
4/22/2013

1

CS 3211
Parallel Programming Models

Abhik Roychoudhury
National University of Singapore

1

Gives basic concepts of parallel programming before moving to MPI

CS 3211 2012-13 by Abhik

Parallel Programming Models
Message-passing programming paradigm

Oldest and most widely used approach for programming
parallel computers
Imposes minimal requirements on the underlying hardware

Shared-memory programming paradigm

CS 3211 2012-13 by Abhik2

Increasingly popular with the emergence of shared memory
multiprocessors on chip

We will study message passing programming
paradigm using Message Passing Interface (MPI)

Message Passing Programming
Partitioned address space

Logical view consists of p processes, each with its own
exclusive address space
Each data element must belong to one of the partitioned
address space --- explicit data partitioning

Programming difficulty but better locality of access

CS 3211 2012-13 by Abhik3

Programming difficulty but better locality of access

All interactions require cooperation of both the process that
has the data and the process that wants the data

Programming difficulty but forces programmers to minimize
interactions

Natural fit for clustered workstations

Supports only explicit parallelization

Structure of message passing programs
Asynchronous

All concurrent tasks execute asynchronously
Programs are hard to reason about due to non-deterministic
behavior.

Loosely synchronous

CS 3211 2012-13 by Abhik4

Tasks synchronize to perform interactions; between
interactions tasks execute completely asynchronously

Single Program Multiple Data (SPMD)
Code executed by different processes are identical

So far
We have discussed 2 kinds of message passing

Synchronous message passing
Handshake between sender and receiver processes
Send is blocking – until there is a matching receive.
Similarly receive also must be blocking.

Asynchronous message passing

CS 3211 2012-13 by Abhik5

Send is non-blocking, data put into a buffer.
Receive still occurs after the send, by taking data from buffer.

In actual implementations
Things can get more complicated.
Need to distinguish between user and system/NW space in
each process.
Welcome to parallelism …

User and Network space
! data

Copy data from user space into the network/system space.
Actual communication can take place later.

?data
Copy data from network space into user space at receiver end.

CS 3211 2012-13 by Abhik6

Again actual communication take place later, fool the system to
believe that receive has taken place.
This can be safe, as long as receiver process is not manipulating
the variables where the data supposed to have been received
would have been stored.
Need to check for actual receives from time to time.

4/22/2013

2

In actual parallel implementations
There are always buffers in network space.

Buffered send => Buffers in user and network space
Non-buffered send => Buffer only in network space

More discussion later when we discuss MPI.

Message transmission is via network packets.
… travelling over the network

CS 3211 2012-13 by Abhik7

… travelling over the network.
Implementation of message send

Transfer data from user space to network buffers typically by
DMA. This will then travel over the network.

Implementation of message receive
Transfer of data from network buffers to user space back. This
data has by now travelled over the network.

PAUSE please
We now discuss for 4 comm. schemes:

blocking / non-blocking, buffered / non-buffered

All the Sequence Diagrams shown for the 4 communication schemes are a
schematic only.
Exact implementation may differ for different versions of MPI.
The key issue is not the exact implementation of these schemes.
The key issue is to understand the actual software system layers in each

CS 3211 2012-13 by Abhik8

process – be it the sender, or receiver.

Only by getting an appreciation of the different layers in each process
-Program memory
-MPI libraries
-Network interface

you can get an actual appreciation of how message passing communication
takes place in a parallel system.

The actual system stack

A[1024]
B[1024]

…

Just a pointer?

Program’s memory – stack or heap.

CS 3211 2012-13 by Abhik9

MPI_send(&A, …)
MPI_receive(…

Dedicated Buffer

Network Interface
Hardware

Data travels over the
network

Do we have buffers here?

