
1

Parallel Programming
and MPI- Lecture 3

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2012-13 by Abhik Roychoudhury1

Sample material: Parallel Programming by Lin and Snyder, Chapter 7.

Summary of previous lectures
MPI as a programming interface
Message passing communication

Communicating sequential processes

Entering and Exiting MPI
MPI_Init, MPI_Finalize

Point-to-point communication
Blocking & Non-blocking
MPI_Send, MPI_Recv, MPI_Isend, MPI_Irecv
Wait and test operations to complete communication.

Collective communication

CS3211 2012-13 by Abhik Roychoudhury2

In today’s discussion
Managing communicators in MPI

Defines a communication domain.
Used implicitly several times in our discussion in defining the
communication primitives.

CS3211 2012-13 by Abhik Roychoudhury3

Why need communicators?
Scenario: Weather forecasting application

60% of the processes are predicting weather based on
previously available weather data.
In parallel, 40% of the processes are doing the initial processing
of the new data that is arriving.
Can put these groups into 2 separate communicators!Can put these groups into 2 separate communicators!

Any interesting management of communicators?
Example: when no new weather data is available, we might want to
use 100% of the processes for weather prediction?

CS3211 2012-13 by Abhik Roychoudhury4

Size and rank
int MPI_Comm_size(comm, &size);

of processes in the communicator

int MPI_Comm_rank(comm, &rank);
Rank of the process that calls it
In the range 0…size-1

There is a pre-defined communicator
MPI_COMM_WORLD

CS3211 2012-13 by Abhik Roychoudhury5

So, what is a communicator?
A group is an ordered set of processes.
A communicator is a handle to a group of processes.
A communicator thus defines a communication domain.
Even for the same group of processes <p1,…,pN>, it
might be convenient to describe disparate communication g p
domains containing the same group of processes.

Why?
To separate library code execution from user code execution.
A send in library may be received by a receive in user code.
This can be prevented by making the library and user code
operate in different communication domains!

CS3211 2012-13 by Abhik Roychoudhury6

2

Simple Mismatch scenario
Suppose the user’s code posts a non-blocking receive
Irecv, before entering a library routine.

The first send in the library may be received by the user’s
posted receive.
This will cause the library to fail.

Solution:
maintain separate communicators, as mentioned earlier.

CS3211 2012-13 by Abhik Roychoudhury7

Intra- and Inter-communicators
Intra-communicator

For communication within a group of processes.
Inter-communicator

For point-to-point communication between disjoint
groups of processes. g p p

CS3211 2012-13 by Abhik Roychoudhury8

Can we ignore communicators?
There is a single global communicator

MPI_COMM_WORLD
Contains all processes.
We can only work with this one.

However, it may be advantageous to separate out certain
communications, to prevent executions with arbitrary
send-receive matching!

CS3211 2012-13 by Abhik Roychoudhury9

Creating communicators
int MPI_Comm_dup(comm, newcomm)

MPI_Comm comm
MPI_Comm *newcomm
Creates a new communicator with the same group of
processes.

 MPI C ()int MPI_Comm_create(comm, group, newcomm)
MPI_Comm comm
MPI_Group group
MPI_Comm *newcomm
The argument group must be a subset of the group of comm
Always possible to use, with MPI_COMM_WORLD

CS3211 2012-13 by Abhik Roychoudhury10

Exercise
We are trying to define a parallel library which does
multi-cast (a variant of MPI_Bcast)

Differences between MPI_Bcast and our library
Instead of the root process in MPI_Bcast, the function takes a flag
which is true if the calling process is root, and false otherwise.
All processes do not need to provide the id of the root process.All processes do not need to provide the id of the root process.

Signature of MPI_Bcast
Int MPI_Bcast(buffer, count, datatype, root, comm)

Starting address of buffer
of entries in buffer
Data type of buffer
Rank of the broadcasting process
The communicator capturing the group of processes.

CS3211 2012-13 by Abhik Roychoudhury11

Exercise
Signature of mcast

Mcast(buf, count, type, isroot, comm)
Output buffer at root, input buffer at other processes
Number of items to be broadcast
Type of items to be broadcast
Flag saying whether the process is a rootFlag saying whether the process is a root
Communicator.

Algorithm
Uses a broadcast tree which is built dynamically.
Root divides the sequence of processes into 2 segments

Sends a message to 1st proc p in 2nd seg, p becomes root of 2nd seg
The procedure is repeated recursively within each sub-segment.

CS3211 2012-13 by Abhik Roychoudhury12

3

Example Multi-cast library
void mcast(void *buff, int count, MPI_Datatype type,

int isroot, MPI_Comm comm)

{

MPI_Comm_size(comm, &size);

MPI_Comm_rank(comm, &rank);

* *int numleaves, /*number of leaves in broadcast tree */

childleaves, /*number of leaves in child’s broadcast tree */

child; /* rank of current child in broadcast tree */

if (isroot){

numleaves = size – 1;

}

else{ …

CS3211 2012-13 by Abhik Roychoudhury13

Example Multi-cast library
else { /* not a root process , receive leaf- count and message from parent */

MPI_Recv(&numleaves,1,MPI_INT,MPI_ANY_SOURCE,0, comm, status);

MPI_Recv(buff, count, type, MPI_ANY_SOURCE , 0, comm, status);

}

while (numleaves > 0){

/* pick child in the middle of current leaf processes */

child = (rank + (numleaves + 1)/2) % size;

childleaves = numleaves / 2;

/* send leaf count and message to child */

MPI_Send(&childleaves, 1, MPI_INT, child, 0, comm);

MPI_Send(buff, count, type, child, 0);

numleaves -= (childleaves + 1); /* remaining number of leaves */

}

}

CS3211 2012-13 by Abhik Roychoudhury14

Now, consider the following code
Assume a group of 3 processes.

