
1

CS 3211 – Parallel & Concurrent Programming
Introduction

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

CS3211 2012-13 by Abhik1

Also see IVLE Lesson Plan.

Sequential Programming
Single thread of control flow.
One program counter.

Advances by executing an instruction.

Standard programming languages
C, Java.

CS3211 2012-13 by Abhik2

J
Sequential Java program may have many passive objects

Only one active flow of control.

Why Concurrent Programming?
Wide rise of multi-cores

Machines with 4 or more cores are common.
Intel already has a processor with 80+ cores !!
Latest news: 48 core processor for smart-phones

http://www.techspot.com/news/50665-intel-is-developing-a-48-
f t h d t bl t ht l

CS3211 2012-13 by Abhik3

core-processor-for-smartphones-and-tablets.html

Why so ?
Processor speeds have enabled more complex programming languages
and tasks.
But, is this not self-sustaining?

The cycle [Larus, MSR-TR 08]

Increased processor
performance

CS3211 2012-13 by Abhik4

Larger, more
feature-full software

Larger
development
teams

High-level
languages &
Programming
Abstractions

Slower
Programs

Free lunch must end!
`` For the past three decades, improvements in semiconductor fabrication and processor

implementation produced steady increases in the speed at which computers executed existing
sequential programs. The architectural changes in multicore processors benefit only
concurrent applications and therefore have little value for most existing mainstream software.
For the foreseeable future, today’s desktop applications will not run much faster than they do
now. In fact, they may run slightly slower on newer chips, as individual cores become simpler
and run at lower clock speeds to reduce power consumption on dense multicore
processors …. That brings us to a fundamental turning point in software development, at least
for mainstream software Computers will continue to become more and more capable but

CS3211 2012-13 by Abhik5

for mainstream software. Computers will continue to become more and more capable, but
programs can no longer simply ride the hardware wave of increasing performance unless they
are highly concurrent. Although multi-core performance is the forcing function, we have other
reasons to want concurrency: notably, to improve responsiveness by performing work
asynchronously instead of synchronously. For example, today’s applications must move work
off the GUI thread so it can redraw the screen while a computation runs in the background.”

- from “Software and the Concurrency Revolution”, ACM Queue 05.

- [By now, the Free Lunch has ended!]

On concurrency

Being integrated into mainstream languages
Java, C#

Harder to program and understand
Many inter-leavings even when each thread has one path.
Cyclic debugging not possible – cannot reproduce an observable
error !

CS3211 2012-13 by Abhik6

Thread 1 Thread 2

X = 1; // should be 0 X = 2;

Y = X;
printf(“%d”, y);

2

Possible runs
X = 1;

X = 2;
Y = X;
Print Y Error not exhibited.

X = 2;
X= 1;

Y = X;
Print Y Error is exhibited.

CS3211 2012-13 by Abhik7

In this course
Concurrent Programming (primarily)

Principles, rather than tricks
Sometimes high-level modeling languages used to convey principles.
Java is used to illustrate implementation issues.

2/3 of the course

P ll l P i (3 l t)

CS3211 2012-13 by Abhik8

Parallel Programming (approx 3 lectures)
Material will be given in E-reserves
1/3 of the course.

Books
Textbook (closely followed for Concurrent Programming, but
no coverage of parallel programming)

Concurrency: State Models & Java Programs by Jeff Magee and
Jeff Kramer

Publisher: Wiley
ISBN 0-471-98710-7ISBN 0-471-98710-7

Available in Forum Co-op.

Parallel Programming
Principles of Parallel Programming, by
Calvin Lin and Lawrence Snyder
[Some material in E-reserves]

CS3211 2012-13 by Abhik9

Topics (1)
Concurrency as a concept

Threads/Processes
Interleaving among threads
Communication mechanisms among threads

Shared Objects
M P i

CS3211 2012-13 by Abhik10

Message Passing

A glimpse of these concepts today

Topics (2)
Thread Communication in details

Shared obj. & Mutual exclusion
Monitors
Properties to preserve

No deadlock, Safety, Liveness

CS3211 2012-13 by Abhik11

Multi-threaded Java will be used in these assignments.

