: do 
:: (count == 1) -> 

progress:   sema!p; count = 0 
:: (count == 0) -> 

accept:           sema?v; count = 1 
od

}

The acceptance label makes it impossible to loop through  P 
and V operations of the semaphore - this property is false 
incidentally.
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Model Checking

(P1 || P2 || P3)  |= ϕ
P1, P2, P3 are Promela processes
ϕ is a LTL formula

Construct a state machine via
M, asynchronous composition of processes 
P1, P2, P3
M(¬ϕ), representing ¬ϕ

Show that “language” of M × M(¬ϕ) is empty
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Model Checking

A given LTL property (rather its negation) is 
internally represented as an automata.
This property automata is synchronously
composed with the global system automata.
We then show that the traces accepted by 
the composition of the system and property 
automata is empty.
But the traces are potentially infinite …

Finite state automata over infinite inputs
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Buchi automata
Mark certain states as acceptance states as usual.

Accept an infinite string if (at least one of) its runs through the 
automata visits (one or more of ) the acceptance states 
infinitely often.  OTHERWISE  reject the string.

Σ
Σ - {p}

Σ - {p}

Accepts infinite strings with finitely many occurrences of p
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Buchi automata

Like conventional finite-state automata
A = (S, ∑, I, →, F)

S, set of states
∑, a finite alphabet
I ⊆ S, set of initial states
→ ⊆ S × ∑× S, transition relation
F ⊆ S, set of final states

Notion of acceptance is different
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Buchi automata
Run r of a string σ ∈ ∑ω

Sequence of states of A obtained by running σ from an 
initial state  of automata A
r[0] ∈ I and, for all i≥ 0,   r[i]            r[i+1]  

Given a run r, 
inf( r) = set of states appearing infinitely often in r
These are the states that are visited infinitely often on 
running the infinite string σ

Language of the automata (notion of acceptance)
L(A) = {σ | σ ∈ ∑ω and σ has a run r s.t. inf( r) ∩ F ≠ ∅ }

σ[i]

CS 5219 65

Buchi automata

Conventional finite state automata over 
finite strings

String accepted if it ends in a final state 

Buchi automata over infinite strings
String accepted if it visits at least one final 
state infinitely often.

We need to deal with infinite strings since the 
system execution traces are infinite.
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LTL properties 
p,q q

q

Corresponds to the negation of the LTL property

GF p  ( assuming Σ = {p,q} )

If the user seeks to verify GFp,  SPIN generates Promela code 
for the negation of the property which will internally construct 
such an automata.
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A more complex property

true

p  && !q

!q!p && !q

true

Represents negation of the LTL 
property

G (  p ⇒ (p  U q) )

Internally generated by SPIN 
when the user wants to verify 
the LTL property.

Acceptance states correspond 
to accept labels discussed 
earlier.
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Verif. via Acceptance cycles

Given the Buchi automata for the negation of 
LTL property (and its acceptance states)

SPIN computes a synchronous product of this with 
the global transition system
The property automata should always make a 
move with the system automata
The language of the product automata is non-
empty iff it makes the property automata move in 
a cycle containing acceptance states.
Verification achieved by nested depth first search 
to find such acceptance cycles.
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No-progress cycles
Absence of no-progress cycles described in LTL as

GF progress (verify this !)

Negation of the property is 
FG no_progress

where no_progress is an atomic proposition which is true in 
any state where the control location is not marked as progress

We can compose the program model M with the 
automata derived from FG no_progress and perform 
model checking by detecting acceptance cycles.
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Important Clarification
SPIN supports model-checking of arbitrary LTL 
properties by 

Converting negation of property 
Converting negated property to Buchi automata
Constructing synchronous product of design’s transition 
system and Buchi automata of negated property
Defining accepting states of the Buchi automata to accept 
labels of the product automata, and 
Searching for acceptance cycles in the product automata.

Thus, accept labels are generated automatically from 
LTL property, and are not directly given by user.
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Finding acceptance cycles
We have reduced LTL model checking to 
finding acceptance cycles
How to find acceptance cycles ?

One possibility is by SCC detection
1. Compute strongly connected components of the 
product graph (DFS)
2. Check whether any SCC contains an acceptance state; 
if yes, an acceptance cycle exists.

But …
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SPIN model checking
SPIN does not use SCC detection for detecting 
acceptance cycles (and hence model checking)
The nested DFS algorithm  used in SPIN  is more 
space efficient in practice. 

SCC detection maintains two integer numbers per 
node. (dfs and lowlink numbers)
Nested DFS maintains only one integer.