MPI_Comm_rank(comm, &myrank);
if (myrank == 2){

MPI_Send(…,1, MPI_INT, 1, 0, comm);

} else if (myrank == 1){
MPI_Recv(…,1, MPI_INT, MPI_ANY_SOURCE, 0, comm)

}
mcast(…,1, MPI_INT, (myrank == 0), comm);

CS3211 2012-13 by Abhik Roychoudhury15

“Expected” Behavior
Process 0 Process 1 Process 2

Send 1Recv *

Send 1 Recv *

CS3211 2012-13 by Abhik Roychoudhury16

Send 1 Recv *

Send 1 Recv *

Send 2 Recv *

Send 2 Recv *

Within
the
Mcast
function

Possible & “Unexpected” Behavior
Process 0 Process 1 Process 2

Send 1Recv *

Send 1 Recv *

CS3211 2012-13 by Abhik Roychoudhury17

Send 1 Recv *

Send 1 Recv *

Send 2 Recv *

Send 2 Recv *

Within
the
Mcast
function

How can this happen?
Invocation of mcast in the 3 processes is not
simultaneous.
Process 0 starts executing multi-cast earlier than other
processes.

The processes are executing on different processors after all.
Different processors run at different speeds!

Process 1 executes the MPI_Recv in the caller code
This matches with the first MPI_Send of process 0 executed
inside the mcast library!

This is why separate communicators are needed!

CS3211 2012-13 by Abhik Roychoudhury18

4

Solutions to the “problem”
Call mcast as “synchronized” code

Is this a wise choice?
Unnecessary synchronization overhead.
Assumes certain ``well-formed” structure in the code- the code
should obey the convention that --- Messages sent before collective
invocation (such as that of mcast) should also be received at the destination
before the matching invocation.
Is it reasonable to assume this?

CS3211 2012-13 by Abhik Roychoudhury19

A more complex scenario
MPI_Comm_rank(comm, &myrank);
if (myrank == 2){

MPI_Send(…,1, MPI_INT, 1, 0, comm);

}

mcast(…,1, MPI_INT, (myrank == 0), comm);

if (myrank == 1){
MPI_Recv(…,1, MPI_INT, MPI_ANY_SOURCE, 0, comm)

}

CS3211 2012-13 by Abhik Roychoudhury20

The “expected” behavior
Process 0 Process 1 Process 2

Send 1

Send 1 Recv *

CS3211 2012-13 by Abhik Roychoudhury21

Send 1 Recv *

Send 2 Recv *

Send 2 Recv *

Recv*

Within
the
Mcast
function

The “unexpected” behavior
Process 0 Process 1 Process 2

Send 1

Send 1 Recv *

CS3211 2012-13 by Abhik Roychoudhury22

Send 1 Recv *

Send 2 Recv *

Send 2 Recv *

Recv*

Within
the
Mcast
function

Another scenario
comm = {0,1,2}

Send 1 Recv *

Send 1 Recv *

S d 2 R *

Process 0 Process 1 Process 2 Process 3

Send

what if process 3 sends msg to process 1,2?
Gets matched with the receives within multi-cast?

Solution:
Use a diff. communicator within the mcast function.

CS3211 2012-13 by Abhik Roychoudhury23

Send 2 Recv *

Send 2 Recv *

Using different communicators
void mcast(void *buf, int count, MPI_Datatype type,

int isroot, MPI_Comm comm)

{

int size, rank, numleaves,child, childleaves;

MPI_Status status;

MPI_Comm pcomm; /* private communicator */

MPI_Comm_dup(comm, &pcomm);

MPI_Comm_size(pcomm, &size);

MPI_Comm_rank(pcomm, &rank);

/* dynamically build up a broadcast tree now */

CS3211 2012-13 by Abhik Roychoudhury24

5

Using different communicators
if (isroot){

numleaves = size -1;

} else { /* receive from parent */

MPI_Recv(&numleaves, 1,MPI_INT,MPI_ANY_SOURCE,0,pcomm, &status);

MPI_Recv(buf, count, type,MPI_ANY_SOURCE,0,pcomm, &status);

}

{while (numleaves >0){
child = (rank + (numleaves+1)/2)%size;

childleaves = numleaves/2; /* send to child in the next 2 lines */

MPI_Send(&childleaves,1, MPI_INT, child, 0, pcomm);

MPI_Send(buf, count, type, child, 0, pcomm);

numleaves -= (childleaves +1); /* compute remaining number of leaves */

}

MPI_Comm_free(&pcomm);

}

CS3211 2012-13 by Abhik Roychoudhury25

Exercise
Can there be other solutions which avoid the additional
communicator allocation (pcomm)?

How about inserting a barrier at the beginning and at the end
of the mcast function?
Can this solution be consistently employed for any parallel
library?library?
What are the implications on

Performance?
Correctness?

Try out the communication scenarios we discussed earlier.

CS3211 2012-13 by Abhik Roychoudhury26

Wrapping up
MPI programming

Explicit message passing, as opposed to shared memory.

Important concepts
Point to point communication

Blocking send receives --- MPI_Send, MPI_Recv
Non-blocking send receives --- MPI_Isend, MPI_Irecv

Collective communication
Scatter, Gather
MPI_Reduce

Communicators
The default communicator is MPI_COMM_WORLD

CS3211 2012-13 by Abhik Roychoudhury27