Topics (3)
Parallel Programming

Libraries to extend a sequential programming language
Message Passing Interface (MPI) on top of C

Suggested text (some material to be put in E-reserves)

CS3211 2012-13 by Abhik12

Principles of Parallel Programming, by
Calvin Lin and Lawrence Snyder

Parallel programming constitutes about 1/3 of course.
Assignment will involve C programming.
No tutorial on C programming will be given.

3

Pre-module survey I had given
A multi-threaded program may have concurrent execution or parallel exec
depending on # of processor cores available.

Sequential
execution

Concurrent

CS3211 2012-13 by Abhik13

Can be
blocked
sometime

Concurrent
exec (time-
sharing)

Parallel
execution

Assessment
Mark distribution

Midterm: 20% [on the 7th week, in class, 7th March 2013]
Programming Assignments: 30%

Concurrent Programming: 2 assignments, 10 marks each = 20 marks
Parallel Programming: 1 assignment, 10 marks = 10 marks

T t i l ti i ti 5%

CS3211 2012-13 by Abhik14

Tutorial participation: 5%
Final : 45%

Pre-requisites: CS2106 or CG2271

IVLE Lesson Plan contains a lot of information.
Please check the Lesson Plan regularly.

Lectures – post-it notes
Please attend, and engage.
I will put around 50 - 60 post it notes in different seats in
the lecture hall.

Please try to take up a seat with a post-it note.y p p
Any concept that you are unclear about – you can mark it
in the post-it note, and post it in the lecture hall door
while you leave.

This will give me an idea about which topics to revise
and/or follow up, possibly in the tutorials.

CS3211 2012-13 by Abhik15

Tutorials
Kindly attend, and participate.

The 5% is for participation, not for giving correct answers.
So, kindly do not hesitate to participate – even if you think
your answer may not be the correct one!

Questions (without answers) will be posted.
Answers will be posted just before midterm, and just before
final – see my first IVLE announcement [this is what I prefer]
Any comments on this?
How to address the concern of people who attend!

Please raise any questions you may have about past
lectures. These could be topics you mention in post-it.

CS3211 2012-13 by Abhik16

Additional Sessions
We have the first one this week itself.

Saturday Jan 19 10 am – 12 noon at MR1 COM1 03-19
No new material is covered.
Meant as a general and dynamic discussion of all the concepts.

Not held every weekNot held every week
I know you may not want to come on Saturdays ☺
Next one is in week 5, Feb 16 at Executive Classroom COM2-
04-02. That session will cover ---

Make-up tutorial for CNY, followed by an
Optional session to discuss all the concepts up to then.

CS3211 2012-13 by Abhik17

The people
My e-mail: abhik@comp.nus.edu.sg

Office: COM2 #03-07
[Please email me if you want to meet for consultation]

Your Tutors [responsible for tutorials]
Myself
Dr Jooyong Lee (Yi) jooyong@comp nus edu sg

CS3211 2012-13 by Abhik18

Dr. Jooyong Lee (Yi) jooyong@comp.nus.edu.sg
Qi Dawei dawei@comp.nus.edu.sg

Queries, and help with assignments
Post your queries to the IVLE Discussion forum.
Also, for each of the 3 assignments we have a primary contact –
who will grade the assignment. Queries may be directed to him.
� Assignment 1: Myself
� Assignment 2: Jooyong Lee (Yi)
� Assignment 3: Qi Dawei

4

A Concurrent Modeling Language

Abhik Roychoudhury
CS 3211

Department of CS, NUS

CS3211 2012-13 by Abhik19

Reading for this portion appears in E-reserves, see Lesson Plan.

We now discuss …
SPIN --- a tool for modeling complex concurrent and
distributed systems.
Provides:

Promela, a protocol meta language
A checker

CS3211 2012-13 by Abhik20

A random simulator for system simulation

Why discuss it now?
To introduce the concepts in concurrency …
Without getting into full-scale multi-threaded Java
programming at the very beginning.

What is this modeling language?
Describes concurrent systems

Depicts common concepts in concurrency
Threads / processes
Interleaving among threads/processes
Inter-process communication via shared variable updates
Inter-process communication via message passingInter-process communication via message passing

… and also other features such non-determinism within a
process

Only in a modeling language.

