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A common design flow

Requirements (English)

Design Model (Modeling lang. 
- Lecture 3)

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??

More automated

Manual step
Manual step

(in lecture 2)

Desirable 
Properties

User

Verification
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Another common design flow

CodeTests Coverage

Testing

Debug

(in lecture 2)

Abstract  code
To model

Desirable 
properties

Verify

Programmer
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Background

Checking of programs
P |= ϕ

How to represent P ?
Implementation

How to represent ϕ?
Specification

Today we will answer the second 
question
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What about the first question?

Assume a transition system like model 
of the program

M = (I, S, →)
I is set of initial states
S is set of states
→ is set of transitions

What are the states and transitions in a 
program?



2

CS5219 2007-08 by Abhik 7

States and Transitions

States of a sequential program
(PC, Value of x, Value of y, … )
Infinitely many states in general

Transition of a program
s1 → s2
s1, s2 are states as defined above
Move from s1 to s2 accomplished by 
executing a statement
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Exercise 0

Draw the transition system 
corresponding to the following program

V = 0;
V = V + 1;
V = V + 1;
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Solution

……………….
Pc=1, V =.. Pc=1,V =.. Pc=1,v=..

Pc=2, V= 0

Pc=3, V = 1

Pc=2, V= 1

V=0 V=0 V=0

V= V + 1

V= V + 1

Pc=4, V = 2
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Exercise 1

What changes will we need to make in 
defining states and transitions of say a 
multi-threaded Java program?
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Exercise 2

Our definition of states and transitions 
results in infinitely many states even for 
sequential programs. What abstractions 
can you suggest?

Should we abstract the PC?
Should we abstract the variable values?
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Exercise 3

Revisit the program
V = 0;
V = V +1 ;
V = V + 1;

Abstract V using the propositions
{V == 0}

Reconstruct the transition system.
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Program Models

Kripke Structure
Transition System (States and Transitions)

Can depict the control flow in a program.

Set of Propositions Prop
Abstraction of the data variables.

Truth/Falsehood of each proposition in 
Prop in each state of the transition system.

Abstraction of data flow in the program.
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Kripke Structure

Ext = T

Malfn = F

Ext = F

Malfn = F

Ext = T

Malfn = T

Can draw it as 

Ext
Ext,

Malfn
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Kripke Structure

M = (S, I, →, L)
S, set of states
I ⊆ S, set of initial states
→ , Transition Relation
L, Labeling function

Label states with propositions – these are the 
propositions which are true in the state.

CS5219 2007-08 by Abhik 16

Model Checking – Usage (I)

Model the software to be constructed.
Say in Promela

Specify the properties to be verified.
Temporal logics --- today !

Automated verification
SPIN model checker.
Does not verify the software, but checks 
the software design.
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Model Checking – Usage (II)
Generate models (Kripke Structure) from the 
software

Represent the control flow explicitly (Control Flow 
Graph or variants).
Abstract data store via predicate abstraction.

Implicitly blows up the CFG.
State space search now involves traversing the 
blown up graph (note: symbolic search).
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Our Program Checking

Specify property in temporal logic 
(Today’s lecture)

Clock time is not explicitly represented.
Temporal modalities to capture dynamic 
program behavior 

Verify property automatically via search
Return “yes” if true
Return counterexample “evidence” if false.
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Organization

Basics
Linear Time Temporal Logics
Branching Time Logics
Difference between Formula Checking 
and Satisfiability
Optional material

Fixed point characterizations
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Why study new logics?
Propositional/first-order logics can only express 
properties of states, not properties of how the states 
evolve.
We study behaviors by looking at all execution traces 
of the system.
Our properties refer to dynamic system behaviors

Eventually, the system reaches a stable state
Never a deadlock can occur

We want to maintain more than input-output 
relationships (typical for transformational systems).
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Temporal Logic

Propositional / First-order logic formulae
Capture properties of states
Cannot capture properties of state changes 
by default.

Temporal Logic formulae
Capture properties of evolution of states 
(program behavior)
Possible program behaviors can be

Execution traces OR Execution Tree
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What is temporal ?

Consider ordering of events in system 
execution.

Describes properties of such orderings
Whenever V = 0, U is not 0
Always V = 0
Whenever V=0, eventually U = 0

Exact time is not represented e.g.
V =0 will happen at t = 22 secs.
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Purpose of TL
Describe properties of program behavior
What are the units of behavior 

Computation Tree of the program
Set of computation traces of the program

Linear and branching time logics.
TL can specify properties about behavior of

Terminating and non-terminating programs.
Sequential as well as concurrent programs.
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LTL: What ?
Linear-time Temporal Logic
An LTL formula is interpreted over infinite execution 
traces.
LTL can capture properties of 

Usual terminating programs
Non-terminating reactive programs which are 
continuously interacting with environment

Example: Controller software
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LTL syntax
An LTL property ϕ is true of a program model iff all 
its traces satisfy ϕ

Why should be there be more than one trace?

