
1

CS5219 2007-08 by Abhik 1

Temporal Logics

Abhik Roychoudhury
CS 5219

School of Computing

CS5219 2007-08 by Abhik 2

Turing award

1996 – Amir Pnueli
Weizmann Institute of Science (1996)
Citation
"For seminal work introducing temporal logic
into computing science and for outstanding
contributions to program and system
verification."

2007 Turing award for Model checking – the use of
temporal logics in Validation.

CS5219 2007-08 by Abhik 3

A common design flow

Requirements (English)

Design Model (Modeling lang.
- Lecture 3)

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??

More automated

Manual step
Manual step

(in lecture 2)

Desirable
Properties

User

Verification

CS5219 2007-08 by Abhik 4

Another common design flow

CodeTests Coverage

Testing

Debug

(in lecture 2)

Abstract code
To model

Desirable
properties

Verify

Programmer

CS5219 2007-08 by Abhik 5

Background

Checking of programs
P |= ϕ

How to represent P ?
Implementation

How to represent ϕ?
Specification

Today we will answer the second
question

CS5219 2007-08 by Abhik 6

What about the first question?

Assume a transition system like model
of the program

M = (I, S, →)
I is set of initial states
S is set of states
→ is set of transitions

What are the states and transitions in a
program?

2

CS5219 2007-08 by Abhik 7

States and Transitions

States of a sequential program
(PC, Value of x, Value of y, …)
Infinitely many states in general

Transition of a program
s1 → s2
s1, s2 are states as defined above
Move from s1 to s2 accomplished by
executing a statement

CS5219 2007-08 by Abhik 8

Exercise 0

Draw the transition system
corresponding to the following program

V = 0;
V = V + 1;
V = V + 1;

CS5219 2007-08 by Abhik 9

Solution

……………….
Pc=1, V =.. Pc=1,V =.. Pc=1,v=..

Pc=2, V= 0

Pc=3, V = 1

Pc=2, V= 1

V=0 V=0 V=0

V= V + 1

V= V + 1

Pc=4, V = 2

CS5219 2007-08 by Abhik 10

Exercise 1

What changes will we need to make in
defining states and transitions of say a
multi-threaded Java program?

CS5219 2007-08 by Abhik 11

Exercise 2

Our definition of states and transitions
results in infinitely many states even for
sequential programs. What abstractions
can you suggest?

Should we abstract the PC?
Should we abstract the variable values?

CS5219 2007-08 by Abhik 12

Exercise 3

Revisit the program
V = 0;
V = V +1 ;
V = V + 1;

Abstract V using the propositions
{V == 0}

Reconstruct the transition system.

3

CS5219 2007-08 by Abhik 13

Program Models

Kripke Structure
Transition System (States and Transitions)

Can depict the control flow in a program.

Set of Propositions Prop
Abstraction of the data variables.

Truth/Falsehood of each proposition in
Prop in each state of the transition system.

Abstraction of data flow in the program.

CS5219 2007-08 by Abhik 14

Kripke Structure

Ext = T

Malfn = F

Ext = F

Malfn = F

Ext = T

Malfn = T

Can draw it as

Ext
Ext,

Malfn

CS5219 2007-08 by Abhik 15

Kripke Structure

M = (S, I, →, L)
S, set of states
I ⊆ S, set of initial states
→ , Transition Relation
L, Labeling function

Label states with propositions – these are the
propositions which are true in the state.

CS5219 2007-08 by Abhik 16

Model Checking – Usage (I)

Model the software to be constructed.
Say in Promela

Specify the properties to be verified.
Temporal logics --- today !

Automated verification
SPIN model checker.
Does not verify the software, but checks
the software design.

CS5219 2007-08 by Abhik 17

Model Checking – Usage (II)
Generate models (Kripke Structure) from the
software

Represent the control flow explicitly (Control Flow
Graph or variants).
Abstract data store via predicate abstraction.

Implicitly blows up the CFG.
State space search now involves traversing the
blown up graph (note: symbolic search).

CS5219 2007-08 by Abhik 18

Our Program Checking

Specify property in temporal logic
(Today’s lecture)

Clock time is not explicitly represented.
Temporal modalities to capture dynamic
program behavior

Verify property automatically via search
Return “yes” if true
Return counterexample “evidence” if false.