Yet, is higher-level than a programming language
Focus on concurrency concepts first, rather than details of Java

21 CS3211 2012-13 by Abhik

Our Usage
Learn Promela, a modeling language.

Higher-level than a programming language.

Use it to model simple concurrent system protocols and
interactions.
Gives a feel (at a small scale)

Wh h d fi d i i ?

CS3211 2012-13 by Abhik22

What are hard-to-find errors in concurrent programming?
Supported by a back-end checker which can show the error
traces to you

Each error trace is shown as a UML Sequence Diagram!

Our primary usage

Requirements (English)

Manual step
Manual step

Desirable
Properties

User

CS3211 2012-13 by Abhik23

Promela

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??
Automated

Verification

Only use as guide

Why Promela ?
Specification language to model finite state systems

Side remark: What is finite state?

Models finite state concurrent processes which
compute and communicate.
Different flavors of concurrency & communication

CS3211 2012-13 by Abhik24

Different flavors of concurrency & communication
Via global shared variables.
Via message channels

Synchronous communication (hand-shake)
Asynchronous communication (buffers)

5

Example 0

byte state = 0;

proctype A()

{ byte tmp;

state : Global Variable

tmp : Local Variable

(state==0) -> tmp = state is a
guarded command (blocked if the

CS3211 2012-13 by Abhik25

{ y p;

(state==0) -> tmp = state;

tmp = tmp+1;

state = tmp;

}

init { run A() ; }

guard is false).

Only one process created.

Final value of state is 1

Concepts in Example 0
byte state = 0;

proctype A()
{ byte tmp;

(0) >

Plain sequential programming.

Use of guarded commands.

(state==0) -> tmp = state;
tmp = tmp+1;
state = tmp;

}

init { run A() ; }

Only one active thread of control.

26 CS3211 2012-13 by Abhik

Looking inside a process
Data Structures

Basic types : int, bool, bit, byte
Arrays
Structures (through typedef declarations)

Just as in C/Java, not much going on here !

CS3211 2009-10 by Abhik27

Check SPIN manual for details
http://spinroot.com/spin/Man/Manual.html

27 CS3211 2012-13 by Abhik

Statements
Assignments
Boolean expressions

If true, then no-op else block

Guarded commands
(state == 1) -> tmp = state;

CS3211 2009-10 by Abhik28

(state 1) -> tmp state;
Guard and body evaluated separately, be careful !!
If you want to evaluate them together
atomic { (state == 1) -> tmp = state; }

Effect of a test-and-set instruction

28 CS3211 2012-13 by Abhik

Example 1

byte state = 0;

proctype A()
{ byte tmp;

What will happen here ?

CS3211 2012-13 by Abhik29

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

We need to define how
processes are scheduled
to determine behaviors.

Process scheduling
All processes execute concurrently
Interleaving semantics

At each time step, only one of the “active” processes will execute (non-
deterministic choice here)
A process is active, if it has been created, and its “next” statement is not
blocked.

CS3211 2012-13 by Abhik30

Each statement in each process executed atomically.
Within the chosen process, if several statements are enabled, one of
them executed non-deterministically.

We have not seen such an example yet !

6

Slight de-tour in first lecture

Discusses

-Interleavings

CS3211 2012-13 by Abhik31

-Data races
-Use of locks to prevent races

Example 1 - Revisited

byte state = 0;

proctype A()

Final val. of state can
still be 1 ??

CS3211 2012-13 by Abhik32

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

Problem of arbitrary
shared variable access
by several threads.

Another interleaving
state == 0 state == 0

tmp = state
tmp = tmp +1
state = tmp

tmp = state

CS3211 2012-13 by Abhik34

tmp = state
tmp = tmp + 1
state = tmp

Ordering of these two operations do matter!
They are in a “race”
Depending on who wins the race – the final observed value is different.

Shared variable operations
Consider pair of shared variable operations in 2 threads

X = 1 X = 2
Depending on which is executed earlier, final value is different

X = 1 read X
A t iA more concrete version
X = 1 if (X > 1){

Depending on which is executed earlier, different value is read

read X read X or
if (X > 1){ if (X > 2){

No race between this pair.

CS3211 2012-13 by Abhik35

Data races
A data race occurs when:

two or more threads access the same memory location
concurrently, and
at least one of the accesses is for writing, and
the threads are not using any exclusive locks to control their
accesses to that memoryaccesses to that memory.