ϕ = Xϕ | Gϕ | Fϕ | ϕ U ϕ | ϕ R ϕ | 
¬ϕ | ϕ ∧ ϕ | Prop

Prop denotes the set of Propositions.
X, G, F, U, R are temporal operators.
Building a temporal logic above propositional logic 
(included above)
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LTL semantics
M,π |= ϕ

Path π = s0,s1,s2,… in model M satisfies property 
ϕ

M,πk |= ϕ
Notation for
Path sk , sk+1 , … in model M satisfies the property 
ϕ

Semantics for different temporal operators are now 
given.
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Semantics of LTL operators
M,π |= Xϕ iff M,π1 |= ϕ

Path starting from next state satisfies ϕ
M,π |= Fϕ iff  ∃k ≥ 0 M,πk |= ϕ

Path starting from an eventually reached state 
satisfies ϕ

M,π |= Gϕ iff ∀k ≥ 0 M,πk |= ϕ
Path always satisfies ϕ (all suffixes of the path 
satisfy ϕ )
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neXt-state operator in LTL

…..

Satisfies ϕ

Satisfies Xϕ
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Finally operator in LTL

…..

Satisfies ϕ

Satisfies Fϕ

…..
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Globally operator in LTL

…..

Satisfies ϕ

Satisfies Gϕ

Satisfies ϕ

Satisfies ϕ

…..
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Semantics of LTL operators

M,π |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that
M,πk |= ϕ2, and
∀0≤ j < k M, πj |= ϕ1

p p p p p q

A trace satisfying  pU q, where p,q ∈ Prop
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….. …..

…..

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ2

Satisfies ϕ1 U ϕ2 

Until operator in LTL
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Semantics of LTL operators
M,π |= ϕ1 R ϕ2 iff

Either  ∀k ≥ 0 M,πk |= ϕ2
OR both of the following hold

∃k ≥ 0 M,πk |= ϕ1
∀0≤ j ≤ k  M,πj |= ϕ2

ϕ1 releases the req. for ϕ2 to hold.

q q q q q p,q
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Release operator in LTL – (1)

…..

Satisfies ϕ2

Satisfies ϕ1 R ϕ2

Satisfies ϕ2

Satisfies ϕ2

…..
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Release operator in LTL – (2)

…..

Satisfies ϕ1 R ϕ2

…..

…..

Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ1 ∧ϕ2
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Example 1
ext = T

malfn = F

ext = F

malfn = F

ext = T

malfn = T

Property:  G ext

M |= G ext iff for traces π in M we have M, π |= G ext

Any trace which does not satisfy G ext is a 
counter-example.  How many counterexamples can 
you find in the above ??
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Example 2

ext = T

malfn = F

ext = F

malfn = F

ext = T

malfn = T

What about the formulae:   FG ext,  GF ext   ??

How many counter-examples for each ?
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Computation traces/trees
LTL describes properties of computation traces (a 
property holds in a sys. if all traces satisfy it).
Alternate way to characterize system dynamics

Computation tree
Start from an initial state and unfold the Kripke
structure to construct an infinite tree (in general).

Logics to describe properties of such trees
Existential / Universal quantification over paths
Temporal operators to specify properties of a 
path.
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Example computation tree

s0 s1 s2

s0

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2
Trace
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A logic for trees
s =  Prop |  ¬ s | s /\ s | A p |  E p
p =  X s | G s | F s | s U s | s R s 

p denotes formulae of paths.
s denotes formulae of states.
The temporal operators are as before.
Computation Tree logic (CTL).

All state formulae as defined above.
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CTL semantics
A model satisfies a CTL formula iff its initial states
satisfy the formula.
A state x satisfies the formula A p iff all outgoing 
paths from x satisfy the formula p

Note that p must be a path formula
A state x satisfies the formula E p iff there exists an 
outgoing path from x satisfying the formula p
What about the temporal operators ?
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CTL semantics

Semantics of temporal operators (X,F,G,U,R)
We learnt this before !
Try a path proof obligation  π |= FEG p

Exercise : Do it Now !
Meaning of  AG, EG, AF, EF (intuitively)
Duality of (R, U), (F, G),  (A, E)
Express F in terms of U
Minimal set of temporal & path operators 
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Exercise

s0 s1 s2

p
p

Suppose we want to check 

M |= AGEF p

Show all the state and path proof 
obligations that will be encountered by 
following through the semantic rules of 
Computation Tree Logic (CTL).