Building Blocks: Send and Receive
Interactions are accomplished by sending and receiving
messages
send (void *sendbuf, int nelems, int destination)
receive(void *recvbuf, int nelems, int source)

CS 3211 2012-13 by Abhik10

P0 P1

a = 100; receive(&a, 1, 0);
send (&a, 1, 1); printf(“%d\n”, a);
a = 0;

Blocking non-buffered send/receive

Send operation does not return until the matching
receive has been encountered at the receiving process
Involves handshake between sender and receiver
Drawback: Idling overhead

CS 3211 2012-13 by Abhik11

sender receiver

Request to send

okay to send

data

send

receive

Blocking non-buffered

A[1024]
B[1024]

…

Just a pointer

No buffer space in the MPI library’s address
space Pointer is passed and sender blocks

Program’s memory – stack or heap.

CS 3211 2012-13 by Abhik12

MPI_send(&A, …)
MPI_receive(…

Dedicated Buffer

Network Interface
Hardware

Data travels over the
network

space. Pointer is passed and sender blocks.
When network buffer is available it passes
user data directly to network buffer, for
onward communication over the network.

4/22/2013

3

Deadlock in Blocking Non-buffered
send/receive

P0 P1

send (&a, 1, 1); send(&a, 1, 0);

CS 3211 2012-13 by Abhik13

receive (&b, 1, 1); receive(&b, 1, 0);

P0 P1

If only the sends were non-blocking !!

Blocking buffered send/receive
Sender has a buffer pre-allocated for messages
On encountering a send operation, the sender simply
copies the data into the designated buffer and returns

Data goes from user space to network space
Actual communication can take place later

CS 3211 2012-13 by Abhik14

At receiving end, data is again copied into a buffer
When receiving process encounter a receive operation, it
checks if data is available in the buffer and copies it into target
location

Removes idling overhead at sender
Drawback: Buffer overflow

Blocking buffered send/receive
sender receiver

data

send

sender receiver

send

receive

DMA

CS 3211 2012-13 by Abhik15

receive data
send

DMA

This will lead to non-blocking sends, but blocking receives.

Receive operation cannot go ahead until the data is actually received.

Blocking buffered

A[1024]
B[1024]

…

Not a pointer

Buffer space exists in the MPI library’s
address space Data is copied from

Program’s memory – stack or heap.

CS 3211 2012-13 by Abhik16

MPI_send(&A, …)
MPI_receive(…

Dedicated Buffer

Network Interface
Hardware

Data travels over the
network

address space. Data is copied from
program address space to these buffers.
Sender does not need to block, but receiver
still blocks until data is received.

Deadlock in buffered send/receive

P0 P1

receive (&a, 1, 1); receive(&a, 1, 0);
send (&b 1 1); send (&b 1 0);

CS 3211 2012-13 by Abhik17

send (&b, 1, 1); send (&b, 1, 0);

Non-blocking message passing
Returns from send or receive operation before it is
semantically safe to do so
User must not alter the data potentially participating in a
communication operation
Generally accompanied by a check-status operation

CS 3211 2012-13 by Abhik18

which indicates if the communication has completed
Non-blocking operations can again be buffered or non-
buffered

4/22/2013

4

Non-blocking non-buffered
sender receiver

Request to send

ok to sendUnsafe to
update data
being send

send

receive

sender receiver

send

receiveok to send

Post check_status and
continue. Unsafe to
use ``received” data.

CS 3211 2012-13 by Abhik19

data

Even after “Request to send” , data is not copied from user space to network space.
Hence it should not be updated meanwhile.

Send is non-blocking.
Receive is also non-blocking.
Receiver meanwhile checks whether data has arrived via check_status

data
send

Non-blocking non-buffered

A[1024]
B[1024]

…

Just a pointer

No buffer in the MPI library’s address
space Sender passes only a pointer and

Program’s memory – stack or heap.

CS 3211 2012-13 by Abhik20

MPI_send(&A, …)
MPI_receive(…

Dedicated Buffer

Network Interface
Hardware

Data travels over the
network

space. Sender passes only a pointer and
still does not block. Hence it is unsafe for
the sender to modify array A until the send
action is actually completed.

Non-Blocking buffered send/receive
sender receiver

send

sender receiver

send

receive

safe to

DMA
unsafe to
use data
To be received

CS 3211 2012-13 by Abhik21

data
receive data

sendsafe to
update data
being sent DMA

Both send and receive are non-blocking.
Difference with previous scheme --- we now have buffers.
Sender can modify the data being sent since it has already been copied to buffers.