4

CS5219 2007-08 by Abhik 19

Organization

Basics
Linear Time Temporal Logics
Branching Time Logics
Difference between Formula Checking
and Satisfiability
Optional material

Fixed point characterizations

CS5219 2007-08 by Abhik 20

Why study new logics?
Propositional/first-order logics can only express
properties of states, not properties of how the states
evolve.
We study behaviors by looking at all execution traces
of the system.
Our properties refer to dynamic system behaviors

Eventually, the system reaches a stable state
Never a deadlock can occur

We want to maintain more than input-output
relationships (typical for transformational systems).

CS5219 2007-08 by Abhik 21

Temporal Logic

Propositional / First-order logic formulae
Capture properties of states
Cannot capture properties of state changes
by default.

Temporal Logic formulae
Capture properties of evolution of states
(program behavior)
Possible program behaviors can be

Execution traces OR Execution Tree

CS5219 2007-08 by Abhik 22

What is temporal ?

Consider ordering of events in system
execution.

Describes properties of such orderings
Whenever V = 0, U is not 0
Always V = 0
Whenever V=0, eventually U = 0

Exact time is not represented e.g.
V =0 will happen at t = 22 secs.

CS5219 2007-08 by Abhik 23

Purpose of TL
Describe properties of program behavior
What are the units of behavior

Computation Tree of the program
Set of computation traces of the program

Linear and branching time logics.
TL can specify properties about behavior of

Terminating and non-terminating programs.
Sequential as well as concurrent programs.

CS5219 2007-08 by Abhik 24

LTL: What ?
Linear-time Temporal Logic
An LTL formula is interpreted over infinite execution
traces.
LTL can capture properties of

Usual terminating programs
Non-terminating reactive programs which are
continuously interacting with environment

Example: Controller software

5

CS5219 2007-08 by Abhik 25

LTL syntax
An LTL property ϕ is true of a program model iff all
its traces satisfy ϕ

Why should be there be more than one trace?

ϕ = Xϕ | Gϕ | Fϕ | ϕ U ϕ | ϕ R ϕ |
¬ϕ | ϕ ∧ ϕ | Prop

Prop denotes the set of Propositions.
X, G, F, U, R are temporal operators.
Building a temporal logic above propositional logic
(included above)

CS5219 2007-08 by Abhik 26

LTL semantics
M,π |= ϕ

Path π = s0,s1,s2,… in model M satisfies property
ϕ

M,πk |= ϕ
Notation for
Path sk , sk+1 , … in model M satisfies the property
ϕ

Semantics for different temporal operators are now
given.

CS5219 2007-08 by Abhik 27

Semantics of LTL operators
M,π |= Xϕ iff M,π1 |= ϕ

Path starting from next state satisfies ϕ
M,π |= Fϕ iff ∃k ≥ 0 M,πk |= ϕ

Path starting from an eventually reached state
satisfies ϕ

M,π |= Gϕ iff ∀k ≥ 0 M,πk |= ϕ
Path always satisfies ϕ (all suffixes of the path
satisfy ϕ)

CS5219 2007-08 by Abhik 28

neXt-state operator in LTL

…..

Satisfies ϕ

Satisfies Xϕ

CS5219 2007-08 by Abhik 29

Finally operator in LTL

…..

Satisfies ϕ

Satisfies Fϕ

…..

CS5219 2007-08 by Abhik 30

Globally operator in LTL

…..

Satisfies ϕ

Satisfies Gϕ

Satisfies ϕ

Satisfies ϕ

…..

6

CS5219 2007-08 by Abhik 31

Semantics of LTL operators

M,π |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that
M,πk |= ϕ2, and
∀0≤ j < k M, πj |= ϕ1

p p p p p q

A trace satisfying pU q, where p,q ∈ Prop

CS5219 2007-08 by Abhik 32

….. …..

…..

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ1

Satisfies ϕ2

Satisfies ϕ1 U ϕ2

Until operator in LTL

CS5219 2007-08 by Abhik 33

Semantics of LTL operators
M,π |= ϕ1 R ϕ2 iff

Either ∀k ≥ 0 M,πk |= ϕ2
OR both of the following hold

∃k ≥ 0 M,πk |= ϕ1
∀0≤ j ≤ k M,πj |= ϕ2

ϕ1 releases the req. for ϕ2 to hold.

q q q q q p,q

CS5219 2007-08 by Abhik 34

Release operator in LTL – (1)

…..

Satisfies ϕ2

Satisfies ϕ1 R ϕ2

Satisfies ϕ2

Satisfies ϕ2

…..