Model M
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CTL formulae
AG f   (invariant property)

M |= AG f    (CTL formula) if and only if  M 
satisfies the LTL formula G f

AG (f ⇒ EF g)
what does it mean ?
Involves both path quantifiers
Not expressible in LTL

Does that mean CTL is strictly more powerful than 
LTL ?
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CTL and LTL
The simple idea of inserting A operators will not work.

p ¬p
p

Satisfies the LTL formula  FG p

What about the CTL formula  AFAG p  ?

The issues of Temporal Logic expressivity are 
much deeper and outside the scope of this course.
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Expressivity

CTL LTL

CTL*
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CTL*
s = Prop | ¬s | s ∧ s | A p | E p
p = s | ¬p | p ∧ p | Xp | Fp | Gp |

p U p | p R p
s denotes formulae interpreted over states
p denotes formulae interpreted over paths
CTL* is the set of all state formulae above
A p is a state formula not expressed in prop. Logic

Semantics of path formulae
Minimally modified to handle …
A path satisfies a state formula iff its first state 
satisfies the formula.
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CTL and CTL*

CTL is a sublogic of CTL*
Temporal operators in CTL*:  X,F,G,U,R
Path Quantifiers:  A, E
CTL enforces the occurrence of a temporal 
operator to be immediately preceded by a 
path quantifier.
AGFϕ is not allowed.
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Some common CTL formulae
AG p 

Invariant: always p.
EF p   

Reachability: of a state where p holds.
AF p  

Inevatibility of reaching a state where p holds.
AG EF p 

Recovery: from any state we can reach a state where 
p holds.

AG (p ⇒ AF q)   
Non-starvation :  p request is always provided q
response.
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Exercise (1)
Consider a resource allocation protocol where n 

processes P1,…,Pn are contending for exclusive 
access of a shared resource. Access to the shared 
resource is controlled by an arbiter process. The 
atomic proposition reqi is true only when Pi explicitly 
sends an access request to the arbiter.  The atomic 
proposition gnti is true only when the arbiter grants 
access to P i. Now suppose that the following LTL 
formula holds for our resource allocation protocol.

G (reqi ⇒ (reqi U gnt i  ) )
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Exercises (1)

Explain in English what the property means.
Is this a desirable property of the protocol ?
Suppose that the resource allocation protocol 
has a distributed implementation so that each 
process is implemented in a different site. 
Does the LTL property affect the 
communication overheads among the 
processes in any way ?
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Exercises (2)

Express each of the following properties 
(stated in English) as  an LTL formula. 
Assume that p, q and r are atomic 
propositions.

Always if p occurs, then eventually q occurs 
followed immediately  by r.
Any occurrence of p is followed eventually by an 
occurrence of q. Furthermore, r never occurs 
between p and q.
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Exercises (3)
Consider the LTL formula GFp and the CTL formula 
AGEFp where p is an atomic proposition. Give an 
example of a Kripke Structure which satisfies AGEFp
but does not satisfy GFp. You may assume that p is 
the only atomic proposition for constructing the 
labeling function.

Are the following LTL formulae equivalent
G( p ⇒ X p)
G( p ⇒ G p)
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Exercises (4)
Assume that p is an atomic proposition. What can you say 

about the equivalence of the following pairs of temporal 
formulae? If they are equivalent, then provide a formal 
proof. If not construct an example Kripke Structure to 
show that they are not equivalent.

(a) the LTL formula GFp and the CTL formula AGFp

(b) the CTL formulae AGAFp and the CTL formula AGEFp

(c) the LTL formula GFp and the CTL formula AGAFp
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Satisfaction

A CTL formula is satisfiable if some state 
of some Kripke structure satisfies it.

Otherwise unsatisfiable. Examples ??
Similarly for LTL formula .

A CTL formula is valid if  all states of all 
Kripke structures satisfy it.
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Formula Equivalence

Two CTL properties are equivalent iff
they are satisified by exactly the same 
states of any Kripke structure.

EF p  and E(true U p)

Where does model checking stand ??
Is it checking for satisfiability of a temporal 
property ? Is  it checking for validity ?
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Model Checking
… is not checking for satisifiability / validity.
It is checking for satisfaction of a temporal property 
for a given Kripke structure.

This is a very different problem from traditional 
satisfiability checking !!