When these three conditions hold, the order of accesses
is non-deterministic. Many data-races are bugs in the
program.

CS3211 2012-13 by Abhik36

7

What can you do as a programmer?
Enclose all shared variable accesses with locks – Java
provides this facility (next lecture)

Acquire lock before access
Release lock after access

May lead to very inefficient code?
Can acquire locks for an entire block of code.
What impact does it have on concurrency?

Alternative – Java volatile variables [not recommended]
More details in next week’s lecture.

CS3211 2012-13 by Abhik37

Concepts in Example 1

byte state = 0;

proctype A()

Several threads of control.

Interleaved execution among
threads.

CS3211 2009-10 by Abhik38

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

Shared variables for inter-thread
communication.

Surprising results due to
unforeseen interleavings !!

38 CS3211 2012-13 by Abhik

End of De-tour

Initial discussion on

-Interleavings

CS3211 2012-13 by Abhik39

-Data races
-Use of locks to prevent races

Example 2

bit flag; init {

byte sem; atomic{

proctype myprocess(bit i) run myprocess(0));

{ (flag != 1) -> flag = 1; run myprocess(1));

CS3211 2012-13 by Abhik40

sem = sem + 1; run observer();

sem = sem – 1; }

flag = 0; }

}

proctype observer() {

assert(sem != 2);

}

All three processes

Instantiated together

Concepts in Example 2
Interleaved execution among threads.
Shared variable communication
Unintended shared variable values

Due to unforeseen interleavings

And, a mechanism for
Specifying the unintended behavior.
Producing the interleaving that produces this unintended
behavior.
We only do this in our modeling environment – hard to do this
for real programs!

42 CS3211 2012-13 by Abhik

8

Concepts in Example 2
Initial values of sem, flag not given

All possible initial values are considered.
The system being verified is the asynchronous
composition

myprocess(0) || myprocess(1)
Th h

CS3211 2012-13 by Abhik43

The property is the invariant
always sem ≠ 2

Local & global invariants can be specified inside code
via assert statements.

More on assert
Of the form assert B

B is a boolean expression
If B then no-op else abort (with error).

Can be used inside a process (local invariants)
proctype P(…) { x = … ; assert(x != 2); …. }

CS3211 2012-13 by Abhik44

Or as a separate observer process (global invariants)
proctype observer(){ assert(x != 2); }

Used to specify intended (and unintended) behaviors
resulting from interleavings among threads.

Example 3

bit flags[2]; init() {

byte sem, turn; atomic{

proctype myprocess(bit id) { run myprocess(0);

flags[id] = 1; run myprocess(1);

CS3211 2012-13 by Abhik45

flags[id] = 1; run myprocess(1);

turn = 1 – id; run observer(); }

flags[1-id] == 0 || turn == id; }

sem++; proctype observer() {

sem--; assert(sem != 2);

flags[id] = 0; }

}

Issues
Can you prove mutual exclusion ?

What purpose does turn serve ?
Arrays have been used in this example.

Flags is global, but each element is updated by only one
process in the protocol

CS3211 2012-13 by Abhik46

Not enforced by the language features.
Processes could alternatively be started as:

active proctype myprocess(…) {
Alternative to dynamic creation via run statement

So far …
Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
NOW

CS3211 2012-13 by Abhik47

NOW …
Guarded IF and DO statements

Within a process, if several statements are enabled, one of
them executed non-deterministically!

Channel Communication between processes

Non-deterministic choice
Choice of statements within a process

if
:: condition1 -> … ; … ; …
…
:: conditionk -> … ; … ; …
fi;

CS3211 2012-13 by Abhik48

fi;

If several conditions hold, select and execute any one
(more behaviors for verification).
If none hold, the statement blocks.

9

Loops
Similar to the if-fi statement, we have a do-od
statement.
Repeat the choice selection forever.

Useful for modeling infinite loops pre-dominant in control
software.

CS3211 2012-13 by Abhik49

Control can transfer out of the loop via a break
statement in the flavor of the C language.