Non-blocking non-buffered

A[1024]
B[1024]

…

Not a pointer

Buffer exists in the MPI library’s address
space Sender process copies the data and

Program’s memory – stack or heap.

CS 3211 2012-13 by Abhik22

MPI_send(&A, …)
MPI_receive(…

Dedicated Buffer

Network Interface
Hardware

Data travels over the
network

space. Sender process copies the data and
does not need to block. The receiver also
does not need to block since once the data
reaches other end, it can be copied into MPI
library address space, and copied to
program memory later.

Shared memory programming model

All memory in the logical machine model of a thread
is globally accessible to every thread in the system

T

Alternative to message passing based programming that we will be learning.

CS 3211 2012-13 by Abhik23

T

T

Shared
Address
Space

:
:
:

Threads

A thread is a single stream of control in the flow of a
program

for (row = 0; row < n; row++)
f (l 0 l l)

CS 3211 2012-13 by Abhik24

for (col = 0; col < n; col++)
c[row][col] = create_thread(dotproduct(get_row(a,row),

get_col(b,col)));

4/22/2013

5

Why threads?
Software portability: Threaded application can be developed on
serial machines and run on parallel machines without any
change

Latency hiding: While one thread is waiting for communication
operation another thread can utilize the processor

CS 3211 2012-13 by Abhik25

operation, another thread can utilize the processor

Scheduling and load balancing: Programmer must express
concurrency in a way that minimizes communication and idling

Ease of programming: Shared memory programs are much
easier to write than message-passing programs. Why?

Synchronization Primitives

Much effort on synchronizing concurrent threads with
respect to their data accesses or scheduling
When multiple threads attempt to manipulate the
same data item, the result can be incoherent if proper
care is not taken to synchronize them

CS 3211 2012-13 by Abhik26

care is not taken to synchronize them

/* each thread tries to update variable best_cost as follows */
if (my_cost < best_cost)

best_cost = my_cost;

/* Initial value of best_cost = 100;
my_cost = 50 and 75 in threads T1 and T2 */

Mutex lock
Support for implementing critical sections and atomic
operations
To access shared data, a thread must first try to acquire
mutex
At any point in time, only one thread can lock a mutex

CS 3211 2012-13 by Abhik27

If the mutex is already locked, the thread trying to
acquire the lock is blocked
When a thread is done accessing shared data, it should
release the mutex

Barrier
A barrier call is used to hold a thread until all the other
threads participating in the barrier have reached the
barrier

CS 3211 2012-13 by Abhik28

Sequential Code

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i 0; i<8; i++)

CS 3211 2012-13 by Abhik29

for (i=0; i<8; i++)
if (a[i] > 0)

sum = sum + a[i];
print sum;

Message passing code
id = getmyid();
local_iter = 4;
start_iter = id * load_iter;
end_iter = start_iter + local_iter;

if (id == 0)
send_msg (P1, b[4..7], c[4…7]);

else
recv_msg (P0, b[4..7], c[4..7];

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i=0; i<8; i++)

if (a[i] > 0)
sum = sum + a[i];

print sum;

CS 3211 2012-13 by Abhik30

for (i=start_iter; i<end_iter; i++)
a[i] = b[i] + c[i];

local_sum = 0;
for (i=start_iter; i<end_iter; i++)

if (a[i] > 0)
local_sum = local_sum + a[i];

if (id == 0) {
recv_msg (P1, &local_sum1);
sum = local_sum + local_sum1;
print sum;

}
else

send_msg (P0, local_sum);

4/22/2013

6

Shared memory code

begin parallel // spawn a child thread
private int start_iter, end_iter, i;
shared int local_iter = 4;
shared double sum = 0.0, a[], b[], c[];
shared lock_type mylock;

start_iter = getid() * local_iter;
end_iter = start_iter + local_iter;

CS 3211 2012-13 by Abhik31

for (i=start_iter; i<end_iter; i++)
a[i] = b[i] + c[i];

barrier;

for (i=start_iter; i<end_iter; i++)
if (a[i] > 0) {

lock (mylock);
sum = sum + a[i];
unlock (mylock);