CS5219 2007-08 by Abhik 35

Release operator in LTL – (2)

…..

Satisfies ϕ1 R ϕ2

…..

…..

Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ2

Satisfies ϕ1 ∧ϕ2

CS5219 2007-08 by Abhik 36

Example 1
ext = T

malfn = F

ext = F

malfn = F

ext = T

malfn = T

Property: G ext

M |= G ext iff for traces π in M we have M, π |= G ext

Any trace which does not satisfy G ext is a
counter-example. How many counterexamples can
you find in the above ??

7

CS5219 2007-08 by Abhik 37

Example 2

ext = T

malfn = F

ext = F

malfn = F

ext = T

malfn = T

What about the formulae: FG ext, GF ext ??

How many counter-examples for each ?

CS5219 2007-08 by Abhik 38

Computation traces/trees
LTL describes properties of computation traces (a
property holds in a sys. if all traces satisfy it).
Alternate way to characterize system dynamics

Computation tree
Start from an initial state and unfold the Kripke
structure to construct an infinite tree (in general).

Logics to describe properties of such trees
Existential / Universal quantification over paths
Temporal operators to specify properties of a
path.

CS5219 2007-08 by Abhik 39

Example computation tree

s0 s1 s2

s0

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2
Trace

CS5219 2007-08 by Abhik 40

A logic for trees
s = Prop | ¬ s | s /\ s | A p | E p
p = X s | G s | F s | s U s | s R s

p denotes formulae of paths.
s denotes formulae of states.
The temporal operators are as before.
Computation Tree logic (CTL).

All state formulae as defined above.

CS5219 2007-08 by Abhik 41

CTL semantics
A model satisfies a CTL formula iff its initial states
satisfy the formula.
A state x satisfies the formula A p iff all outgoing
paths from x satisfy the formula p

Note that p must be a path formula
A state x satisfies the formula E p iff there exists an
outgoing path from x satisfying the formula p
What about the temporal operators ?

CS5219 2007-08 by Abhik 42

CTL semantics

Semantics of temporal operators (X,F,G,U,R)
We learnt this before !
Try a path proof obligation π |= FEG p

Exercise : Do it Now !
Meaning of AG, EG, AF, EF (intuitively)
Duality of (R, U), (F, G), (A, E)
Express F in terms of U
Minimal set of temporal & path operators

8

CS5219 2007-08 by Abhik 43

Exercise

s0 s1 s2

p
p

Suppose we want to check

M |= AGEF p

Show all the state and path proof
obligations that will be encountered by
following through the semantic rules of
Computation Tree Logic (CTL).

Model M

CS5219 2007-08 by Abhik 44

CTL formulae
AG f (invariant property)

M |= AG f (CTL formula) if and only if M
satisfies the LTL formula G f

AG (f ⇒ EF g)
what does it mean ?
Involves both path quantifiers
Not expressible in LTL

Does that mean CTL is strictly more powerful than
LTL ?

CS5219 2007-08 by Abhik 45

CTL and LTL
The simple idea of inserting A operators will not work.

p ¬p
p

Satisfies the LTL formula FG p

What about the CTL formula AFAG p ?

The issues of Temporal Logic expressivity are
much deeper and outside the scope of this course.

CS5219 2007-08 by Abhik 46

Expressivity

CTL LTL

CTL*

CS5219 2007-08 by Abhik 47

CTL*
s = Prop | ¬s | s ∧ s | A p | E p
p = s | ¬p | p ∧ p | Xp | Fp | Gp |

p U p | p R p
s denotes formulae interpreted over states
p denotes formulae interpreted over paths
CTL* is the set of all state formulae above
A p is a state formula not expressed in prop. Logic

Semantics of path formulae
Minimally modified to handle …
A path satisfies a state formula iff its first state
satisfies the formula.

CS5219 2007-08 by Abhik 48

CTL and CTL*

CTL is a sublogic of CTL*
Temporal operators in CTL*: X,F,G,U,R
Path Quantifiers: A, E
CTL enforces the occurrence of a temporal
operator to be immediately preceded by a
path quantifier.
AGFϕ is not allowed.

9

CS5219 2007-08 by Abhik 49

Some common CTL formulae
AG p

Invariant: always p.
EF p

Reachability: of a state where p holds.
AF p

Inevatibility of reaching a state where p holds.
AG EF p

Recovery: from any state we can reach a state where
p holds.