A loop which may terminate

byte count;

proctype counter()
{

do

CS3211 2012-13 by Abhik50

:: count = count + 1
:: count = count - 1
:: (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example

Concepts in previous example
Non-determinism within a process

Not normal for threads in programs!!
A model is often, less detailed than a program.

Possibility of programming non-terminating control
software

See next example too.

51 CS3211 2012-13 by Abhik

A loop which will not terminate

active proctype TrafficLightController() {

byte color = green;

do

:: (color == green) -> color = yellow;

CS3211 2012-13 by Abhik52

:: (color == green) -> color = yellow;

:: (color == yellow) -> color = red;

:: (color == red) -> color = green;

od;

}
green yellow red

s0 s1

s2

Synchronization
Processes implicitly communicate via shared variables.
However, for other reasons

Processes may need to explicitly synchronize.

What reasons?
e.g. Mutually exclusive access to shared variables.

How to synchronize?
Acquiring and releasing locks.

CS3211 2009-10 by Abhik53

Locking
byte sem = 1;

active proctype P() {
do
:: printf(“Noncritical section P\n”);

atomic{ sem == 1; sem--; }
printf(“Critical section P\n”);
sem++;

init{
atomic{ run P(); run P(); }

}

CS3211 2009-10 by Abhik54

sem++;
od

}

atomic{ sem == 1; sem--; } Implementation of lock acquire
sem++ Implementation of lock release

When we program in Java, we do not program in the protocols for ensuring
mutual exclusion. Instead, we assume a locking mechanism and program the
non-critical / critical sections.

10

So far …
Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
G d d IF d DO t t tGuarded IF and DO statements
NOW …

Channel Communication between processes

55 CS3211 2012-13 by Abhik

Channels
Processes in our modeling language can communicate by
exchanging messages across channels.
Channels are typed.
Any channel is a FIFO buffer.
Handshakes supported when buffer is null.

CS3211 2012-13 by Abhik56

chan ch = [2] of bit;
A buffer of length 2, each element is a bit.

Array of channels also possible.
Talking to different processes via dedicated channels.

Handshake or not?

1

2
3

Sender Receiver
Handshake communication

<!1, ?1>, <!2, ?2>, <!3, ?3>, …
(only possible interleaving)

Buffer of length 2
!1, !2, ?1, !3, ?2, …
(also possible)

CS3211 2012-13 by Abhik57

4

What is the minimum sized buffer needed to allow this interleaving?

!1, !2, ?1, ?2, !3, !4, ?3, ?4, …

Value-passing
chan ch = [0] of bit;

active proctype sender() active proctype receiver()

{ { bit x;

ch!1; ch?x;

} printf(“%d”, x);

}

CS3211 2012-13 by Abhik58

}

The value 1 is passed into local var. x via message passing.

In this example, the message passing was via a handshake
! is output, ? is input

Receiving is always blocked if the corresponding channel buffer is empty.
Similarly for sending.

An example with channels

chan name = [??] of byte; init { atomic { run A(); run B() } }

proctype A() {

name!124;

name!121; E t th b h i

CS3211 2012-13 by Abhik59

name!121;

}

proctype B() {

byte state;

name?state

}

Enumerate the behaviors
when:

?? is 0

?? is 1

?? is > 1

Another (more famous) example

#define p 0

#define v 1

chan sema = [0] of { bit };

proctype dijkstra_semaphore() {

1

proctype user()

{

do

:: sema?p; /* critical section */

sema!v; /* non-critical section */

CS3211 2012-13 by Abhik60

byte count = 1;

do

:: (count == 1) -> sema!p; count = 0

:: (count == 0) -> sema?v; count = 1

od

}

od

}

init {

run dijkstra_semaphore();

run user(); run user(); run user()

}

11

Any comments?

Mutual Exclusion

- Can more than one process enter the critical section?
[note that the guard and body of a guarded command can be
executed non-atomically]

CS3211 2012-13 by Abhik61

Non-starvation
- Can one process completely hog the critical section, and
starve out other processes?

Communication among processes
Shared variables

(as in concurrent programming in Java)

Message Passing
(we will later use MPI for parallel programming)
At the application level, the issue of locking does not arise.

Seemingly, no shared variables !
So, we do not need to worry about this now!

However, in reality, the message buffers or channels are shared
global variables and the programmer will need some
mechanism to mutually ensure exclusive access

Two processes cannot read/write to the channel at the same time.