}
barrier;
end parallel // kill the child thread
print sum;

Shared memory vs. message passing

Aspects

• Communication
• Synchronization
• Hardware Support

Shared Memory

• Implicit (load/store)
• Explicit
• Typically required

Message Passing

• explicit (via msg)
• Implicit (via msg)
• None

CS 3211 2012-13 by Abhik32

• Hardware Support
• Development effort
• Tuning effort

• Typically required
• Lower
• higher

• None
• Higher
• lower

Flynn’s Taxonomy of Parallel Computers

Number of Data
Streams

Single Multiple

A very brief look (5 minutes!) at parallel architectures, before proceeding with
MPI

CS 3211 2012-13 by Abhik33

Number of
instruction
streams

Single SISD SIMD

Multiple MISD MIMD

SISD: Single Instruction Single Data
SISD is not considered as
a parallel architecture
SISD exploits parallelism
at the instruction level
Pipelined, Superscalar, and

Memory

Instruction
Stream Data

CS 3211 2012-13 by Abhik34

VLIW architectures are
examples of SISD
architecture

Processing
Element

Control
Unit

Stream

SIMD: Single Instruction Multiple Data
A single instruction
operates on multiple data
to exploit data parallelism
Vector processors and
GPUs are excellent

l f SIMD

Memory

Processing Control

Instruction
Stream Multiple

Data
Streams

CS 3211 2012-13 by Abhik35

examples of SIMD
architecture

Processing
Element

Control
Unit

Processing
Element

Processing
Element

:
:

MISD: Multiple Instruction Single Data
Multiple processing
elements execute from
different instruction
streams and data is passed
from one processing
element to the next

Memory

Processing
Element

Control
Unit

Multiple
Instruction
Streams

Data
Stream

CS 3211 2012-13 by Abhik36

element to the next
Example: Systolic array
such as CMU iWrap
Data passing restriction is
quite severe --- hard to
generalize

ElementUnit

Processing
Element

Processing
Element

Control
Unit

Control
Unit

:
:

….

4/22/2013

7

MIMD: Multiple Instruction Multiple
Data

Most flexible architecture
Used in most parallel
computers today

Memory

Processing
Element

Control
Unit

Multiple
Instruction
Streams

Multiple
Data
Streams

CS 3211 2012-13 by Abhik37

Processing
Element

Processing
Element

Control
Unit

Control
Unit

:
:

:
:

MIMD Classification

MIMD

Shared Memory Distributed
Memory

Processor has cache (CC / NCC)
CC == Cache coherent

Processor to memory delay
(UMA / NUMA)

CS 3211 2012-13 by Abhik38

Uniform
Memory Access

(UMA)

CC-UMA
[SMP]

NCC-UMA

Non-uniform
Memory Access

(NUMA)

CC-NUMA

NCC-NUMA

Distributed Memory MIMD

Processing elements (PE) work independently
Interaction is via message passing
PEs cannot access the memory of another PE directly

CS 3211 2012-13 by Abhik39

PE PE PEPE

Interconnect

Memory Memory MemoryMemory

Cache Cache Cache Cache

Distributed Memory MIMD (contd.)
Advantages

Processors mostly work with local memory
less contention and highly scalable

As communication is via message passing, sophisticated
synchronization techniques are not required

Disadvantages

CS 3211 2012-13 by Abhik40

Disadvantages
Load balancing (partition of code and data) responsibility is on
the programmer
Message-passing-based synchronization can lead to deadlocks;
programmer’s responsibility
Performance overhead due to physical data copy

Shared Memory MIMD
Multiple processors with a logically shared memory
The memory modules define a global address space that
is shared among the processors
Any processor can access any memory module
Communication though memory loads and stores

CS 3211 2012-13 by Abhik41

g y
Logically shared memory can be physically distributed

PE PE PE PE

Memory Memory Memory Memory

Interconnect

Shared Memory MIMD (contd.)
Advantages:

No need to partition code or data
No need to physically move data among processors

communication is efficient

Disadvantages:

CS 3211 2012-13 by Abhik42

Special synchronization constructs are required
Lack of scalability due to contention

