
1

CS3211 Revision
- Last lecture

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2012-13 by Abhik Roychoudhury1

Summary of previous 12 lectures
Concurrency as a concept.

Concurrent program execution – inter-leavings
Critical section and ensuring mutual exclusion

Semaphores, Monitors

Deadlocks, Starvation and preventing them.
P l d l l f Promela modeling language, process equations, finite state
machines.

Concurrent programming
All of the above concepts as evidenced in multi-threaded Java

Parallel programming
Message passing model studied via MPI

CS3211 2012-13 by Abhik Roychoudhury2

Exercise 1
Consider the following MPI program fragment involving two

processes. Will there be any deadlocks, or will the two
processes progress to completion?
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0){

MPI_ISend(sbuf, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &req);
MPI_Recv(rbuf, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1){
MPI_ISend(sbuf, count, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &req);

MPI_Recv(rbuf, count, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
}

MPI_Wait(&req, &status);

CS3211 2012-13 by Abhik Roychoudhury3

Answer
Due to the non-blocking sends, the program avoids
deadlocks. Both the processes can post their non-
blocking sends and proceed to execute the receive
actions. The receives return when the messages have been
received.

CS3211 2012-13 by Abhik Roychoudhury4

Exercise 2
Consider the following MPI program fragment involving
two processes. Will there be any deadlocks, or will the
two processes progress to completion? Give detailed
explanation.
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0){if (rank == 0){

MPI_Send(a, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);
MPI_Send(b, count, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1){
MPI_Irecv(a, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &req);
MPI_Recv(b, count, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
MPI_Wait(&req, &status);

}

CS3211 2012-13 by Abhik Roychoudhury5

Answer
The program is safe, that is, it does not deadlock. Process
0 posts two blocking sends. Process 1 posts a non-
blocking receive followed by a blocking receive. The first
send of process 0 is guaranteed to complete. Thus
process 0 can continue and post the second send.
Meanwhile process 1 completes its blocking receive and Meanwhile process 1 completes its blocking receive and
the Wait call ensures that non blocking receive completes
as well. Thus, the two processes progress to completion.

CS3211 2012-13 by Abhik Roychoudhury6

2

Exercise 3
Consider the following schematic code for the Dining
Philosophers’ problem.

Note that in the schematic code

wait_on_cond(Cond){

append p, the current process to queue for Condpp p p q

p.state = blocked

monitor.lock = released

}

signal_to_cond(Cond){

if queue for Cond != empty{

remove head of queue, let it be process x; x.state = ready

}

}

CS3211 2012-13 by Abhik Roychoudhury7

Monitor – Dining Philosophers
monitor Fork{

int array[0..4] fork = [2,2,2,2,2]
condition array[0..4] OKtoEat

operation takeForks(int i){
if (fork[i] != 2){

(O)

operation releaseForks(int i){
fork[i+1] = fork[i+1]+ 1;
fork[i-1] = fork[i-1]+ 1;
if (fork[i+1] == 2){

signal_on_cond(OKtoEat[i+1])
}wait_on_cond(OKtoEat[i])

}
fork[i+1] = fork[i+1] - 1;
fork[i-1] = fork[i-1] – 1;

}

}
if (fork[i-1] == 2){
signal_on_cond(OKtoEat[i-1])
}

}

CS3211 2012-13 by Abhik Roychoudhury8

Philosopher i’s code
loop forever{ takeForks(i); EAT; releaseForks(i); }

Questions
Explain the working of the code.
Does the code suffer from deadlocks?
Does it suffer from starvation?
Can you show any of the following

eating[i] ⇒ (fork[i] == 2)g[] ⇒ ([])
eating[i] is true when philosopher i has executed takeForks(i), and has
not yet executed releaseForks(i).

¬empty(OKtoEat[i]) ⇒ (fork[i] < 2)
∑0

4 fork[i] == 10 – 2 * E,
where E == # of phil. who are eating

CS3211 2012-13 by Abhik Roychoudhury9

No deadlock
Deadlock implies E == 0
Then fork[0] + fork[1] + fork[2] + fork[3]+fork[4] == 10
Also, in a deadlock all philosophers should be enqueued
on OKtoEat.
Thus, for all I, fork[i] < 2, , []

Hence fork[0] + fork[1] + fork[2] + fork[3]+fork[4] < 10

Contradiction!

CS3211 2012-13 by Abhik Roychoudhury10

Starvation scenario
phil1 phil2 phil3
take(1)

take(3)
wait(OK[2])

release(1)
take(1)

release(3)
take(3)

CS3211 2012-13 by Abhik Roychoudhury11

forever

Exercise 4
int x, y, z; /* MPI_COMM_WORLD = {0,1,2} */
switch (rank) {

case 0: x = 0; y = 1; z = 2;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Send(&y, 1, MPI_INT, 2, 43, MPI_COMM_WORLD);
MPI_Bcast(&z, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

case 1: x = 3; y = 4; z = 5;

Rank x y z
0 0 1 4
1 0 4 5
2 1 4 0

MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
break;

case 2: x = 6; y = 7; z = 8;
MPI_Bcast(&z, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Recv(&x, 1, MPI_INT, 0, 43, MPI_COMM_WORLD, &status);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

}

CS3211 2012-13 by Abhik Roychoudhury12

What are the values of x, y, z in the individual processes at the end?