CS3211 2009-10 by Abhik62

How Message Passing occurs in real-life
Interrupt-driven communication

An interrupt happens to the CPU, whenever data is ready to
be read.

To ensure mutually exclusive access of message buffers, disable
interrupts while servicing the current interrupt.
Not captured at the application level send-receive we are studying!p pp y g

Or, the CPU polls (via certain sensors) at regular intervals
to check whether data is available

Check whether data is available on the channel and then perform
receive action, popularly known as polling.
Instead of being blocked at request?client as if the server checks
periodically if the client has sent its data.

CS3211 2009-10 by Abhik63

Message passing: ABP problem

sender receiver
datachan

CS3211 2009-10 by Abhik64

ackchan

Alternating Bit Protocol
Reliable channel communication between sender and receiver.
Exchanging msg and ack. Channels are lossy .
Attach a bit with each msg/ack. Proceed with next message if the received bit
matches your expectation.

ABP modeling
active proctype Sender()
{ bit out, in;

do
:: datachan!out ->

ackchan?in;
if

active proctype Receiver()
{ bit in ;

do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in

CS3211 2009-10 by Abhik65

if
:: in == out

-> out = 1- out;
:: else fi

od
}

:: timeout > ackchan!in
od

}

chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };

Let us finish with a real-life situation
July 4, 1997

NASA’s Pathfinder landed on Mars.
Tremendous engineering feat.
Hard to design the control software with concurrency and
priority driven scheduling of threads.
Th S R ld l i h h i The SpaceRover would lose contact with earth in
unpredictable moments.

CS3211 2009-10 by Abhik66

12

Mars PathFinder Problem
“But a few days into the mission, not long after Pathfinder

started gathering meteorological data, the spacecraft began
experiencing total system resets, each resulting in losses of
data. The press reported these failures in terms such as
"software glitches" and "the computer was trying to do too
many things at once".” …

CS3211 2009-10 by Abhik67

y g

Essence of the problem in our modeling
language

mtype = { free, busy, idle, waiting, running };

mtype H = idle; mtype L = idle; mtype mutex = free;

active proctype high();

{end: do

:: H = waiting;

active proctype low() provided (H == idle)

{ end: do

:: L = waiting;

CS3211 2009-10 by Abhik68

atomic { mutex == free ->

mutex = busy };

H = running;

atomic{ H=idle; mutex=free }

od

}

g;

atomic{ mutex== free->

mutex = busy};

L = running;

atomic{ L=idle; mutex = free }

od

}

State Space Graph

i,i,f

w,i,f
w w f

i,w,f

CS3211 2009-10 by Abhik69

, ,
w,w,f

i,w,b

i,r,b

w,r,b

w,w,b

w,w,b

r,w,b

w,i,b

r,i,b

w ≡waiting

i ≡idle

r ≡running

b ≡busy

f ≡ free

Deadlock
Counterexample

Low priority thread acquires lock
High priority thread starts
Low priority process cannot be scheduled
High priority thread blocked on lock

CS3211 2009-10 by Abhik70

Actual error was a bit more complex with three
threads of three different priorities

Timer went off with such a deadlock resulting in a system
reset and loss of transmitted data.

Readings for today’s lecture
Basic SPIN manual

http://spinroot.com/spin/Man/Manual.html
Promela is the front end of the SPIN tool, a model checker.
We will concern ourselves mostly about the modeling in
cs3211.

Ch t 3 f “Th SPIN M d l Ch k ” b G d J

CS3211 2012-13 by Abhik71

Chapter 3 of “The SPIN Model Checker” by Gerard J.
Holzmann.

Scanned version made available from IVLE Lesson Plan (E-reserves).

Lot of other material available online at
http://spinroot.com/spin/Man/index.html

Until the …
Additional session on Saturday 19 Jan, 10 am – 12 noon.

Question for us to ponder about --

Locks ensure mutual exclusion. How to ensure mutual exclusion of the lock
i bl / bj ?variable / object?

A common concept in concurrency is a “deadlock” where in its simple form,
two processes wait for each other. Think of some scenarios where lock
usage leads to deadlock – we just saw one!

CS3211 2012-13 by Abhik72