AG (p ⇒ AF q)
Non-starvation : p request is always provided q
response.

CS5219 2007-08 by Abhik 50

Exercise (1)
Consider a resource allocation protocol where n

processes P1,…,Pn are contending for exclusive
access of a shared resource. Access to the shared
resource is controlled by an arbiter process. The
atomic proposition reqi is true only when Pi explicitly
sends an access request to the arbiter. The atomic
proposition gnti is true only when the arbiter grants
access to P i. Now suppose that the following LTL
formula holds for our resource allocation protocol.

G (reqi ⇒ (reqi U gnt i))

CS5219 2007-08 by Abhik 51

Exercises (1)

Explain in English what the property means.
Is this a desirable property of the protocol ?
Suppose that the resource allocation protocol
has a distributed implementation so that each
process is implemented in a different site.
Does the LTL property affect the
communication overheads among the
processes in any way ?

CS5219 2007-08 by Abhik 52

Exercises (2)

Express each of the following properties
(stated in English) as an LTL formula.
Assume that p, q and r are atomic
propositions.

Always if p occurs, then eventually q occurs
followed immediately by r.
Any occurrence of p is followed eventually by an
occurrence of q. Furthermore, r never occurs
between p and q.

CS5219 2007-08 by Abhik 53

Exercises (3)
Consider the LTL formula GFp and the CTL formula
AGEFp where p is an atomic proposition. Give an
example of a Kripke Structure which satisfies AGEFp
but does not satisfy GFp. You may assume that p is
the only atomic proposition for constructing the
labeling function.

Are the following LTL formulae equivalent
G(p ⇒ X p)
G(p ⇒ G p)

CS5219 2007-08 by Abhik 54

Exercises (4)
Assume that p is an atomic proposition. What can you say

about the equivalence of the following pairs of temporal
formulae? If they are equivalent, then provide a formal
proof. If not construct an example Kripke Structure to
show that they are not equivalent.

(a) the LTL formula GFp and the CTL formula AGFp

(b) the CTL formulae AGAFp and the CTL formula AGEFp

(c) the LTL formula GFp and the CTL formula AGAFp

10

CS5219 2007-08 by Abhik 55

Satisfaction

A CTL formula is satisfiable if some state
of some Kripke structure satisfies it.

Otherwise unsatisfiable. Examples ??
Similarly for LTL formula .

A CTL formula is valid if all states of all
Kripke structures satisfy it.

CS5219 2007-08 by Abhik 56

Formula Equivalence

Two CTL properties are equivalent iff
they are satisified by exactly the same
states of any Kripke structure.

EF p and E(true U p)

Where does model checking stand ??
Is it checking for satisfiability of a temporal
property ? Is it checking for validity ?

CS5219 2007-08 by Abhik 57

Model Checking
… is not checking for satisifiability / validity.
It is checking for satisfaction of a temporal property
for a given Kripke structure.

This is a very different problem from traditional
satisfiability checking !!

We will discuss MC in next class.
But some warm up for now !
This is the more formal part of our discussion. Use
it more for your own understanding of TL. The
material is optional for exam purposes.

CS5219 2007-08 by Abhik 58

Temporal Logics- Optional
Material (only for self-study)

Abhik Roychoudhury
National University of Singapore

CS5219 2007-08 by Abhik 59

Fixed point characterizations

An alternate semantic understanding of
temporal formulae such as CTL
properties.
Yields a procedure for model checking
these properties directly

Correct by construction model checking
algorithm.

CS5219 2007-08 by Abhik 60

Intuition -- (1)
Give semantics of CTL formulae by associating a
formula with the states in a Kripke structure in which
the formula will be true.
A set of states drawn from a Kripke Structure forms a
predicate.
Define functions on sets of states

F: 2S → 2S

S is the set of all states drawn from Kripke structure
Such functions are called predicate transformers.

11

CS5219 2007-08 by Abhik 61

Intuition – (2)
Define a CTL formula as the set of states obtained by

Repeated application of a predicate transformer
Starting from null set or set of all states.
Ending when one more application of the transformer
does not change the result

Fixed point is reached.