This optimization is important due to the huge size of the 
product graph being traversed on-the-fly by model 
checker.
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Nested DFS in SPIN
Find acceptance states reachable from initial states 
(DFS).
Find all such acceptance states which are reachable 
from itself (DFS).
Counter-example evidence (if any) obtained by 
simply concatenating the two DFS stacks.
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Standard DFS on M × M(ϕ)
procedure dfs(s)

push s to Stack
add {s} to States
for each transition s → s’ do

if s ∉ States then dfs(s’)
endfor
pop s from Stack

end
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Nested DFS– Step 1 
procedure dfs1(s)

push s to Stack1
add {s} to States1
if accepting(s) then

States2 := empty; seed := s; dfs2(s)
endif
for each transition s → s’ do

if s’ ∉ States1 then df1(s’) 
endfor
pop s from Stack1

end 
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Nested DFS – Step 2
procedure dfs2(s)

push s to Stack2
add  {s} to States2
for each transition s → s’ do

if  s’ = seed then report acceptance cycle
else if s’ ∉ States2 then df2(s’)

endif
endfor
pop s from Stack2

end
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More on nested DFS
Space efficient compared to SCC detection

Only one id maintained (the DFS number) for each state 
being visited.

Time inefficient
Different invocations of DFS2 may search the same portion 
of state space.
But DFS2 always starts from scratch.
Exercise: how to re-use results of past DFS2 invocations ?

accept

accept
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Some Common Questions
How does the product of the system and property 
automata work ?

How is the interaction between system and 
property automata achieved ?

Can we specify LTL properties directly ?
Yes, you can do so in SPIN.

Can we model/verify pgms with procedures
Yes.
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Connect System and Property
System model

int x = 100;
active proctype A()
{   do

:: x %2 -> x = 3*x+1
od

}  
active proctype B()
{  do

:: !(x%2) -> x = x/2
od

}

Property
GF (x = 1)

Insert into code
#define q (x == 1)

Now try to verify GF q
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Enforcing fairness
All LTL counter-examples are acceptance cycles.

No point in reporting acceptance cycles which arise out of 
unfair scheduling.

If there are K active concurrent processes in the Promela
model being verified, all of these processes should have 
transitions within the acceptance cycle found.

--- Weak fairness requirement

How to enforce this requirement?

Linear blow-up in state space.

Create (K+2) copies of (P1||…||PK)×M(¬ϕ)

ϕ is the property being verified
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Enforcing fairness

1..K

1 2

…
K

≠1 ≠2 ≠K

1..K

K-1

Also, if state s in ith copy has no outgoing transition by Pi  add the transition

s in ith copy              s in (i+1)th copy
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Enforcing fairness

pid = 1

pid = 2

1
1

2

2

1
2

2

1

State Space
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Let us finish with a real-life 
situation

July 4, 1997
NASA’s Pathfinder landed on Mars.
Tremendous engineering feat.
Hard to design the control software with 
concurrency and priority driven scheduling 
of threads.
The SpaceRover would lose contact with 
earth in unpredictable moments.
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The Mars Pathfinder problem

“But a few days into the mission, not 
long after Pathfinder started gathering 
meteorological data, the spacecraft 
began experiencing total system resets, 
each resulting in losses of data. The 
press reported these failures in terms 
such as "software glitches" and "the 
computer was trying to do too many 
things at once".” …
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Essence of the problem in SPIN
mtype = { free, busy, idle, waiting, running };

mtype H = idle;   mtype L = idle; mtype mutex = free;

active  proctype high();

{end:  do

:: H = waiting;

atomic { mutex == free ->

mutex = busy };

H = running;

atomic{ H=idle; mutex=free }

od

}

active proctype low() provided (H == idle)

{ end: do

:: L = waiting;

atomic{ mutex== free-> 

mutex = busy};

L = running;

atomic{ L=idle; mutex = free }

od

}
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State Space Graph

i,i,f

w,i,f
w,w,f

i,w,f

i,w,b

i,r,b

w,r,b

w,w,b

w,w,b

r,w,b

w,i,b

r,i,b

w ≡waiting

i ≡idle

r ≡running

b ≡busy

f ≡ free
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Source of deadlock

Counterexample
Low priority thread acquires lock
High priority thread starts 
Low priority process cannot be scheduled
High priority thread blocked on lock

Actual error was a bit more complex with 
three threads of three different priorities

Timer went off with such a deadlock resulting in a 
system reset and loss of transmitted data.
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Readings
http://spinroot.com/spin/Man/Manual.html

SPIN manual
The model checker SPIN (Holzmann)

IEEE transactions on software engineering, 23(5), 1997.
http://spinroot.com/spin/Doc/SpinTutorial.pdf

SPIN beginner’s tutorial (Theo Ruys)
Summer school Lecture notes on Software MC

See Section 2, Posted under IVLE lesson plan.
The SPIN model checker: primer and reference 
manual, by Holzmann (mostly chapters 2,3,7,8)

TA168 Hol 2004, RBR in Science Library