We will discuss MC in next class.
But some warm up for now !
This is the more formal part of our discussion. Use 
it more for your own understanding of TL. The 
material is optional for exam purposes.
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Temporal Logics- Optional 
Material (only for self-study)

Abhik Roychoudhury
National University of Singapore
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Fixed point characterizations

An alternate semantic understanding of 
temporal formulae such as CTL 
properties.
Yields a procedure for model checking 
these properties directly

Correct by construction model checking 
algorithm.
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Intuition  -- (1)
Give semantics of CTL formulae by associating a 
formula with the states in a Kripke structure in which 
the formula will be true.
A set of states drawn from a Kripke Structure forms a 
predicate.
Define functions on sets of states

F:  2S → 2S

S is the set of all states drawn from Kripke structure
Such functions are called predicate transformers.
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Intuition – (2)
Define a CTL formula as the set of states obtained by 

Repeated application of a predicate transformer
Starting from null set or set of all states.
Ending when one more application of the transformer 
does not change the result

Fixed point is reached.
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Set of States 
M = (S, I, →, L)

Assume S is finite
→ (transition relation)
L  (Labeling function)

x ∈ 2S

x is a predicate over S
Powerset 2S comes with a natural partial order

Set inclusion
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Monotone Functions

A function f : 2S → 2S

Monotonic:  X ⊆ Y  ⇒ f(X) ⊆ f(Y)
Fixed point:  f(X) = X
X, Y  are subsets of S (set of states)

Since it is transforming sets of states to 
another set of states, also called

Predicate Transformer
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Example

S = {s0, s1}
f : 2S → 2S

f(X) = X ∪ {s0}
Show that f is monotonic.
What are the fixed points of f ?

f : 2S → 2S

Exercise: Give an example of non-
monotone function.
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Role of Monotone functions

Always have least/greatest fixed points
Meaning of CTL operators cast as 
lfp/gfp of monotone func. over 2S

AG,EG,AF,EF,AU,EU,…

The fixed points can be computed
Straightforward checking procedure

Compute fixed-point and check for initial states 
within the fixed-point.
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Why fixed points are 
important ?

Meaning of CTL operators can be 
expressed as lfp, gfp of monotone 
functions.

EG, EU, AG, AF, ….

These lfp, gfp can be easily computed.
Leads to a straightforward model 
checking algorithm for CTL formulae.
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Fixed points

If S is finite, then for a monotone 
function f : 2S → 2S

∃ I ∈nat lfp f =  f I (φ)
∃ I ∈nat gfp f = f I (S)

Class Exercise:
Let us prove this theorem now.
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LFP computation procedure
Function lfp (f : PredicateTransformer): Predicate
Begin

Q := φ;   // Null-set
Q1 := f(Q);
while (Q1 ≠ Q) do

Q := Q1; Q1 := f(Q)
endwhile;
return(Q)

End.
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GFP computation procedure
Function gfp (f : PredicateTransformer): Predicate
Begin

Q := S;   // All states in the Kripke Structure
Q1 := f(Q);
while (Q1 ≠ Q) do

Q := Q1; Q1 := f(Q)
endwhile;
return(Q)

End.
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Defining CTL operators

M = (S,I, →, L) is a finite Kripke
structure
ϕ is a CTL formula
[ϕ] ⊆ S denotes the set of states 
satisfying ϕ
Say we define a predicate transformer

fϕ(Y) = [ϕ] ∩ {s | ∃ s’ s → s’ and s’ ∈ Y }
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Defining EG

{s | ∃ s’ s → s’ and s’ ∈ Y }
Stands for  [EX Y], the set of states in M 
which satisfy EX Y.
For convenience we will avoid the […]

fϕ(Y) = ϕ ∩ EX Y
Show that this transformer is monotonic.
You will need the definition of EX
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Defining EG

Show that EGϕ is a fixed point of 
fϕ(Y) = ϕ ∩ EX Y.
Any state satisfying EGϕ satisfies ϕ and there is an 
outgoing state satisfying EGϕ
The other direction of the proof …

Show that EGϕ is the gfp of 
fϕ(Y) = ϕ ∩ EX Y
Any state in a fixed point of fϕ satisfies EG ϕ

Complete the proof exploiting this intuition.
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Defining EU

E(ϕ U ψ) is the least fixed point of 
fϕ,ψ(Y) = ψ ∪ ( ϕ ∩ EX Y)

Cast the EU checking algo in terms of the LFP 
computation procedure outlined earlier

Full discussion on CTL MC in next class.
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Property Equivalences

EG ϕ = ϕ ∧ EXEGϕ

E(ϕ U ψ) = ψ ∨ (ϕ ∧ EX E(ϕ U ψ) )

We can derive similar equivalences using the 
fixed point characterization of other CTL 
properties.
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Possible Readings
Chapter 3 of “Model Checking”

Clarke, Grumberg, Peled
See IVLE E-reserves to access material
QA76.76 Ver.C RBR in Central Library

Chapter 3 of Logic in Computer Science 
(Huth and Ryan) 

QA76.9 Log.Hu in Central Library
I also have a copy.

Chapter 3.9 contains discussion on fixed point 
characterizations.