3

Answer
Rank x y z

0 0 1 4
1 0 4 5
2 1 4 02 1 4 0

Explain the reason behind each of the 9 values!

CS3211 2012-13 by Abhik Roychoudhury13

Ex. 5 Matrix-vector mult. in parallel
In class, we discussed dot product computation where
two vectors were multiplied. Now, consider the
multiplication of a matrix with a vector. We want the
result c to be available in each process.

-1 15

1 * -1
+ 3 * 0

CS3211 2012-13 by Abhik Roychoudhury14

1 3 2 4
1

0

4

2

*
=

15
+ 2 * 4
+ 4 * 2

A b c

How to divide up the data?
We are performing A*b = c

Assume that rows of the matrix are distributed into proc.
Vector b is replicated into all processes.

Steps
Perform local sum (row i of A) * b = element i of c
Allgather MPI communication to gather all elements of c.

CS3211 2012-13 by Abhik Roychoudhury15

Allgather

A0

A1

A2

A0 A1 A2 A3 A4 A5

A0 A1 A2 A3 A4 A5

A0 A1 A2 A3 A4 A5

data

P
R
O
C
E
S

CS3211 2012-13 by Abhik Roychoudhury16

A3

A4

A5

A0 A1 A2 A3 A4 A5

A0 A1 A2 A3 A4 A5

A0 A1 A2 A3 A4 A5

S
E
S

Gather to All
MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,
comm)

There is no root processThere is no root process.
All-to-all communication.
All processes receive the gathered result, rather than only
the root process.
As if all the N processes executed N calls to MPI_Gather
with root = 0,1,…, N-1.

CS3211 2012-13 by Abhik Roychoudhury17

Pictorially

Row i of A

b

Row i of A

b

ci
* =

Local computation

CS3211 2012-13 by Abhik Roychoudhury18

Row i of A

b

* =

c

All-gather
communication

You still need to write the code,
using this style of parallelization.

4

Exercise 6
The following process equations define a recursive lock
(as employed in the Java programming language) which
allows a thread to lock a shared object at most k times
(where k 2).

Klock(x,k) = (when (x < k) acquire -> Klock(x+1,k)
| h (0) l Kl k(1 k)| when (x > 0) release -> Klock(x-1,k)

).

Draw the state model for the process Klock(0,3). What
do the states of this state machine signify?

CS3211 2012-13 by Abhik Roychoudhury19

Answer
The states capture the number of acquire actions for
which release has not been performed.

acquire acquire

0 1 2 3
acquire

release

CS3211 2012-13 by Abhik Roychoudhury20

release release release

Exercise 7
synchronized method_in_which_P1_waits(){

while (!flag1) wait();
...

}
synchronized method_in_which_P2_waits(){

while (!flag2) wait();
...

}

CS3211 2012-13 by Abhik Roychoudhury21

}
synchronized method_which_tries_to_move_ahead(){

int oracle_says_yes;
oracle_says_yes = // read in integer value
if (oracle_says_yes > 0) flag1 = true;
else flag2 = true;
notifyAll();

}

What will happen if we replace notifyAll with notify?

Answer
The wrong process may be awakened by the scheduler,
and it will go back to wait again.

The process which can get past the wait statement will
however remain non schedulable and can suffer from
starvation (in terms of being eligible for execution).

Lost notification

CS3211 2012-13 by Abhik Roychoudhury22

Exercise 8
In class, we studied how processes can be connected together by relabeling of

action names. Consider a process P which has two input actions which
input data and acknowledgment, and two output actions which output data
and acknowledgment.

P = din(x) -> dout(x) -> ain -> aout -> P
How can you connect two such processes, such that (i) the dataout of the

first process is fed to the datain of the second process and (ii) the ackout first process is fed to the datain of the second process, and (ii) the ackout
of the second process is fed to the ackin of the first process? Note that the
datain/ackin of the first process as well as the dataout/ackout of the second
process should be externally visible.

Write the process equation for the resultant process.
Compare the resultant process with P in terms of allowed execution traces.

CS3211 2012-13 by Abhik Roychoudhury23

Answer

din(x)
med1 dout(x)

ain

med2aout

CS3211 2012-13 by Abhik Roychoudhury24

(P/{med1/dataout, med2/ackin} || P/{med1/datain, med2/ackout})\{med1,med2}

The resultant process is equivalent to P, as can be confirmed by drawing the state
models of P and the resultant process. Above is the state model without the
action hiding. The action hiding will make it equivalent to P.