CS5219 2007-08 by Abhik 62

Set of States
M = (S, I, →, L)

Assume S is finite
→ (transition relation)
L (Labeling function)

x ∈ 2S

x is a predicate over S
Powerset 2S comes with a natural partial order

Set inclusion

CS5219 2007-08 by Abhik 63

Monotone Functions

A function f : 2S → 2S

Monotonic: X ⊆ Y ⇒ f(X) ⊆ f(Y)
Fixed point: f(X) = X
X, Y are subsets of S (set of states)

Since it is transforming sets of states to
another set of states, also called

Predicate Transformer

CS5219 2007-08 by Abhik 64

Example

S = {s0, s1}
f : 2S → 2S

f(X) = X ∪ {s0}
Show that f is monotonic.
What are the fixed points of f ?

f : 2S → 2S

Exercise: Give an example of non-
monotone function.

CS5219 2007-08 by Abhik 65

Role of Monotone functions

Always have least/greatest fixed points
Meaning of CTL operators cast as
lfp/gfp of monotone func. over 2S

AG,EG,AF,EF,AU,EU,…

The fixed points can be computed
Straightforward checking procedure

Compute fixed-point and check for initial states
within the fixed-point.

CS5219 2007-08 by Abhik 66

Why fixed points are
important ?

Meaning of CTL operators can be
expressed as lfp, gfp of monotone
functions.

EG, EU, AG, AF, ….

These lfp, gfp can be easily computed.
Leads to a straightforward model
checking algorithm for CTL formulae.

12

CS5219 2007-08 by Abhik 67

Fixed points

If S is finite, then for a monotone
function f : 2S → 2S

∃ I ∈nat lfp f = f I (φ)
∃ I ∈nat gfp f = f I (S)

Class Exercise:
Let us prove this theorem now.

CS5219 2007-08 by Abhik 68

LFP computation procedure
Function lfp (f : PredicateTransformer): Predicate
Begin

Q := φ; // Null-set
Q1 := f(Q);
while (Q1 ≠ Q) do

Q := Q1; Q1 := f(Q)
endwhile;
return(Q)

End.

CS5219 2007-08 by Abhik 69

GFP computation procedure
Function gfp (f : PredicateTransformer): Predicate
Begin

Q := S; // All states in the Kripke Structure
Q1 := f(Q);
while (Q1 ≠ Q) do

Q := Q1; Q1 := f(Q)
endwhile;
return(Q)

End.

CS5219 2007-08 by Abhik 70

Defining CTL operators

M = (S,I, →, L) is a finite Kripke
structure
ϕ is a CTL formula
[ϕ] ⊆ S denotes the set of states
satisfying ϕ
Say we define a predicate transformer

fϕ(Y) = [ϕ] ∩ {s | ∃ s’ s → s’ and s’ ∈ Y }

CS5219 2007-08 by Abhik 71

Defining EG

{s | ∃ s’ s → s’ and s’ ∈ Y }
Stands for [EX Y], the set of states in M
which satisfy EX Y.
For convenience we will avoid the […]

fϕ(Y) = ϕ ∩ EX Y
Show that this transformer is monotonic.
You will need the definition of EX

CS5219 2007-08 by Abhik 72

Defining EG

Show that EGϕ is a fixed point of
fϕ(Y) = ϕ ∩ EX Y.
Any state satisfying EGϕ satisfies ϕ and there is an
outgoing state satisfying EGϕ
The other direction of the proof …

Show that EGϕ is the gfp of
fϕ(Y) = ϕ ∩ EX Y
Any state in a fixed point of fϕ satisfies EG ϕ

Complete the proof exploiting this intuition.

13

CS5219 2007-08 by Abhik 73

Defining EU

E(ϕ U ψ) is the least fixed point of
fϕ,ψ(Y) = ψ ∪ (ϕ ∩ EX Y)

Cast the EU checking algo in terms of the LFP
computation procedure outlined earlier

Full discussion on CTL MC in next class.

CS5219 2007-08 by Abhik 74

Property Equivalences

EG ϕ = ϕ ∧ EXEGϕ

E(ϕ U ψ) = ψ ∨ (ϕ ∧ EX E(ϕ U ψ))

We can derive similar equivalences using the
fixed point characterization of other CTL
properties.

CS5219 2007-08 by Abhik 75

Possible Readings
Chapter 3 of “Model Checking”

Clarke, Grumberg, Peled
See IVLE E-reserves to access material
QA76.76 Ver.C RBR in Central Library

Chapter 3 of Logic in Computer Science
(Huth and Ryan)

QA76.9 Log.Hu in Central Library
I also have a copy.

Chapter 3.9 contains discussion on fixed point
characterizations.

